Skip to main content
Top
Published in: Calcolo 3/2018

01-09-2018

Analysis of the SDFEM for singularly perturbed differential–difference equations

Authors: Li-Bin Liu, Haitao Leng, Guangqing Long

Published in: Calcolo | Issue 3/2018

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, the stability and accuracy of a streamline diffusion finite element method (SDFEM) for the singularly perturbed differential–difference equation of convection term with a small shift is considered. With a special choice of the stabilization quadratic bubble function and by using the discrete Green’s function, the new method is shown to have an optimal second order in the sense that \(\Vert u-u_{h}\Vert _{\infty }\le C\inf \nolimits _{v_h\in V^h}\Vert u-v_{h}\Vert _{\infty }\), where \(u_{h}\) is the SDFEM approximation of the exact solution u in linear finite element space \(V_{h}\). At last, a second order uniform convergence result for the SDFEM is obtained. Numerical results are given to confirm the \(\varepsilon \)-uniform convergence rate of the nodal errors.
Literature
1.
go back to reference Longtin, A., Milton, J.: Complex oscillations in the human pupil light reflex with mixed and delayed feedback. Math. Biosci. 90, 183–199 (1988)MathSciNetCrossRef Longtin, A., Milton, J.: Complex oscillations in the human pupil light reflex with mixed and delayed feedback. Math. Biosci. 90, 183–199 (1988)MathSciNetCrossRef
2.
go back to reference Mackey, M.C., Glass, L.: Oscillations and chaos in physiological control systems. Science 197, 287–289 (1977)CrossRef Mackey, M.C., Glass, L.: Oscillations and chaos in physiological control systems. Science 197, 287–289 (1977)CrossRef
3.
go back to reference Wazewska-Czyzewska, M., Lasota, A.: Mathematical models of the red cell system. Mat. Stos. 6, 25–40 (1976) Wazewska-Czyzewska, M., Lasota, A.: Mathematical models of the red cell system. Mat. Stos. 6, 25–40 (1976)
4.
go back to reference Derstine, M.W., Gibbs, H.M., Kaplan, D.L.: Bifurcation gap in a hybrid optical system. Phys. Rev. A 26, 3720–3722 (1982)CrossRef Derstine, M.W., Gibbs, H.M., Kaplan, D.L.: Bifurcation gap in a hybrid optical system. Phys. Rev. A 26, 3720–3722 (1982)CrossRef
5.
go back to reference Lange, C.G., Miura, R.M.: Singular perturbation analysis of boundary-value problems for differential–difference equation. SIAM J. Appl. Math. 42, 502–531 (1982)MathSciNetCrossRef Lange, C.G., Miura, R.M.: Singular perturbation analysis of boundary-value problems for differential–difference equation. SIAM J. Appl. Math. 42, 502–531 (1982)MathSciNetCrossRef
6.
go back to reference Lange, C.G., Miura, R.M.: Singular perturbation analysis of boundary-value problems for differential–difference equations. V. Small shifts with layer behavior. SIAM J. Appl. Math. 54, 249–272 (1994)MathSciNetCrossRef Lange, C.G., Miura, R.M.: Singular perturbation analysis of boundary-value problems for differential–difference equations. V. Small shifts with layer behavior. SIAM J. Appl. Math. 54, 249–272 (1994)MathSciNetCrossRef
7.
go back to reference Lange, C.G., Miura, R.M.: Singular perturbation analysis of boundary-value problems for differential–difference equations. VI. Small shifts with rapid oscillations. SIAM J. Appl. Math. 54, 273–283 (1994)MathSciNetCrossRef Lange, C.G., Miura, R.M.: Singular perturbation analysis of boundary-value problems for differential–difference equations. VI. Small shifts with rapid oscillations. SIAM J. Appl. Math. 54, 273–283 (1994)MathSciNetCrossRef
8.
