Skip to main content
Top
Published in:
Cover of the book

2011 | OriginalPaper | Chapter

1. Odorant Detection and Discrimination in the Olfactory System

Authors : Simone Pifferi, Anna Menini

Published in: Sensors and Microsystems

Publisher: Springer Netherlands

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The olfactory system excels in both discrimination and detection of odorants. In mammals, it reliably discriminates more than 3000 structurally diverse odorant molecules and has an amazingly high sensitivity that allows the detection of very low amounts of specific odorant molecules. In addition, the olfactory system has the capability to adapt to ambient odorants, allowing the recognition of a broad range of stimuli. The discrimination among different odorants is achieved by using hundreds of receptors, activated with a combinatorial code. Olfactory transduction uses a canonical second messenger system providing two critical attributes: amplification and high signal-to-noise characteristics, giving the system its remarkable detector capabilities. In this review, we present an introduction to the basic molecular mechanisms of olfactory transduction in olfactory sensory neurons.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Boccaccio A, Menini A (2007) Temporal development of cyclic nucleotide-gated and Ca2+-activated Cl ? currents in isolated mouse olfactory sensory neurons. J.Neurophysiol 98:153–160CrossRef Boccaccio A, Menini A (2007) Temporal development of cyclic nucleotide-gated and Ca2+-activated Cl ? currents in isolated mouse olfactory sensory neurons. J.Neurophysiol 98:153–160CrossRef
2.
go back to reference Boccaccio A, Lagostena L, Hagen V, Menini A (2006) Fast adaptation in mouse olfactory sensory neurons does not require the activity of phosphodiesterase. J Gen Physiol 128:171–184CrossRef Boccaccio A, Lagostena L, Hagen V, Menini A (2006) Fast adaptation in mouse olfactory sensory neurons does not require the activity of phosphodiesterase. J Gen Physiol 128:171–184CrossRef
3.
go back to reference Bonigk W, Bradley J, Muller F, Sesti F, Boekhoff I, Ronnett GV, Kaupp UB, Frings S (1999) The native rat olfactory cyclic nucleotide-gated channel is composed of three distinct subunits. J Neurosci 19:5332–5347 Bonigk W, Bradley J, Muller F, Sesti F, Boekhoff I, Ronnett GV, Kaupp UB, Frings S (1999) The native rat olfactory cyclic nucleotide-gated channel is composed of three distinct subunits. J Neurosci 19:5332–5347
4.
go back to reference Borisy FF, Ronnett GV, Cunningham AM, Juilfs D, Beavo J, Snyder SH (1992) Calcium/calmodulin-activated phosphodiesterase expressed in olfactory receptor neurons. J Neurosci 12:915–923 Borisy FF, Ronnett GV, Cunningham AM, Juilfs D, Beavo J, Snyder SH (1992) Calcium/calmodulin-activated phosphodiesterase expressed in olfactory receptor neurons. J Neurosci 12:915–923
5.
go back to reference Bradley J, Bonigk W, Yau KW, Frings S (2004) Calmodulin permanently associates with rat olfactory CNG channels under native conditions. Nat Neurosci 7:705–710CrossRef Bradley J, Bonigk W, Yau KW, Frings S (2004) Calmodulin permanently associates with rat olfactory CNG channels under native conditions. Nat Neurosci 7:705–710CrossRef
6.
go back to reference Brunet LJ, Gold GH, Ngai J (1996) General anosmia caused by a targeted disruption of the mouse olfactory cyclic nucleotide-gated cation channel. Neuron 17:681–693CrossRef Brunet LJ, Gold GH, Ngai J (1996) General anosmia caused by a targeted disruption of the mouse olfactory cyclic nucleotide-gated cation channel. Neuron 17:681–693CrossRef
7.
go back to reference Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65(1):175–187CrossRef Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65(1):175–187CrossRef
8.
