Skip to main content
Top
Published in: Optical Memory and Neural Networks 4/2019

01-10-2019

Object Detection with Deep Neural Networks for Reinforcement Learning in the Task of Autonomous Vehicles Path Planning at the Intersection

Authors: D. A. Yudin, A. Skrynnik, A. Krishtopik, I. Belkin, A. I. Panov

Published in: Optical Memory and Neural Networks | Issue 4/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Among a number of problems in the behavior planning of an unmanned vehicle the central one is movement in difficult areas. In particular, such areas are intersections at which direct interaction with other road agents takes place. In our work, we offer a new approach to train of the intelligent agent that simulates the behavior of an unmanned vehicle, based on the integration of reinforcement learning and computer vision. Using full visual information about the road intersection obtained from aerial photographs, it is studied automatic detection the relative positions of all road agents with various architectures of deep neural networks (YOLOv3, Faster R-CNN, RetinaNet, Cascade R-CNN, Mask R-CNN, Cascade Mask R-CNN). The possibilities of estimation of the vehicle orientation angle based on a convolutional neural network are also investigated. Obtained additional features are used in the modern effective reinforcement learning methods of Soft Actor Critic and Rainbow, which allows to accelerate the convergence of its learning process. To demonstrate the operation of the developed system, an intersection simulator was developed, at which a number of model experiments were carried out.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sakib, N., Yao, H., and Zhang, H., Reinforcing classical planning for adversary driving scenarios, arXiv: 1903.08606v1, 2019. Sakib, N., Yao, H., and Zhang, H., Reinforcing classical planning for adversary driving scenarios, arXiv: 1903.08606v1, 2019.
3.
go back to reference Kim, M., Path planning and following for autonomous vehicles and its application to intersection with moving obstacles, MSc Thesis, University of Florida, 2017. https://ufdc.ufl.edu/UFE0051086/00001. Kim, M., Path planning and following for autonomous vehicles and its application to intersection with moving obstacles, MSc Thesis, University of Florida, 2017. https://​ufdc.​ufl.​edu/​UFE0051086/​00001.​
4.
go back to reference Paxton, C., Raman, V., Hager, G.D., and Kobilarov, M., Combining neural networks and tree search for task and motion planning in challenging environments, arXiv:1703.07887v1, 2017. Paxton, C., Raman, V., Hager, G.D., and Kobilarov, M., Combining neural networks and tree search for task and motion planning in challenging environments, arXiv:1703.07887v1, 2017.
5.
go back to reference Tram, T., Jansson, A., Gronberg, R., Sjoberg, J., and Ali, M., Learning negotiating behavior between cars in intersections using deep Q-learning, arXiv:1810.10469v1, 2018. Tram, T., Jansson, A., Gronberg, R., Sjoberg, J., and Ali, M., Learning negotiating behavior between cars in intersections using deep Q-learning, arXiv:1810.10469v1, 2018.
6.
go back to reference Jaeyoung, L., Balakrishnan, A., Gaurav, A., Czarnecki, K., and Sedwards, S., WiseMove: A framework for safe deep reinforcement learning for autonomous driving, arXiv:1902.04118, 2019. Jaeyoung, L., Balakrishnan, A., Gaurav, A., Czarnecki, K., and Sedwards, S., WiseMove: A framework for safe deep reinforcement learning for autonomous driving, arXiv:1902.04118, 2019.
8.
go back to reference Chaplot, D.S., Gupta, S., Gupta, A., and Salakhutdinov, R., Modular visual navigation using active neural mapping, 2019. http://www.cs.cmu.edu/~dchaplot/papers/active_neural_mapping.pdf. Chaplot, D.S., Gupta, S., Gupta, A., and Salakhutdinov, R., Modular visual navigation using active neural mapping, 2019. http://​www.​cs.​cmu.​edu/​~dchaplot/​papers/​active_​neural_​mapping.​pdf.​
9.
go back to reference Bacchiani, G., Molinari, D., and Patander M., Microscopic traffic simulation by cooperative multi-agent deep reinforcement learning, arXiv:1903.01365v1, 2019. Bacchiani, G., Molinari, D., and Patander M., Microscopic traffic simulation by cooperative multi-agent deep reinforcement learning, arXiv:1903.01365v1, 2019.
10.
go back to reference Computer Vision Annotation Tool (CVAT). https://github.com/opencv/cvat. Computer Vision Annotation Tool (CVAT). https://​github.​com/​opencv/​cvat.​
11.
go back to reference Structural Analysis and Shape Descriptors. MinAreaRect. https://docs.opencv.org/3.1.0/d3/dc0/group__imgproc__shape.html. Structural Analysis and Shape Descriptors. MinAreaRect. https://​docs.​opencv.​org/​3.​1.​0/​d3/​dc0/​group_​_​imgproc_​_​shape.​html.​
12.
go back to reference Fitzgibbon, A.W. and Fisher, R.B., A buyer’s guide to conic fitting, Proc. 5th British Machine Vision Conference, Birmingham, 1995, pp. 513–522. Fitzgibbon, A.W. and Fisher, R.B., A buyer’s guide to conic fitting, Proc. 5th British Machine Vision Conference, Birmingham, 1995, pp. 513–522.
13.
go back to reference Shetty, R., Fritz, M., and Schiele, B., Adversarial scene editing: Automatic object removal from weak supervision, arXiv:1806.01911, 2018. Shetty, R., Fritz, M., and Schiele, B., Adversarial scene editing: Automatic object removal from weak supervision, arXiv:1806.01911, 2018.
14.
