Skip to main content
Top
Published in: Calcolo 3/2018

01-09-2018

Numerical solutions of systems of first-order, two-point BVPs based on the reproducing kernel algorithm

Author: Omar Abu Arqub

Published in: Calcolo | Issue 3/2018

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The aim of the present analysis is to implement a relatively recent computational algorithm, reproducing kernel Hilbert space, for obtaining the solutions of systems of first-order, two-point boundary value problems for ordinary differential equations. The reproducing kernel Hilbert space is constructed in which the initial–final conditions of the systems are satisfied. Whilst, three smooth kernel functions are used throughout the evolution of the algorithm in order to obtain the required grid points. An efficient construction is given to obtain the numerical solutions for the systems together with an existence proof of the exact solutions based upon the reproducing kernel theory. In this approach, computational results of some numerical examples are presented to illustrate the viability, simplicity, and applicability of the algorithm developed. Finally, the utilized results show that the present algorithm and simulated annealing provide a good scheduling methodology to such systems compared with other numerical methods.
Literature
1.
go back to reference Strang, G., Fix, G.: An Analysis of the Finite Element Method. Wellesley-Cambridge, Cambridge (2008)MATH Strang, G., Fix, G.: An Analysis of the Finite Element Method. Wellesley-Cambridge, Cambridge (2008)MATH
2.
go back to reference Pytlak, R.: Numerical Methods for Optimal Control Problems with State Constraints. Springer, Berlin (1999)CrossRef Pytlak, R.: Numerical Methods for Optimal Control Problems with State Constraints. Springer, Berlin (1999)CrossRef
3.
go back to reference Kubicek, M., Hlavacek, V.: Numerical Solution of Nonlinear Boundary Value Problems with Applications. Dover Publications, Mineola (2008)MATH Kubicek, M., Hlavacek, V.: Numerical Solution of Nonlinear Boundary Value Problems with Applications. Dover Publications, Mineola (2008)MATH
4.
go back to reference Keller, H.B.: Numerical Methods for Two-Point Boundary-Value Problems. Dover Publications, Mineola (1993) Keller, H.B.: Numerical Methods for Two-Point Boundary-Value Problems. Dover Publications, Mineola (1993)
5.
go back to reference Ascher, U.M., Mattheij, R.M.M., Russell, R.D.: Numerical Solution of Boundary Value Problems for Ordinary Differential Equations (Classics in Applied Mathematics). SIAM, Philadelphia (1995)CrossRef Ascher, U.M., Mattheij, R.M.M., Russell, R.D.: Numerical Solution of Boundary Value Problems for Ordinary Differential Equations (Classics in Applied Mathematics). SIAM, Philadelphia (1995)CrossRef
6.
go back to reference Trent, A., Venkataraman, R., Doman, D.: Trajectory generation using a modified simple shooting method. In: Aerospace Conference, Proceedings: 2004 IEEE, vol. 4, pp. 2723–2729 (2004) Trent, A., Venkataraman, R., Doman, D.: Trajectory generation using a modified simple shooting method. In: Aerospace Conference, Proceedings: 2004 IEEE, vol. 4, pp. 2723–2729 (2004)
7.
go back to reference Holsapple, R.W., Venkataraman, R., Doman, D.: New, fast numerical method for solving two-point boundary-value problems. J. Guid. Control Dyn. 27, 301–304 (2004)CrossRef Holsapple, R.W., Venkataraman, R., Doman, D.: New, fast numerical method for solving two-point boundary-value problems. J. Guid. Control Dyn. 27, 301–304 (2004)CrossRef
8.
go back to reference Zhao, J.: Highly accurate compact mixed methods for two point boundary value problems. Appl. Math. Comput. 188, 1402–1418 (2007)MathSciNetMATH Zhao, J.: Highly accurate compact mixed methods for two point boundary value problems. Appl. Math. Comput. 188, 1402–1418 (2007)MathSciNetMATH
9.
