Skip to main content
Top
Published in: Fluid Dynamics 8/2020

01-12-2020

Numerical Simulation of Two-Phase Flow in a Centrifugal Separator

Authors: Z. M. Malikov, M. E. Madaliev

Published in: Fluid Dynamics | Issue 8/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The numerical results of mathematical modeling of a two-phase, axisymmetric swirling turbulent flow in the separation zone of a centrifugal separator are presented. Calculations were carried out for various turbulence models: Spalart–Allmaras rotation/curvature correction (SARC) and shear stress transport rotation/curvature correction (SST-RC) linear models, SSG/LRR-RSM-w2012 Reynolds stress nonlinear model, and the new two-fluid model. In the numerical solution the longitudinal-transverse implicit scheme is used where the pressure is coupled with flow velocity fields using the SIMPLEC procedure. The results from comparing numerical calculations against each other and against experimental data are presented.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Shvab, A.V. and Brendakov, V.N., Mathematical modeling of turbulent flow in a centrifugal apparatus, Izv. Tomsk. Politekh. Univ., 2005, vol. 308, no. 3, pp. 109–112. Shvab, A.V. and Brendakov, V.N., Mathematical modeling of turbulent flow in a centrifugal apparatus, Izv. Tomsk. Politekh. Univ., 2005, vol. 308, no. 3, pp. 109–112.
2.
go back to reference Versteegh, T.A. and Nieuwstadt, T.M., Turbulent budgets of natural convection in an infinite, differentially heated, vertical channel, Int. J. Heat Fluid Flow, 1997, vol. 19, p. 135.CrossRef Versteegh, T.A. and Nieuwstadt, T.M., Turbulent budgets of natural convection in an infinite, differentially heated, vertical channel, Int. J. Heat Fluid Flow, 1997, vol. 19, p. 135.CrossRef
3.
go back to reference Boudjemadi, R., Maupu, V., Laurence, D., and Le Quere, P., Direct numerical simulation of natural convection in a vertical channel: a tool for second-moment closure modelling, in Engineering Turbulence Modelling and Experiments 3, Amsterdam: Elsevier, 1996, p. 39. Boudjemadi, R., Maupu, V., Laurence, D., and Le Quere, P., Direct numerical simulation of natural convection in a vertical channel: a tool for second-moment closure modelling, in Engineering Turbulence Modelling and Experiments 3, Amsterdam: Elsevier, 1996, p. 39.
4.
go back to reference Peng, S.H. and Davidson, L., Large eddy simulation of turbulent buoyant flow in a confined cavity, Int. J. Heat Fluid Flow, 2001, vol. 22, p. 323.CrossRef Peng, S.H. and Davidson, L., Large eddy simulation of turbulent buoyant flow in a confined cavity, Int. J. Heat Fluid Flow, 2001, vol. 22, p. 323.CrossRef
5.
go back to reference Cabot, W. and Moin, P., Approximate wall boundary conditions in the large-eddy simulation of high Reynolds number flow, Flow, Turbul. Combust., 1999, vol. 63, p. 269.CrossRef Cabot, W. and Moin, P., Approximate wall boundary conditions in the large-eddy simulation of high Reynolds number flow, Flow, Turbul. Combust., 1999, vol. 63, p. 269.CrossRef
6.
go back to reference Spalart, P.R. and Shur, M.L., On the sensitization of turbulence models to rotational and curvature, Aerosp. Sci. Technol., 1997, vol. 1, no. 5, pp. 297–302.CrossRef Spalart, P.R. and Shur, M.L., On the sensitization of turbulence models to rotational and curvature, Aerosp. Sci. Technol., 1997, vol. 1, no. 5, pp. 297–302.CrossRef
7.
go back to reference Smirnov, P. and Menter, F., Sensitization of the SST turbulence model to rotation and curvature by applying the Spalart-Shur correction term, Proc. ASME Turbo Expo 2008: Power for Land, Sea and Air, GT 2008, Berlin, June 9–13, 2008. Smirnov, P. and Menter, F., Sensitization of the SST turbulence model to rotation and curvature by applying the Spalart-Shur correction term, Proc. ASME Turbo Expo 2008: Power for Land, Sea and Air, GT 2008, Berlin, June 9–13, 2008.
8.
go back to reference Spalart, P.R. and Allmaras, S.R., A one-equation turbulence model for aerodynamic flow, Proc. 30th Aerospace Sciences Meeting and Exhibit, AIAA Paper, Reno, NV, 1992, vol. 12, no. 1, pp. 439–478. Spalart, P.R. and Allmaras, S.R., A one-equation turbulence model for aerodynamic flow, Proc. 30th Aerospace Sciences Meeting and Exhibit, AIAA Paper, Reno, NV, 1992, vol. 12, no. 1, pp. 439–478.
9.
go back to reference Menter, F.R., Zonal two-equation k-ω turbulence models for aerodynamic flows, Proc. 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference, Orlando, FL, 1993, AIAA Paper 1993–2906. Menter, F.R., Zonal two-equation k-ω turbulence models for aerodynamic flows, Proc. 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference, Orlando, FL, 1993, AIAA Paper 1993–2906.
10.
