Skip to main content
Top
Published in: Autonomous Robots 1-2/2014

01-01-2014

Object search by manipulation

Authors: Mehmet R. Dogar, Michael C. Koval, Abhijeet Tallavajhula, Siddhartha S. Srinivasa

Published in: Autonomous Robots | Issue 1-2/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We investigate the problem of a robot searching for an object. This requires reasoning about both perception and manipulation: some objects are moved because the target may be hidden behind them, while others are moved because they block the manipulator’s access to other objects. We contribute a formulation of the object search by manipulation problem using visibility and accessibility relations between objects. We also propose a greedy algorithm and show that it is optimal under certain conditions. We propose a second algorithm which takes advantage of the structure of the visibility and accessibility relations between objects to quickly generate plans. Our empirical evaluation strongly suggests that our algorithm is optimal under all conditions. We support this claim with a partial proof. Finally, we demonstrate an implementation of both algorithms on a real robot using a real object detection system.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
We use two-dimensional examples, e.g. Fig. 2, throughout the paper for clarity of illustration. Our actual formulation and implementation uses complete three-dimensional models of the scene, objects, and volumes.
 
2
In the rare event that that multiple sequences share the maximum utility, the algorithm breaks the tie by choosing the sequence with the maximum utility prefix recursively.
 
3
We use \(\Lambda ^\pi \) in place of \(V^\pi \) to denote the value function to avoid confusion with revealed volume \(V_s\).
 