go back to reference Cash, J.R., Wright, M.H.: A deferred correction method for nonlinear two-point boundary value problems: implementation and numerical evaluation. SIAM J. Sci. Stat. Comput. 12, 971–989 (1991)MathSciNetCrossRef Cash, J.R., Wright, M.H.: A deferred correction method for nonlinear two-point boundary value problems: implementation and numerical evaluation. SIAM J. Sci. Stat. Comput. 12, 971–989 (1991)MathSciNetCrossRef
10.
go back to reference Cash, J.R., Moore, D.R., Sumarti, N., Daele, M.V.: A highly stable deferred correction scheme with interpolant for systems of nonlinear two-point boundary value problems. J. Comput. Appl. Math. 155, 339–358 (2003)MathSciNetCrossRef Cash, J.R., Moore, D.R., Sumarti, N., Daele, M.V.: A highly stable deferred correction scheme with interpolant for systems of nonlinear two-point boundary value problems. J. Comput. Appl. Math. 155, 339–358 (2003)MathSciNetCrossRef
11.
go back to reference Lentini, M., Pereyra, V.: An adaptive finite difference solver for nonlinear two-point boundary value problems with mild boundary layers. SIAM J. Numer. Anal. 14, 91–111 (1977)CrossRef Lentini, M., Pereyra, V.: An adaptive finite difference solver for nonlinear two-point boundary value problems with mild boundary layers. SIAM J. Numer. Anal. 14, 91–111 (1977)CrossRef
12.
go back to reference Cash, J.R., Moore, G., Wright, R.W.: An automatic continuation strategy for the solution of singularly perturbed nonlinear boundary value problems. ACM Trans. Math. Softw. 27, 245–266 (2001)CrossRef Cash, J.R., Moore, G., Wright, R.W.: An automatic continuation strategy for the solution of singularly perturbed nonlinear boundary value problems. ACM Trans. Math. Softw. 27, 245–266 (2001)CrossRef
13.
go back to reference Badakhshan, K.P., Kamyad, A.V.: Numerical solution of nonlinear optimal control problems using nonlinear programming. Appl. Math. Comput. 187, 1511–1519 (2007)MathSciNetMATH Badakhshan, K.P., Kamyad, A.V.: Numerical solution of nonlinear optimal control problems using nonlinear programming. Appl. Math. Comput. 187, 1511–1519 (2007)MathSciNetMATH
14.
go back to reference Abo-Hammour, Z.S., Asasfeh, A.G., Al-Smadi, A.M., Alsmadi, O.M.K.: A novel continuous genetic algorithm for the solution of optimal control problems. Optim. Control Appl. Methods 32, 414–432 (2011)MathSciNetCrossRef Abo-Hammour, Z.S., Asasfeh, A.G., Al-Smadi, A.M., Alsmadi, O.M.K.: A novel continuous genetic algorithm for the solution of optimal control problems. Optim. Control Appl. Methods 32, 414–432 (2011)MathSciNetCrossRef
15.
go back to reference Alsayyed, O.: Numerical Solution of Temporal Two-Point Boundary Value Problems Using Continuous Genetic Algorithms, Ph.D. Thesis, University of Jordan, Jordan (2006) Alsayyed, O.: Numerical Solution of Temporal Two-Point Boundary Value Problems Using Continuous Genetic Algorithms, Ph.D. Thesis, University of Jordan, Jordan (2006)
16.
go back to reference Cui, M., Lin, Y.: Nonlinear Numerical Analysis in the Reproducing Kernel Space. Nova Science, New York (2009)MATH Cui, M., Lin, Y.: Nonlinear Numerical Analysis in the Reproducing Kernel Space. Nova Science, New York (2009)MATH
17.
go back to reference Berlinet, A., Agnan, C.T.: Reproducing Kernel Hilbert Space in Probability and Statistics. Kluwer Academic Publishers, Boston (2004)CrossRef Berlinet, A., Agnan, C.T.: Reproducing Kernel Hilbert Space in Probability and Statistics. Kluwer Academic Publishers, Boston (2004)CrossRef
18.
go back to reference Daniel, A.: Reproducing Kernel Spaces and Applications. Springer, Basel (2003)MATH Daniel, A.: Reproducing Kernel Spaces and Applications. Springer, Basel (2003)MATH
19.
go back to reference Weinert, H.L.: Reproducing Kernel Hilbert Spaces: Applications in Statistical Signal Processing. Hutchinson Ross, London (1982) Weinert, H.L.: Reproducing Kernel Hilbert Spaces: Applications in Statistical Signal Processing. Hutchinson Ross, London (1982)
20.
go back to reference Lin, Y., Cui, M., Yang, L.: Representation of the exact solution for a kind of nonlinear partial differential equations. Appl. Math. Lett. 19, 808–813 (2006)MathSciNetCrossRef Lin, Y., Cui, M., Yang, L.: Representation of the exact solution for a kind of nonlinear partial differential equations. Appl. Math. Lett. 19, 808–813 (2006)MathSciNetCrossRef