go back to reference Liu, G., Reda, F. A., Shih, K. J., Wang, T.-C., Tao, A., and Catanzaro, B., Image inpainting for irregular holes using partial convolutions, arXiv:1804.07723, 2018. Liu, G., Reda, F. A., Shih, K. J., Wang, T.-C., Tao, A., and Catanzaro, B., Image inpainting for irregular holes using partial convolutions, arXiv:1804.07723, 2018.
15.
go back to reference Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and Zaremba, W., OpenAI Gym, arXiv:1606.01540, 2016. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and Zaremba, W., OpenAI Gym, arXiv:1606.01540, 2016.
16.
go back to reference Intersection simulator, MIPT, 2019. https://github.com/cds-mipt/raai-summer-school-2019. Intersection simulator, MIPT, 2019. https://​github.​com/​cds-mipt/​raai-summer-school-2019.​
17.
go back to reference Yudin, D. and Slavioglo, D., Usage of fully convolutional network with clustering for traffic light detection, 7th Mediterranean Conference on Embedded Computing, MECO’2018, 2018, pp. 242–247. Yudin, D. and Slavioglo, D., Usage of fully convolutional network with clustering for traffic light detection, 7th Mediterranean Conference on Embedded Computing, MECO’2018, 2018, pp. 242–247.
18.
go back to reference Ester, M., Kriegel, H.P., Sander, J., and Xu, X., A density-based algorithm for discovering clusters in large spatial databases with noise, Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, OR, 1996, pp. 226–231. Ester, M., Kriegel, H.P., Sander, J., and Xu, X., A density-based algorithm for discovering clusters in large spatial databases with noise, Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, OR, 1996, pp. 226–231.
19.
go back to reference Redmon, J. and Farhadi, A., YOLOv3: An incremental improvement, arXiv:1804.027672018, 2018. Redmon, J. and Farhadi, A., YOLOv3: An incremental improvement, arXiv:1804.027672018, 2018.
20.
go back to reference Ren, S., He, K., Girshick, R., and Sun, J., Faster R-CNN: Towards real-time object detection with region proposal networks, NIPS, 2015. Ren, S., He, K., Girshick, R., and Sun, J., Faster R-CNN: Towards real-time object detection with region proposal networks, NIPS, 2015.
21.
go back to reference Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P., Focal loss for dense object detection, arXiv:1 708.02002v2, 2017. Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P., Focal loss for dense object detection, arXiv:1 708.02002v2, 2017.
22.
go back to reference Cai, Z. and Vasconcelos, N., Cascade R-CNN: Delving into high quality object detection, CVPR, 2018. Cai, Z. and Vasconcelos, N., Cascade R-CNN: Delving into high quality object detection, CVPR, 2018.
23.
go back to reference He, K., Gkioxari, G., Dollár, P., and Girshick, R., Mask R-CNN, arXiv:1703.06870, 2017. He, K., Gkioxari, G., Dollár, P., and Girshick, R., Mask R-CNN, arXiv:1703.06870, 2017.
24.
go back to reference Cai, Z., and Vasconcelos, N., Cascade R-CNN: High quality object detection and instance segmentation, arXiv: 1906.09756, 2019. Cai, Z., and Vasconcelos, N., Cascade R-CNN: High quality object detection and instance segmentation, arXiv: 1906.09756, 2019.
25.
go back to reference Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., and Xiao, B., Deep high-resolution representation learning for visual recognition, arXiv:1908.07919v1, 2019. Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., and Xiao, B., Deep high-resolution representation learning for visual recognition, arXiv:1908.07919v1, 2019.
26.
go back to reference Shikunov, M., and Panov, A.I., Hierarchical reinforcement learning approach for the road intersection task, Biologically Inspired Cognitive Architectures 2019, BICA 2019,Advances in Intelligent Systems and Computing, 2020, pp. 495–506. Shikunov, M., and Panov, A.I., Hierarchical reinforcement learning approach for the road intersection task, Biologically Inspired Cognitive Architectures 2019, BICA 2019,Advances in Intelligent Systems and Computing, 2020, pp. 495–506.
27.
go back to reference Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S., Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor, 2018. Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S., Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor, 2018.
28.
go back to reference Hessel, M., Modayil, J., van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Horgan, D., Piot, B., Azar, M., and Silver, D., Rainbow: Combining improvements in deep reinforcement learning, arXiv:1710.02298, 2017. Hessel, M., Modayil, J., van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Horgan, D., Piot, B., Azar, M., and Silver, D., Rainbow: Combining improvements in deep reinforcement learning, arXiv:1710.02298, 2017.
29.
go back to reference Ziebart, B.D., Modeling Purposeful Adaptive Behavior with the Principle of Maximum Causal Entropy, Carnegie Mellon University, 2010. Ziebart, B.D., Modeling Purposeful Adaptive Behavior with the Principle of Maximum Causal Entropy, Carnegie Mellon University, 2010.
Metadata
Title
Object Detection with Deep Neural Networks for Reinforcement Learning in the Task of Autonomous Vehicles Path Planning at the Intersection
Authors
D. A. Yudin
A. Skrynnik
A. Krishtopik
I. Belkin
A. I. Panov
Publication date
01-10-2019
Publisher
Pleiades Publishing
Published in
Optical Memory and Neural Networks / Issue 4/2019
Print ISSN: 1060-992X
Electronic ISSN: 1934-7898
DOI
https://doi.org/10.3103/S1060992X19040118

Other articles of this Issue 4/2019

Optical Memory and Neural Networks 4/2019 Go to the issue

Premium Partner