Literature
go back to reference Anand, A., Koppula, H. S., Joachims, T., & Saxena, A. (2013). Contextually guided semantic labeling and search for three-dimensional point clouds. International Journal of Robotics Research, 32(1), 19–34.CrossRef Anand, A., Koppula, H. S., Joachims, T., & Saxena, A. (2013). Contextually guided semantic labeling and search for three-dimensional point clouds. International Journal of Robotics Research, 32(1), 19–34.CrossRef
go back to reference Baird, D. (1995). Experimentation: An introduction to measurement theory and experiment design. Englewood Cliffs: Prentice-Hall. Baird, D. (1995). Experimentation: An introduction to measurement theory and experiment design. Englewood Cliffs: Prentice-Hall.
go back to reference Ben-Shahar, O., & Rivlin, E. (1998). Practical pushing planning for rearrangement tasks. IEEE Transactions on Robotics and Automation, 14, 549–565.CrossRef Ben-Shahar, O., & Rivlin, E. (1998). Practical pushing planning for rearrangement tasks. IEEE Transactions on Robotics and Automation, 14, 549–565.CrossRef
go back to reference Chen, P., & Hwang, Y. (1991). Practical path planning among movable obstacles. IEEE: In IEEE International Conference on Robotics and Automation. Chen, P., & Hwang, Y. (1991). Practical path planning among movable obstacles. IEEE: In IEEE International Conference on Robotics and Automation.
go back to reference de Berg, M., Cheong, O., van Kreveld, M., & Overmars, M. (2008). Computational geometry: Algorithms and applications. Berlin: Springer. de Berg, M., Cheong, O., van Kreveld, M., & Overmars, M. (2008). Computational geometry: Algorithms and applications. Berlin: Springer.
go back to reference Diankov, R., & Kuffner, J. (2008). OpenRAVE: A planning architecture for autonomous robotics. Technical Report CMU-RI-TR-08-34, Robotics Institute. Diankov, R., & Kuffner, J. (2008). OpenRAVE: A planning architecture for autonomous robotics. Technical Report CMU-RI-TR-08-34, Robotics Institute.
go back to reference Dogar, M., & Srinivasa, S. (2012). A planning framework for non-prehensile manipulation under clutter and uncertainty. Autonomous Robots, 33(3), 217–236.CrossRef Dogar, M., & Srinivasa, S. (2012). A planning framework for non-prehensile manipulation under clutter and uncertainty. Autonomous Robots, 33(3), 217–236.CrossRef
go back to reference Espinoza, J., Sarmiento, A., Murrieta-Cid, R., & Hutchinson, S. (2011). Motion planning strategy for finding an object with a mobile manipulator in three-dimensional environments. Advanced Robotics, 25, 1627–1650.CrossRef Espinoza, J., Sarmiento, A., Murrieta-Cid, R., & Hutchinson, S. (2011). Motion planning strategy for finding an object with a mobile manipulator in three-dimensional environments. Advanced Robotics, 25, 1627–1650.CrossRef
go back to reference Gupta, M., & Sukhatme, G. (2012). Interactive perception in clutter. In R. S. S. The (Ed.), 2012. Workshop on Robots in Clutter: Manipulation, Perception and Navigation in Human Environments. Gupta, M., & Sukhatme, G. (2012). Interactive perception in clutter. In R. S. S. The (Ed.), 2012. Workshop on Robots in Clutter: Manipulation, Perception and Navigation in Human Environments.
go back to reference Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2), 100–107.CrossRef Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2), 100–107.CrossRef
go back to reference Hauser, K. (2012). The minimum constraint removal problem with three robotics applications. In Workshop on the Algorithmic Foundations of Robotics (WAFR). Hauser, K. (2012). The minimum constraint removal problem with three robotics applications. In Workshop on the Algorithmic Foundations of Robotics (WAFR).
go back to reference Hopcroft, J., & Tarjan, R. (1973). Algorithm 447: Efficient algorithms for graph manipulation. Communications of the ACM, 16(6), 372–378.CrossRef Hopcroft, J., & Tarjan, R. (1973). Algorithm 447: Efficient algorithms for graph manipulation. Communications of the ACM, 16(6), 372–378.CrossRef
go back to reference Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A survey. Journal of Artificial Intelligence Researc, 4, 237–285. Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A survey. Journal of Artificial Intelligence Researc, 4, 237–285.
go back to reference Kaelbling, L., & Lozano-Perez, T. (2012). Unifying perception, estimation and action for mobile manipulation via belief space planning. IEEE: In IEEE International Conference on Robotics and Automation. Kaelbling, L., & Lozano-Perez, T. (2012). Unifying perception, estimation and action for mobile manipulation via belief space planning. IEEE: In IEEE International Conference on Robotics and Automation.
go back to reference Kollar, T., & Roy, N. (2009). Utilizing object-object and object-scene context when planning to find things. IEEE: In IEEE International Conference on Robotics and Automation. Kollar, T., & Roy, N. (2009). Utilizing object-object and object-scene context when planning to find things. IEEE: In IEEE International Conference on Robotics and Automation.
go back to reference Ma, J., Chung, T. H., & Burdick, J. (2011). A probabilistic framework for object search with 6-dof pose estimation. International Journal of Robotics Research, 30(10), 1209–1228.CrossRef Ma, J., Chung, T. H., & Burdick, J. (2011). A probabilistic framework for object search with 6-dof pose estimation. International Journal of Robotics Research, 30(10), 1209–1228.CrossRef