go back to reference Amiraliyeva, I.G., Erdogan, F., Amiraliyev, G.M.: A uniform numerical method for dealing with a singularly perturbed delay initial value problem. Appl. Math. Lett. 23, 1221–1225 (2010)MathSciNetCrossRef Amiraliyeva, I.G., Erdogan, F., Amiraliyev, G.M.: A uniform numerical method for dealing with a singularly perturbed delay initial value problem. Appl. Math. Lett. 23, 1221–1225 (2010)MathSciNetCrossRef
9.
go back to reference Zarin, H.: On discontinuous Galerkin finite element method for singularly perturbed delay differential equations. Appl. Math. Lett. 38, 27–32 (2014)MathSciNetCrossRef Zarin, H.: On discontinuous Galerkin finite element method for singularly perturbed delay differential equations. Appl. Math. Lett. 38, 27–32 (2014)MathSciNetCrossRef
10.
go back to reference Avudai Selvi, P., Ramanujam, N.: An iterative numerical method for singularly perturbed reaction–diffusion equations with negative shift. J. Comput. Appl. Math. 296, 10–23 (2016)MathSciNetCrossRef Avudai Selvi, P., Ramanujam, N.: An iterative numerical method for singularly perturbed reaction–diffusion equations with negative shift. J. Comput. Appl. Math. 296, 10–23 (2016)MathSciNetCrossRef
11.
go back to reference Erdogan, F., Cen, Z.: A uniformly almost second-order convergent numerical method for singularly perturbed delay differential equations. J. Comput. Appl. Math. 333, 382–394 (2018)MathSciNetCrossRef Erdogan, F., Cen, Z.: A uniformly almost second-order convergent numerical method for singularly perturbed delay differential equations. J. Comput. Appl. Math. 333, 382–394 (2018)MathSciNetCrossRef
12.
go back to reference Subburayan, V., Mahendran, : An \(\varepsilon \)-uniform numerical method for third singularly perturbed delay differential equations with discontinuous convection coefficient and source term. Appl. Math. Comput. 331, 404–415 (2018)MathSciNet Subburayan, V., Mahendran, : An \(\varepsilon \)-uniform numerical method for third singularly perturbed delay differential equations with discontinuous convection coefficient and source term. Appl. Math. Comput. 331, 404–415 (2018)MathSciNet
13.
go back to reference Geng, F.Z., Qian, S.P.: Modified reproducing kernel method for singularly perturbed boundary value problems with a delay. Appl. Math. Model. 39, 5592–5597 (2015)MathSciNetCrossRef Geng, F.Z., Qian, S.P.: Modified reproducing kernel method for singularly perturbed boundary value problems with a delay. Appl. Math. Model. 39, 5592–5597 (2015)MathSciNetCrossRef
14.
go back to reference Kadalbajoo, M.K., Ramesh, V.P.: Hybrid method for numerical solution of singulary perturbed delay differential equations. Appl. Math. Comput. 187, 797–814 (2007)MathSciNetMATH Kadalbajoo, M.K., Ramesh, V.P.: Hybrid method for numerical solution of singulary perturbed delay differential equations. Appl. Math. Comput. 187, 797–814 (2007)MathSciNetMATH
15.
go back to reference Kadalbajoo, M.K., Ramesh, V.P.: Numerical methods on Shishkin mesh for singularly perturbed delay differential equations with a grid adaptaion strategy. Appl. Math. Comput. 188, 1816–1831 (2007)MathSciNetMATH Kadalbajoo, M.K., Ramesh, V.P.: Numerical methods on Shishkin mesh for singularly perturbed delay differential equations with a grid adaptaion strategy. Appl. Math. Comput. 188, 1816–1831 (2007)MathSciNetMATH
16.