go back to reference Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, Pfeffer U, Ravazzolo R, Zegarra-Moran O, Galietta LJ (2008) TMEM16A, A membrane protein associated with calcium-dependent chloride channel activity. Science 322:590–594CrossRef Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, Pfeffer U, Ravazzolo R, Zegarra-Moran O, Galietta LJ (2008) TMEM16A, A membrane protein associated with calcium-dependent chloride channel activity. Science 322:590–594CrossRef
9.
go back to reference Chen TY, Yau KW (1994) Direct modulation by Ca-calmodulin of cyclic nucleotide-activated channel of rat olfactory receptor neurons. Nature 368:545–548CrossRef Chen TY, Yau KW (1994) Direct modulation by Ca-calmodulin of cyclic nucleotide-activated channel of rat olfactory receptor neurons. Nature 368:545–548CrossRef
10.
go back to reference Chess A, Simon I, Cedar H, Axel R (1994) Allelic inactivation regulates olfactory receptor gene expression. Cell 78:823–834CrossRef Chess A, Simon I, Cedar H, Axel R (1994) Allelic inactivation regulates olfactory receptor gene expression. Cell 78:823–834CrossRef
11.
go back to reference Crumling MA, Gold GH (1998) Ion concentrations in the mucus covering the olfactory epithelium in rodents. Soc Neurosci Abstr 24:2099 Crumling MA, Gold GH (1998) Ion concentrations in the mucus covering the olfactory epithelium in rodents. Soc Neurosci Abstr 24:2099
12.
go back to reference Dzeja C, Hagen V, Kaupp UB, Frings S (1999) Ca2+ permeation in cyclic nucleotide-gated channels. EMBO J 18:131–144CrossRef Dzeja C, Hagen V, Kaupp UB, Frings S (1999) Ca2+ permeation in cyclic nucleotide-gated channels. EMBO J 18:131–144CrossRef
13.
go back to reference Firestein S, Picco C, Menini A (1993) The relation between stimulus and response in olfactory receptor cells of the tiger salamander. J Physiol 468:1–10 Firestein S, Picco C, Menini A (1993) The relation between stimulus and response in olfactory receptor cells of the tiger salamander. J Physiol 468:1–10
14.
go back to reference Frings S, Reuter D, Kleene SJ (2000) Neuronal Ca2+-activated Cl ? channels–homing in on an elusive channel species. Prog Neurobiol 60:247–289CrossRef Frings S, Reuter D, Kleene SJ (2000) Neuronal Ca2+-activated Cl ? channels–homing in on an elusive channel species. Prog Neurobiol 60:247–289CrossRef
15.
go back to reference Graziadei P, Bannister LH (1967) Some observations on the fine structure of the olfactory epithelium in the domestic duck. Z Zellforsch Mikrosk Anat 80:220–228CrossRef Graziadei P, Bannister LH (1967) Some observations on the fine structure of the olfactory epithelium in the domestic duck. Z Zellforsch Mikrosk Anat 80:220–228CrossRef
16.
go back to reference Kaneko H, Putzier I, Frings S, Kaupp UB, Gensch T (2004) Chloride accumulation in mammalian olfactory sensory neurons. J Neurosci 24:7931–7938CrossRef Kaneko H, Putzier I, Frings S, Kaupp UB, Gensch T (2004) Chloride accumulation in mammalian olfactory sensory neurons. J Neurosci 24:7931–7938CrossRef
17.
go back to reference Katada S, Hirokawa T, Oka Y, Suwa M, Touhara K (2005) Structural basis for a broad but selective ligand spectrum of a mouse olfactory receptor: mapping the odorant-binding site. J Neurosci 25:1806–1815CrossRef Katada S, Hirokawa T, Oka Y, Suwa M, Touhara K (2005) Structural basis for a broad but selective ligand spectrum of a mouse olfactory receptor: mapping the odorant-binding site. J Neurosci 25:1806–1815CrossRef
18.
go back to reference Kaupp UB, Seifert R (2002) Cyclic nucleotide-gated ion channels. Physiol Rev 82:769–824 Kaupp UB, Seifert R (2002) Cyclic nucleotide-gated ion channels. Physiol Rev 82:769–824
19.