go back to reference Sentyabov, A.V., Gavrilov, A.A., and Dekterev, A.A., Investigation of turbulence models for computation of swirling flows, Thermophys. Aeromech., 2011, vol. 18, no. 1, pp. 73–85.CrossRef Sentyabov, A.V., Gavrilov, A.A., and Dekterev, A.A., Investigation of turbulence models for computation of swirling flows, Thermophys. Aeromech., 2011, vol. 18, no. 1, pp. 73–85.CrossRef
11.
go back to reference Spalding, D.B., Chemical reaction in turbulent fluids, J. Phys.-Chem. Hydrodyn., 1983, vol. 4, pp. 323–336. Spalding, D.B., Chemical reaction in turbulent fluids, J. Phys.-Chem. Hydrodyn., 1983, vol. 4, pp. 323–336.
12.
go back to reference Spalding, D.B., A turbulence model for buoyant and combusting flows, Proc. 4th Int. Conference on Numerical Methods in Thermal Problems, Swansea, July 15–18, 1984; Imperial College Report CFD/86/4, 1984. Spalding, D.B., A turbulence model for buoyant and combusting flows, Proc. 4th Int. Conference on Numerical Methods in Thermal Problems, Swansea, July 15–18, 1984; Imperial College Report CFD/86/4, 1984.
13.
go back to reference Malikov, Z., Mathematical model of turbulence based on the dynamics of two fluids, Appl. Math. Modell., 2020, vol. 82, pp. 409–436.MathSciNetCrossRef Malikov, Z., Mathematical model of turbulence based on the dynamics of two fluids, Appl. Math. Modell., 2020, vol. 82, pp. 409–436.MathSciNetCrossRef
14.
go back to reference Nigmatulin, R.I., Dynamics of Multiphase Media, New York: Hemisphere Publ., 1991, vol. 1, pp. 30–34. Nigmatulin, R.I., Dynamics of Multiphase Media, New York: Hemisphere Publ., 1991, vol. 1, pp. 30–34.
15.
go back to reference Saffman, P.G., The lift on a small sphere in a slow shear flow, J. Fluid Mech., 1965, vol. 22, pp. 385–400.ADSCrossRef Saffman, P.G., The lift on a small sphere in a slow shear flow, J. Fluid Mech., 1965, vol. 22, pp. 385–400.ADSCrossRef
16.
go back to reference Patankar, S.V., Numerical Heat Transfer and Fluid Flow, New York: Hemisphere Publ., 1980.MATH Patankar, S.V., Numerical Heat Transfer and Fluid Flow, New York: Hemisphere Publ., 1980.MATH
17.
go back to reference Peacemen, D.W. and Rachford, H.H., The numerical solution of parabolic and elliptic differential equations, J. Soc. Ind. Appl. Math., 1955, vol. 3, pp. 28–41.MathSciNetCrossRef Peacemen, D.W. and Rachford, H.H., The numerical solution of parabolic and elliptic differential equations, J. Soc. Ind. Appl. Math., 1955, vol. 3, pp. 28–41.MathSciNetCrossRef
18.
go back to reference Vasilevskii, M.V. and Zykov, E.G., Raschet effektivnosti ochistki gaza v inertsionnykh apparatakh (Calculation of the Efficiency of Gas Purification in Inertial Apparatus), Tomsk: Tomsk Polytechnic Univ., 2005. Vasilevskii, M.V. and Zykov, E.G., Raschet effektivnosti ochistki gaza v inertsionnykh apparatakh (Calculation of the Efficiency of Gas Purification in Inertial Apparatus), Tomsk: Tomsk Polytechnic Univ., 2005.
19.
go back to reference Shilyaev, M.I. and Shilyaev, A.M., Modelling of dust separation process in a parallel flow cyclone. 1. Aerodynamics and diffusion coefficient of particles in cyclone chamber, Thermophys. Aeromech., 2003, vol. 10, no. 2, pp. 149–162. Shilyaev, M.I. and Shilyaev, A.M., Modelling of dust separation process in a parallel flow cyclone. 1. Aerodynamics and diffusion coefficient of particles in cyclone chamber, Thermophys. Aeromech., 2003, vol. 10, no. 2, pp. 149–162.
20.
go back to reference Shilyaev, M.I. and Shilyaev, A.M., Modelling of dust separation process in a parallel flow cyclone. 2. Computation of fractional overtravel coefficient, Thermophys. Aeromech., 2003, vol. 10, no. 3, pp. 417–428. Shilyaev, M.I. and Shilyaev, A.M., Modelling of dust separation process in a parallel flow cyclone. 2. Computation of fractional overtravel coefficient, Thermophys. Aeromech., 2003, vol. 10, no. 3, pp. 417–428.
21.
go back to reference Baranov, D.A., Kutepov, A.M., and Lagutkin, M.G., Calculation of the separation process in hydrocyclones, Theor. Found. Chem. Eng., 1996, vol. 30, no. 2, pp. 103–107. Baranov, D.A., Kutepov, A.M., and Lagutkin, M.G., Calculation of the separation process in hydrocyclones, Theor. Found. Chem. Eng., 1996, vol. 30, no. 2, pp. 103–107.
22.
go back to reference Akhmetov, T.G., Porfil’eva, R.T., and Gaisin, L.G., Khimicheskaya tekhnologiya neorganicheskikh veshchestv (Chemical Technology of Inorganic Substances), Moscow: Vysshaya Shkola, 2002. Akhmetov, T.G., Porfil’eva, R.T., and Gaisin, L.G., Khimicheskaya tekhnologiya neorganicheskikh veshchestv (Chemical Technology of Inorganic Substances), Moscow: Vysshaya Shkola, 2002.
Metadata
Title
Numerical Simulation of Two-Phase Flow in a Centrifugal Separator
Authors
Z. M. Malikov
M. E. Madaliev
Publication date
01-12-2020
Publisher
Pleiades Publishing
Published in
Fluid Dynamics / Issue 8/2020
Print ISSN: 0015-4628
Electronic ISSN: 1573-8507
DOI
https://doi.org/10.1134/S0015462820080066

Other articles of this Issue 8/2020

Fluid Dynamics 8/2020 Go to the issue

Premium Partners