go back to reference Patidar, K.C., Sharma, K.K.: \(\varepsilon \)-Uniformly convergent non-stand finite difference methods for singularly perturbed differential difference equations with small delay. Appl. Math. Comput. 175, 864–890 (2006)MathSciNetMATH Patidar, K.C., Sharma, K.K.: \(\varepsilon \)-Uniformly convergent non-stand finite difference methods for singularly perturbed differential difference equations with small delay. Appl. Math. Comput. 175, 864–890 (2006)MathSciNetMATH
17.
go back to reference Kadalbajoo, M.K., Kumar, D.: Fitted mesh \(B\)-spline collocation method for singularly perturbed differential–difference equations with small delay. Appl. Math. Comput. 204, 90–98 (2008)MathSciNetMATH Kadalbajoo, M.K., Kumar, D.: Fitted mesh \(B\)-spline collocation method for singularly perturbed differential–difference equations with small delay. Appl. Math. Comput. 204, 90–98 (2008)MathSciNetMATH
18.
go back to reference Kadalbajoo, M.K., Kumar, D.: A computational method for singularly perturbed nonlinear differential–difference equations with small shift. Appl. Math. Model. 34, 2584–2596 (2010)MathSciNetCrossRef Kadalbajoo, M.K., Kumar, D.: A computational method for singularly perturbed nonlinear differential–difference equations with small shift. Appl. Math. Model. 34, 2584–2596 (2010)MathSciNetCrossRef
19.
go back to reference Rao, R.N., Chakravarthy, R.P.: A finite difference method for singularly perturbed differential–difference equations with layer and oscillatory behavior. Appl. Math. Model. 37, 5743–5755 (2013)MathSciNetCrossRef Rao, R.N., Chakravarthy, R.P.: A finite difference method for singularly perturbed differential–difference equations with layer and oscillatory behavior. Appl. Math. Model. 37, 5743–5755 (2013)MathSciNetCrossRef
20.
go back to reference Geng, F.Z., Qian, S.P., Cui, M.G.: Improved reproducing kernel method for singularly perturbed differential–difference equations with boundary layer behavior. Appl. Math. Comput. 252, 58–63 (2015)MathSciNetMATH Geng, F.Z., Qian, S.P., Cui, M.G.: Improved reproducing kernel method for singularly perturbed differential–difference equations with boundary layer behavior. Appl. Math. Comput. 252, 58–63 (2015)MathSciNetMATH
22.
go back to reference Hughes, T.J.R., Brooks, A.: A multidimensional upwind scheme with no crosswind diffusion. In: Hughes, T.J.R. (ed.) Finite Element Methods for Convection Dominated Flows, AMD, vol. 34. ASME, New York (1979) Hughes, T.J.R., Brooks, A.: A multidimensional upwind scheme with no crosswind diffusion. In: Hughes, T.J.R. (ed.) Finite Element Methods for Convection Dominated Flows, AMD, vol. 34. ASME, New York (1979)
23.
24.
go back to reference Linß, T., Stynes, M.: The SDFEM on Shishkin meshes for linear convection–diffusion problem. Numer. Math. 87, 457–484 (2001)MathSciNetCrossRef Linß, T., Stynes, M.: The SDFEM on Shishkin meshes for linear convection–diffusion problem. Numer. Math. 87, 457–484 (2001)MathSciNetCrossRef
25.
go back to reference Roos, H.G., Zarin, H.: The streamline-diffusion method for a convection–diffusion problem with a point source. J. Comput. Appl. Math. 150, 109–128 (2003)MathSciNetCrossRef Roos, H.G., Zarin, H.: The streamline-diffusion method for a convection–diffusion problem with a point source. J. Comput. Appl. Math. 150, 109–128 (2003)MathSciNetCrossRef
26.
go back to reference Stynes, M., Tobiska, L.: The SDFEM for a convection–diffusion problem with a boundary layer: optimal error analysis and enhancement of accuracy. SIAM J. Numer. Anal. 41, 1620–1642 (2003)MathSciNetCrossRef Stynes, M., Tobiska, L.: The SDFEM for a convection–diffusion problem with a boundary layer: optimal error analysis and enhancement of accuracy. SIAM J. Numer. Anal. 41, 1620–1642 (2003)MathSciNetCrossRef
27.