go back to reference Kleene SJ (1993) Origin of the chloride current in olfactory transduction. Neuron 11:123–132CrossRef Kleene SJ (1993) Origin of the chloride current in olfactory transduction. Neuron 11:123–132CrossRef
20.
go back to reference Kleene SJ (1997) High-gain, low-noise amplification in olfactory transduction. Biophys J 73:1110–1117CrossRef Kleene SJ (1997) High-gain, low-noise amplification in olfactory transduction. Biophys J 73:1110–1117CrossRef
21.
go back to reference Kleene SJ (2008) The electrochemical basis of odor transduction in vertebrate olfactory cilia. Chem Senses 33:839–859CrossRef Kleene SJ (2008) The electrochemical basis of odor transduction in vertebrate olfactory cilia. Chem Senses 33:839–859CrossRef
22.
go back to reference Kleene SJ, Gesteland RC (1981) Dissociation of frog olfactory epithelium with N-ethylmaleimide. Brain Res 21:536–540CrossRef Kleene SJ, Gesteland RC (1981) Dissociation of frog olfactory epithelium with N-ethylmaleimide. Brain Res 21:536–540CrossRef
23.
go back to reference Kleene SJ, Gesteland RC (1991) Calcium-activated chloride conductance in frog olfactory cilia. J Neurosci 11:3624–3629 Kleene SJ, Gesteland RC (1991) Calcium-activated chloride conductance in frog olfactory cilia. J Neurosci 11:3624–3629
24.
go back to reference Kurahashi T (1989) Activation by odorants of cation-selective conductance in the olfactory receptor cell isolated from the newt. J Physiol 419:177–192 Kurahashi T (1989) Activation by odorants of cation-selective conductance in the olfactory receptor cell isolated from the newt. J Physiol 419:177–192
25.
go back to reference Kurahashi T, Menini A (1997) Mechanism of odorant adaptation in the olfactory receptor cell. Nature 385:725–729CrossRef Kurahashi T, Menini A (1997) Mechanism of odorant adaptation in the olfactory receptor cell. Nature 385:725–729CrossRef
26.
go back to reference Kurahashi T, Shibuya T (1990) Ca2(+)-dependent adaptive properties in the solitary olfactory receptor cell of the newt. Brain Res 515:261–268CrossRef Kurahashi T, Shibuya T (1990) Ca2(+)-dependent adaptive properties in the solitary olfactory receptor cell of the newt. Brain Res 515:261–268CrossRef
27.
go back to reference Kurahashi T, Yau KW (1993) Co-existence of cationic and chloride components in odorant-induced current of vertebrate olfactory receptor cells. Nature 363:71–74CrossRef Kurahashi T, Yau KW (1993) Co-existence of cationic and chloride components in odorant-induced current of vertebrate olfactory receptor cells. Nature 363:71–74CrossRef
28.
go back to reference Lagostena L, Menini A (2003) Whole-cell recordings and photolysis of caged compounds in olfactory sensory neurons isolated from the mouse. Chem Senses 28:705–716CrossRef Lagostena L, Menini A (2003) Whole-cell recordings and photolysis of caged compounds in olfactory sensory neurons isolated from the mouse. Chem Senses 28:705–716CrossRef
29.
go back to reference Larsson HP, Kleene SJ, Lecar H (1997) Noise analysis of ion channels in non-space-clamped cables: estimates of channel parameters in olfactory cilia. Biophys J 72:1193–1203CrossRef Larsson HP, Kleene SJ, Lecar H (1997) Noise analysis of ion channels in non-space-clamped cables: estimates of channel parameters in olfactory cilia. Biophys J 72:1193–1203CrossRef
30.
go back to reference Leinders-Zufall T, Rand MN, Shepherd GM, Greer CA, Zufall F (1997) Calcium entry through cyclic nucleotide-gated channels in individual cilia of olfactory receptor cells: spatiotemporal dynamics. J Neurosci 17:4136–4148 Leinders-Zufall T, Rand MN, Shepherd GM, Greer CA, Zufall F (1997) Calcium entry through cyclic nucleotide-gated channels in individual cilia of olfactory receptor cells: spatiotemporal dynamics. J Neurosci 17:4136–4148
31.