go back to reference Martinez, M., llet, A., & Srinivasa, S. (2010). MOPED: A scalable and low latency object recognition and pose estimation system. In IEEE International Conference on Robotics and Automation. IEEE. Martinez, M., llet, A., & Srinivasa, S. (2010). MOPED: A scalable and low latency object recognition and pose estimation system. In IEEE International Conference on Robotics and Automation. IEEE.
go back to reference Ota, J. (2009). Rearrangement planning of multiple movable objects by a mobile robot. Advanced Robotics, 23, 1–18.CrossRef Ota, J. (2009). Rearrangement planning of multiple movable objects by a mobile robot. Advanced Robotics, 23, 1–18.CrossRef
go back to reference Overmars, M. H., Nieuwenhuisen, D., Nieuwenhuisen, D., Frank, A., & Overmars, H. (2006). An effective framework for path planning amidst movable obstacles. In International Workshop on the Algorithmic Foundations of Robotics. Overmars, M. H., Nieuwenhuisen, D., Nieuwenhuisen, D., Frank, A., & Overmars, H. (2006). An effective framework for path planning amidst movable obstacles. In International Workshop on the Algorithmic Foundations of Robotics.
go back to reference Shubina, K., & Tsotsos, J. (2010). Visual search for an object in a 3D environment using a mobile robot. Computer Vision and Image Understanding, 114, 535–547.CrossRef Shubina, K., & Tsotsos, J. (2010). Visual search for an object in a 3D environment using a mobile robot. Computer Vision and Image Understanding, 114, 535–547.CrossRef
go back to reference Sjo, K., Lopez, D., Paul, C., Jensfelt, P., & Kragic, D. (2009). Object search and localization for an indoor mobile robot. Journal of Computing and Information Technology, 17, 67–80. Sjo, K., Lopez, D., Paul, C., Jensfelt, P., & Kragic, D. (2009). Object search and localization for an indoor mobile robot. Journal of Computing and Information Technology, 17, 67–80.
go back to reference Srinivasa, S., Berenson, D., Cakmak, M., Dogar, M., Dragan, A., Knepper, R. A., et al. (2012). Herb 2.0: Lessons learned from developing a mobile manipulator for the home. Proceedings of the IEEE, 100(8), 1–19.CrossRef Srinivasa, S., Berenson, D., Cakmak, M., Dogar, M., Dragan, A., Knepper, R. A., et al. (2012). Herb 2.0: Lessons learned from developing a mobile manipulator for the home. Proceedings of the IEEE, 100(8), 1–19.CrossRef
go back to reference Stilman, M., Schamburek, J. U., Kuffner, J., & Asfour, T. (2007). Manipulation planning among movable obstacles. In IEEE International Conference on Robotics and Automation. IEEE. Stilman, M., Schamburek, J. U., Kuffner, J., & Asfour, T. (2007). Manipulation planning among movable obstacles. In IEEE International Conference on Robotics and Automation. IEEE.
go back to reference van den Berg, J. P., Stilman, M., Kuffner, J., Lin, M. C., & Manocha, D. (2008). Path planning among movable obstacles: A probabilistically complete approach. In International Workshop on the Algorithmic Foundations of Robotics (pp. 599–614). van den Berg, J. P., Stilman, M., Kuffner, J., Lin, M. C., & Manocha, D. (2008). Path planning among movable obstacles: A probabilistically complete approach. In International Workshop on the Algorithmic Foundations of Robotics (pp. 599–614).
go back to reference van Hoof, H., Kroemer, O., Amor, H. B., & Peters, J. (2012). Maximally informative interaction learning for scene exploration. In IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 5152–5158). IEEE. van Hoof, H., Kroemer, O., Amor, H. B., & Peters, J. (2012). Maximally informative interaction learning for scene exploration. In IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 5152–5158). IEEE.
go back to reference Wilfong, G. (1988). Motion planning in the presence of movable obstacles. In Proceedings of the Fourth Annual Symposium on Computational Geometry (pp. 279–288). Wilfong, G. (1988). Motion planning in the presence of movable obstacles. In Proceedings of the Fourth Annual Symposium on Computational Geometry (pp. 279–288).
go back to reference Wong, L. L., Kaelbling, L. P., & Lozano-Pérez, T. (2013). Manipulation-based active search for occluded objects. In IEEE International Conference on Robotics and Automation. IEEE. Wong, L. L., Kaelbling, L. P., & Lozano-Pérez, T. (2013). Manipulation-based active search for occluded objects. In IEEE International Conference on Robotics and Automation. IEEE.
go back to reference Ye, Y., & Tsotsos, J. (1995). Where to look next in 3D object search. In IEEE International Symposium on Computer Vision. IEEE. Ye, Y., & Tsotsos, J. (1995). Where to look next in 3D object search. In IEEE International Symposium on Computer Vision. IEEE.
go back to reference Ye, Y., & Tsotsos, J. (1999). Sensor planning for 3D object search. Computer Vision and Image Understanding, 73(2), 145–168.CrossRef Ye, Y., & Tsotsos, J. (1999). Sensor planning for 3D object search. Computer Vision and Image Understanding, 73(2), 145–168.CrossRef
Metadata
Title
Object search by manipulation
Authors
Mehmet R. Dogar
Michael C. Koval
Abhijeet Tallavajhula
Siddhartha S. Srinivasa
Publication date
01-01-2014
Publisher
Springer US
Published in
Autonomous Robots / Issue 1-2/2014
Print ISSN: 0929-5593
Electronic ISSN: 1573-7527
DOI
https://doi.org/10.1007/s10514-013-9372-x

Other articles of this Issue 1-2/2014

Autonomous Robots 1-2/2014 Go to the issue