21.
go back to reference Zhoua, Y., Cui, M., Lin, Y.: Numerical algorithm for parabolic problems with non-classical conditions. J. Comput. Appl. Math. 230, 770–780 (2009)MathSciNetCrossRef Zhoua, Y., Cui, M., Lin, Y.: Numerical algorithm for parabolic problems with non-classical conditions. J. Comput. Appl. Math. 230, 770–780 (2009)MathSciNetCrossRef
22.
go back to reference Yang, L.H., Lin, Y.: Reproducing kernel methods for solving linear initial-boundary-value problems. Electron. J. Differ. Equ. 2008, 1–11 (2008)MathSciNetMATH Yang, L.H., Lin, Y.: Reproducing kernel methods for solving linear initial-boundary-value problems. Electron. J. Differ. Equ. 2008, 1–11 (2008)MathSciNetMATH
23.
go back to reference Abu Arqub, O., Maayah, B.: Solutions of Bagley–Torvik and Painlevé equations of fractional order using iterative reproducing kernel algorithm. Neural Comput. Appl. 29, 1465–1479 (2018)CrossRef Abu Arqub, O., Maayah, B.: Solutions of Bagley–Torvik and Painlevé equations of fractional order using iterative reproducing kernel algorithm. Neural Comput. Appl. 29, 1465–1479 (2018)CrossRef
24.
go back to reference Abu Arqub, O.: The reproducing kernel algorithm for handling differential algebraic systems of ordinary differential equations. Math. Methods Appl. Sci. 39, 4549–4562 (2016)MathSciNetCrossRef Abu Arqub, O.: The reproducing kernel algorithm for handling differential algebraic systems of ordinary differential equations. Math. Methods Appl. Sci. 39, 4549–4562 (2016)MathSciNetCrossRef
25.
go back to reference Abu Arqub, O., Al-Smadi, M., Shawagfeh, N.: Solving Fredholm integro-differential equations using reproducing kernel Hilbert space method. Appl. Math. Comput. 219, 8938–8948 (2013)MathSciNetMATH Abu Arqub, O., Al-Smadi, M., Shawagfeh, N.: Solving Fredholm integro-differential equations using reproducing kernel Hilbert space method. Appl. Math. Comput. 219, 8938–8948 (2013)MathSciNetMATH
26.
go back to reference Abu Arqub, O., Al-Smadi, M.: Numerical algorithm for solving two-point, second-order periodic boundary value problems for mixed integro-differential equations. Appl. Math. Comput. 243, 911–922 (2014)MathSciNetMATH Abu Arqub, O., Al-Smadi, M.: Numerical algorithm for solving two-point, second-order periodic boundary value problems for mixed integro-differential equations. Appl. Math. Comput. 243, 911–922 (2014)MathSciNetMATH
27.
go back to reference Momani, S., Abu Arqub, O., Hayat, T., Al-Sulami, H.: A computational method for solving periodic boundary value problems for integro-differential equations of Fredholm-Voltera type. Appl. Math. Comput. 240, 229–239 (2014)MathSciNetMATH Momani, S., Abu Arqub, O., Hayat, T., Al-Sulami, H.: A computational method for solving periodic boundary value problems for integro-differential equations of Fredholm-Voltera type. Appl. Math. Comput. 240, 229–239 (2014)MathSciNetMATH
28.
go back to reference Abu Arqub, O., Al-Smadi, M., Momani, S., Hayat, T.: Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft. Comput. 20, 3283–3302 (2016)CrossRef Abu Arqub, O., Al-Smadi, M., Momani, S., Hayat, T.: Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft. Comput. 20, 3283–3302 (2016)CrossRef
29.
go back to reference Abu Arqub, O., Al-Smadi, M., Momani, S., Hayat, T.: Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems. Soft. Comput. 21, 7191–7206 (2017)CrossRef Abu Arqub, O., Al-Smadi, M., Momani, S., Hayat, T.: Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems. Soft. Comput. 21, 7191–7206 (2017)CrossRef
30.
go back to reference Abu Arqub, O.: Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm-Volterra integrodifferential equations. Neural Comput. Appl. 28, 1591–1610 (2017)CrossRef Abu Arqub, O.: Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm-Volterra integrodifferential equations. Neural Comput. Appl. 28, 1591–1610 (2017)CrossRef
31.