go back to reference Lowe G, Gold GH (1993) Contribution of the ciliary cyclic nucleotide-gated conductance to olfactory transduction in the salamander. J Physiol 462:175–196 Lowe G, Gold GH (1993) Contribution of the ciliary cyclic nucleotide-gated conductance to olfactory transduction in the salamander. J Physiol 462:175–196
32.
go back to reference Lowe G, Gold GH (1993) Nonlinear amplification by calcium-dependent chloride channels in olfactory receptor cells. Nature 366:283–286CrossRef Lowe G, Gold GH (1993) Nonlinear amplification by calcium-dependent chloride channels in olfactory receptor cells. Nature 366:283–286CrossRef
33.
go back to reference Lynch JW, Barry PH (1989) Action potentials initiated by single channels opening in a small neuron (rat olfactory receptor). Biophys J 55:755–768CrossRef Lynch JW, Barry PH (1989) Action potentials initiated by single channels opening in a small neuron (rat olfactory receptor). Biophys J 55:755–768CrossRef
34.
go back to reference Malnic B, Hirono J, Sato T, Buck LB (1999) Combinatorial receptor codes for odors. Cell 96:713–723CrossRef Malnic B, Hirono J, Sato T, Buck LB (1999) Combinatorial receptor codes for odors. Cell 96:713–723CrossRef
35.
go back to reference Menco BP (1997) Ultrastructural aspects of olfactory signaling. Chem Senses 22:295–311CrossRef Menco BP (1997) Ultrastructural aspects of olfactory signaling. Chem Senses 22:295–311CrossRef
36.
go back to reference Menini A, Lagostena L, Boccaccio A (2004) Olfaction: from odorant molecules to the olfactory cortex. News Physiol Sci 19:101–104 Menini A, Lagostena L, Boccaccio A (2004) Olfaction: from odorant molecules to the olfactory cortex. News Physiol Sci 19:101–104
37.
go back to reference Mombaerts P (2001) The human repertoire of odorant receptor genes and pseudogenes. Annu Rev Genomics Hum Genet 2:493–510CrossRef Mombaerts P (2001) The human repertoire of odorant receptor genes and pseudogenes. Annu Rev Genomics Hum Genet 2:493–510CrossRef
38.
go back to reference Mombaerts P (2004) Genes and ligands for odorant, vomeronasal and taste receptors. Nat Rev Neurosci 5:263–278CrossRef Mombaerts P (2004) Genes and ligands for odorant, vomeronasal and taste receptors. Nat Rev Neurosci 5:263–278CrossRef
39.
go back to reference Morrison EE, Costanzo RM (1990) Morphology of the human olfactory epithelium. J Comp Neurol 297:1–13CrossRef Morrison EE, Costanzo RM (1990) Morphology of the human olfactory epithelium. J Comp Neurol 297:1–13CrossRef
40.
go back to reference Nakamura T, Gold GH (1987) A cyclic nucleotide-gated conductance in olfactory receptor cilia. Nature 325:442–444CrossRef Nakamura T, Gold GH (1987) A cyclic nucleotide-gated conductance in olfactory receptor cilia. Nature 325:442–444CrossRef
41.
go back to reference Nickell WT, Kleene NK, Gesteland RC, Kleene SJ (2006) Neuronal chloride accumulation in olfactory epithelium of mice lacking NKCC1. J Neurophysiol 95:2003–2006CrossRef Nickell WT, Kleene NK, Gesteland RC, Kleene SJ (2006) Neuronal chloride accumulation in olfactory epithelium of mice lacking NKCC1. J Neurophysiol 95:2003–2006CrossRef
42.
go back to reference Nickell WT, Kleene NK, Kleene SJ (2007) Mechanisms of neuronal chloride accumulation in intact mouse olfactory epithelium. J Physiol 583:1005–1020CrossRef Nickell WT, Kleene NK, Kleene SJ (2007) Mechanisms of neuronal chloride accumulation in intact mouse olfactory epithelium. J Physiol 583:1005–1020CrossRef
43.