go back to reference Sangalli, G.: Quasi optimality of the supg method for the one-dimensional advection–diffusion problem. SIAM J. Numer. Anal. 41, 1528–1542 (2003)MathSciNetCrossRef Sangalli, G.: Quasi optimality of the supg method for the one-dimensional advection–diffusion problem. SIAM J. Numer. Anal. 41, 1528–1542 (2003)MathSciNetCrossRef
28.
go back to reference Chen, L., Xu, J.: Stability and accuracy of adapted finite element methods for singularly perturbed problems. Numer. Math. 109, 167–191 (2008)MathSciNetCrossRef Chen, L., Xu, J.: Stability and accuracy of adapted finite element methods for singularly perturbed problems. Numer. Math. 109, 167–191 (2008)MathSciNetCrossRef
29.
go back to reference Chen, L., Xu, J.: An optimal streamline diffusion finite element method for a singularly perturbed problem. In: AMS Contemporary Mathematics Series: Rencent Advances in Adaptive Computation, vol. 383, pp. 236–246, HangZhou (2005) Chen, L., Xu, J.: An optimal streamline diffusion finite element method for a singularly perturbed problem. In: AMS Contemporary Mathematics Series: Rencent Advances in Adaptive Computation, vol. 383, pp. 236–246, HangZhou (2005)
30.
go back to reference Chen, L., Wang, Y., Xu, J.: Stability of a streamline diffusion finite element method for turning point problems. J. Comput. Appl. Math. 220, 712–724 (2008)MathSciNetCrossRef Chen, L., Wang, Y., Xu, J.: Stability of a streamline diffusion finite element method for turning point problems. J. Comput. Appl. Math. 220, 712–724 (2008)MathSciNetCrossRef
31.
go back to reference Celiker, F., Zhang, Z., Zhu, H.: Nodal superconvergence of SDFEM for singularly perturbed problems. J. Sci. Comput. 50, 405–433 (2012)MathSciNetCrossRef Celiker, F., Zhang, Z., Zhu, H.: Nodal superconvergence of SDFEM for singularly perturbed problems. J. Sci. Comput. 50, 405–433 (2012)MathSciNetCrossRef
32.
go back to reference Zhang, J., Liu, X.: Supercloseness of the SDFEM on Shishkin triangular meshes for problems with exponential layer. Adv. Comput. Math. 43, 759–775 (2017)MathSciNetCrossRef Zhang, J., Liu, X.: Supercloseness of the SDFEM on Shishkin triangular meshes for problems with exponential layer. Adv. Comput. Math. 43, 759–775 (2017)MathSciNetCrossRef
33.
go back to reference Liu, X., Zhang, J.: Analysis of the SDFEM in a streamline diffusion norm for singularly perturbed convection diffusion problems. Appl. Math. Lett. 69, 61–66 (2017)MathSciNetCrossRef Liu, X., Zhang, J.: Analysis of the SDFEM in a streamline diffusion norm for singularly perturbed convection diffusion problems. Appl. Math. Lett. 69, 61–66 (2017)MathSciNetCrossRef
35.
go back to reference Sahihi, H., Abbasbandy, S., Allahviranloo, T.: Reproducing kernel method for solving singularly perturbed differential–difference equations with boundary layer behavior in Hilbert space. J. Comput. Appl. Math. 328, 30–43 (2018)MathSciNetCrossRef Sahihi, H., Abbasbandy, S., Allahviranloo, T.: Reproducing kernel method for solving singularly perturbed differential–difference equations with boundary layer behavior in Hilbert space. J. Comput. Appl. Math. 328, 30–43 (2018)MathSciNetCrossRef
36.