go back to reference Abu Arqub, O.: Approximate solutions of DASs with nonclassical boundary conditions using novel reproducing kernel algorithm. Fundam. Inf. 146, 231–254 (2016)MathSciNetCrossRef Abu Arqub, O.: Approximate solutions of DASs with nonclassical boundary conditions using novel reproducing kernel algorithm. Fundam. Inf. 146, 231–254 (2016)MathSciNetCrossRef
32.
go back to reference Abu Arqub, O.: Fitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and Neumann boundary conditions. Comput. Math Appl. 73, 1243–1261 (2017)MathSciNetCrossRef Abu Arqub, O.: Fitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and Neumann boundary conditions. Comput. Math Appl. 73, 1243–1261 (2017)MathSciNetCrossRef
33.
go back to reference Abu Arqub, O.: Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm. Int. J. Numer. Methods Heat Fluid Flow 28, 828–856 (2018)CrossRef Abu Arqub, O.: Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm. Int. J. Numer. Methods Heat Fluid Flow 28, 828–856 (2018)CrossRef
36.
go back to reference Abu Arqub, O., Shawagfeh, N.: Application of reproducing kernel algorithm for solving Dirichlet time-fractional diffusion-Gordon types equations in porous media. J. Porous Med. (2017). In Press Abu Arqub, O., Shawagfeh, N.: Application of reproducing kernel algorithm for solving Dirichlet time-fractional diffusion-Gordon types equations in porous media. J. Porous Med. (2017). In Press
39.
go back to reference Geng, F.Z., Qian, S.P.: Reproducing kernel method for singularly perturbed turning point problems having twin boundary layers. Appl. Math. Lett. 26, 998–1004 (2013)MathSciNetCrossRef Geng, F.Z., Qian, S.P.: Reproducing kernel method for singularly perturbed turning point problems having twin boundary layers. Appl. Math. Lett. 26, 998–1004 (2013)MathSciNetCrossRef
40.
go back to reference Jiang, W., Chen, Z.: A collocation method based on reproducing kernel for a modified anomalous subdiffusion equation. Numer. Methods Partial Differ. Equ. 30, 289–300 (2014)MathSciNetCrossRef Jiang, W., Chen, Z.: A collocation method based on reproducing kernel for a modified anomalous subdiffusion equation. Numer. Methods Partial Differ. Equ. 30, 289–300 (2014)MathSciNetCrossRef
41.
go back to reference Geng, F.Z., Qian, S.P., Li, S.: A numerical method for singularly perturbed turning point problems with an interior layer. J. Comput. Appl. Math. 255, 97–105 (2014)MathSciNetCrossRef Geng, F.Z., Qian, S.P., Li, S.: A numerical method for singularly perturbed turning point problems with an interior layer. J. Comput. Appl. Math. 255, 97–105 (2014)MathSciNetCrossRef
42.
go back to reference Geng, F.Z., Cui, M.: A reproducing kernel method for solving nonlocal fractional boundary value problems. Appl. Math. Lett. 25, 818–823 (2012)MathSciNetCrossRef Geng, F.Z., Cui, M.: A reproducing kernel method for solving nonlocal fractional boundary value problems. Appl. Math. Lett. 25, 818–823 (2012)MathSciNetCrossRef
43.
go back to reference Jiang, W., Chen, Z.: Solving a system of linear Volterra integral equations using the new reproducing kernel method. Appl. Math. Comput. 219, 10225–10230 (2013)MathSciNetMATH Jiang, W., Chen, Z.: Solving a system of linear Volterra integral equations using the new reproducing kernel method. Appl. Math. Comput. 219, 10225–10230 (2013)MathSciNetMATH
44.
go back to reference Geng, F.Z., Qian, S.P.: Modified reproducing kernel method for singularly perturbed boundary value problems with a delay. Appl. Math. Model. 39, 5592–5597 (2015)MathSciNetCrossRef Geng, F.Z., Qian, S.P.: Modified reproducing kernel method for singularly perturbed boundary value problems with a delay. Appl. Math. Model. 39, 5592–5597 (2015)MathSciNetCrossRef
Metadata
Title
Numerical solutions of systems of first-order, two-point BVPs based on the reproducing kernel algorithm
Author
Omar Abu Arqub
Publication date
01-09-2018
Publisher
Springer International Publishing
Published in
Calcolo / Issue 3/2018
Print ISSN: 0008-0624
Electronic ISSN: 1126-5434
DOI
https://doi.org/10.1007/s10092-018-0274-3

Other articles of this Issue 3/2018

Calcolo 3/2018 Go to the issue

Premium Partner