go back to reference Pifferi S, Boccaccio A, Menini A (2006) Cyclic nucleotide-gated ion channels in sensory transduction. FEBS Lett 580:2853–2859CrossRef Pifferi S, Boccaccio A, Menini A (2006) Cyclic nucleotide-gated ion channels in sensory transduction. FEBS Lett 580:2853–2859CrossRef
44.
go back to reference Pifferi S, Pascarella G, Boccaccio A, Mazzatenta A, Gustincich S, Menini A, Zucchelli S (2006) Bestrophin-2 is a candidate calcium-activated chloride channel involved in olfactory transduction. Proc Natl Acad Sci USA 103:12929–12934CrossRef Pifferi S, Pascarella G, Boccaccio A, Mazzatenta A, Gustincich S, Menini A, Zucchelli S (2006) Bestrophin-2 is a candidate calcium-activated chloride channel involved in olfactory transduction. Proc Natl Acad Sci USA 103:12929–12934CrossRef
45.
go back to reference Pifferi S, Dibattista M, Menini A (2009) TMEM16B induces chloride currents activated by calcium in mammalian cells. Pflugers Arch 458:1023–1038CrossRef Pifferi S, Dibattista M, Menini A (2009) TMEM16B induces chloride currents activated by calcium in mammalian cells. Pflugers Arch 458:1023–1038CrossRef
46.
go back to reference Pifferi S, Dibattista M, Sagheddu C, Boccaccio A, Al Qteishat A, Ghirardi F, Tirindelli R, Menini A (2009) Calcium-activated chloride currents in olfactory sensory neurons from mice lacking bestrophin-2. J Physiol 587:4265–4279CrossRef Pifferi S, Dibattista M, Sagheddu C, Boccaccio A, Al Qteishat A, Ghirardi F, Tirindelli R, Menini A (2009) Calcium-activated chloride currents in olfactory sensory neurons from mice lacking bestrophin-2. J Physiol 587:4265–4279CrossRef
47.
go back to reference Pifferi S, Menini A, Kurahashi T (2009) Signal transduction in vertebrate olfactory cilia. In: Menini A (ed) The neurobiology of olfaction. CRC Press/Taylor & Francis Group, Boca Raton, pp 203–224CrossRef Pifferi S, Menini A, Kurahashi T (2009) Signal transduction in vertebrate olfactory cilia. In: Menini A (ed) The neurobiology of olfaction. CRC Press/Taylor & Francis Group, Boca Raton, pp 203–224CrossRef
48.
go back to reference Pun RY, Kleene SJ (2004) An estimate of the resting membrane resistance of frog olfactory receptor neurons. J Physiol 559:535–542CrossRef Pun RY, Kleene SJ (2004) An estimate of the resting membrane resistance of frog olfactory receptor neurons. J Physiol 559:535–542CrossRef
49.
go back to reference Reisert J, Bauer PJ, Yau KW, Frings S (2003) The Ca-activated Cl channel and its control in rat olfactory receptor neurons. J Gen Physiol 122:349–363CrossRef Reisert J, Bauer PJ, Yau KW, Frings S (2003) The Ca-activated Cl channel and its control in rat olfactory receptor neurons. J Gen Physiol 122:349–363CrossRef
50.
go back to reference Reisert J, Lai J, Yau KW, Bradley J (2005) Mechanism of the excitatory Cl ? response in mouse olfactory receptor neurons. Neuron 45:553–561CrossRef Reisert J, Lai J, Yau KW, Bradley J (2005) Mechanism of the excitatory Cl ? response in mouse olfactory receptor neurons. Neuron 45:553–561CrossRef
51.
go back to reference Reuter D, Zierold K, Schroder WH, Frings S (1998) A depolarizing chloride current contributes to chemoelectrical transduction in olfactory sensory neurons in situ. J Neurosci 18:6623–6630 Reuter D, Zierold K, Schroder WH, Frings S (1998) A depolarizing chloride current contributes to chemoelectrical transduction in olfactory sensory neurons in situ. J Neurosci 18:6623–6630
52.