go back to reference Geng, F.Z., Qian, S.P., Cui, M.G.: Improved reproducing kernel method for singularly perturbed differential–difference equations with boundary layer behavior. Appl. Math. Comput. 252, 58–63 (2015)MathSciNetMATH Geng, F.Z., Qian, S.P., Cui, M.G.: Improved reproducing kernel method for singularly perturbed differential–difference equations with boundary layer behavior. Appl. Math. Comput. 252, 58–63 (2015)MathSciNetMATH
38.
go back to reference Mohapatra, J., Natesan, S.: Uniform convergence analysis of finite difference scheme for singularly perturbed delay differential equation on an adaptively generated grid. Numer. Math. Theory. Methods Appl. 3, 1–22 (2010)MathSciNetMATH Mohapatra, J., Natesan, S.: Uniform convergence analysis of finite difference scheme for singularly perturbed delay differential equation on an adaptively generated grid. Numer. Math. Theory. Methods Appl. 3, 1–22 (2010)MathSciNetMATH
39.
go back to reference Andreev, V.B.: The green function and a priori estimates of solutions of monotone three-point singularly perturbed finite-difference schemes. Differ. Equ. 37, 923–933 (2001)MathSciNetCrossRef Andreev, V.B.: The green function and a priori estimates of solutions of monotone three-point singularly perturbed finite-difference schemes. Differ. Equ. 37, 923–933 (2001)MathSciNetCrossRef
40.
go back to reference Linß, T.: Layer-adapted meshes for convectioni-diffusion problems. Comput. Methods Appl. Mech. Eng. 192, 1061–105 (2003)MathSciNetCrossRef Linß, T.: Layer-adapted meshes for convectioni-diffusion problems. Comput. Methods Appl. Mech. Eng. 192, 1061–105 (2003)MathSciNetCrossRef
41.
go back to reference Qiu, Y., Sloan, D., Tang, T.: Numerical solution of a singularly perturbed two-point boundary value problem using equidistribution: analysis of convergence. J. Comput. Appl. Math. 116, 121–143 (2000)MathSciNetCrossRef Qiu, Y., Sloan, D., Tang, T.: Numerical solution of a singularly perturbed two-point boundary value problem using equidistribution: analysis of convergence. J. Comput. Appl. Math. 116, 121–143 (2000)MathSciNetCrossRef
42.
go back to reference Chen, Y.: Uniform pointwise convergence for a singularly perturbed problem using arc-length equidistribution. J. Comput. Appl. Math. 159, 25–34 (2003)MathSciNetCrossRef Chen, Y.: Uniform pointwise convergence for a singularly perturbed problem using arc-length equidistribution. J. Comput. Appl. Math. 159, 25–34 (2003)MathSciNetCrossRef
43.
go back to reference Chen, Y.: Uniform convergence analysis of finite difference approximations for singular perturbation problems. Adv. Comput. Math. 24, 197–212 (2006)MathSciNetCrossRef Chen, Y.: Uniform convergence analysis of finite difference approximations for singular perturbation problems. Adv. Comput. Math. 24, 197–212 (2006)MathSciNetCrossRef
44.
go back to reference Kopteva, N., Stynes, M.: A robust adaptive method for quasi-linear one-dimensional convection diffusion problem. SIAM J. Numer. Anal. 39, 1446–1467 (2001)MathSciNetCrossRef Kopteva, N., Stynes, M.: A robust adaptive method for quasi-linear one-dimensional convection diffusion problem. SIAM J. Numer. Anal. 39, 1446–1467 (2001)MathSciNetCrossRef
Metadata
Title
Analysis of the SDFEM for singularly perturbed differential–difference equations
Authors
Li-Bin Liu
Haitao Leng
Guangqing Long
Publication date
01-09-2018
Publisher
Springer International Publishing
Published in
Calcolo / Issue 3/2018
Print ISSN: 0008-0624
Electronic ISSN: 1126-5434
DOI
https://doi.org/10.1007/s10092-018-0265-4

Other articles of this Issue 3/2018

Calcolo 3/2018 Go to the issue

Premium Partner