go back to reference Schild D, Restrepo D (1998) Transduction mechanisms in vertebrate olfactory receptor cells. Physiol Rev 78:429–466 Schild D, Restrepo D (1998) Transduction mechanisms in vertebrate olfactory receptor cells. Physiol Rev 78:429–466
53.
go back to reference Schroeder BC, Chen T, Jan YN, Jan JY (2008) Expression cloning of TMEM16a as calcium-activated chloride channel subunit. Cell 134:1019–1929CrossRef Schroeder BC, Chen T, Jan YN, Jan JY (2008) Expression cloning of TMEM16a as calcium-activated chloride channel subunit. Cell 134:1019–1929CrossRef
54.
go back to reference Song Y, Cygnar KD, Sagdullaev B, Valley M, Hirsh S, Stephan A, Reisert J, Zhao H (2008) Olfactory CNG channel desensitization by Ca2+/CaM via the B1b subunit affects response termination but not sensitivity to recurring stimulation. Neuron 58:374–386CrossRef Song Y, Cygnar KD, Sagdullaev B, Valley M, Hirsh S, Stephan A, Reisert J, Zhao H (2008) Olfactory CNG channel desensitization by Ca2+/CaM via the B1b subunit affects response termination but not sensitivity to recurring stimulation. Neuron 58:374–386CrossRef
55.
go back to reference Stephan AB, Shum EY, Hirsh S, Cygnar KD, Reisert J, Zhao H (2009) ANO2 is the cilial calcium-activated chloride channel that may mediate olfactory amplification. Proc Natl Acad Sci USA 106:11776–11781CrossRef Stephan AB, Shum EY, Hirsh S, Cygnar KD, Reisert J, Zhao H (2009) ANO2 is the cilial calcium-activated chloride channel that may mediate olfactory amplification. Proc Natl Acad Sci USA 106:11776–11781CrossRef
56.
go back to reference Tirindelli R, Dibattista M, Pifferi S, Menini A (2009) From pheromones to behavior. Physiol Rev 89:921–956CrossRef Tirindelli R, Dibattista M, Pifferi S, Menini A (2009) From pheromones to behavior. Physiol Rev 89:921–956CrossRef
57.
go back to reference Torre V, Ashmore JF, Lamb TD, Menini A (1995) Transduction and adaptation in sensory receptor cells. J Neurosci 15:7757–7768 Torre V, Ashmore JF, Lamb TD, Menini A (1995) Transduction and adaptation in sensory receptor cells. J Neurosci 15:7757–7768
58.
go back to reference Whisman M, Goetzinger J, Cotton F, Brinkman, D (1978) Odorant evaluation: a study of ethanethiol and tetrahdrothiophene as warning agents in propane. Environ Sci Technol 12:1285–1288CrossRef Whisman M, Goetzinger J, Cotton F, Brinkman, D (1978) Odorant evaluation: a study of ethanethiol and tetrahdrothiophene as warning agents in propane. Environ Sci Technol 12:1285–1288CrossRef
59.
go back to reference Yang YD, Cho H, Koo JY, Tak MH, Cho Y, Shim WS, Park SP, Lee J, Lee B, Kim BM, Raouf R, Shin YK, Oh U (2008) TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455:1210–1215CrossRef Yang YD, Cho H, Koo JY, Tak MH, Cho Y, Shim WS, Park SP, Lee J, Lee B, Kim BM, Raouf R, Shin YK, Oh U (2008) TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455:1210–1215CrossRef
60.
go back to reference Zheng J, Zagotta WN (2004) Stoichiometry and assembly of olfactory cyclic nucleotide-gated channels. Neuron 42:411–421CrossRef Zheng J, Zagotta WN (2004) Stoichiometry and assembly of olfactory cyclic nucleotide-gated channels. Neuron 42:411–421CrossRef
Metadata
Title
Odorant Detection and Discrimination in the Olfactory System
Authors
Simone Pifferi
Anna Menini
Copyright Year
2011
Publisher
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-1324-6_1