Skip to main content
Erschienen in:
Buchtitelbild

2011 | OriginalPaper | Buchkapitel

1. Odorant Detection and Discrimination in the Olfactory System

verfasst von : Simone Pifferi, Anna Menini

Erschienen in: Sensors and Microsystems

Verlag: Springer Netherlands

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The olfactory system excels in both discrimination and detection of odorants. In mammals, it reliably discriminates more than 3000 structurally diverse odorant molecules and has an amazingly high sensitivity that allows the detection of very low amounts of specific odorant molecules. In addition, the olfactory system has the capability to adapt to ambient odorants, allowing the recognition of a broad range of stimuli. The discrimination among different odorants is achieved by using hundreds of receptors, activated with a combinatorial code. Olfactory transduction uses a canonical second messenger system providing two critical attributes: amplification and high signal-to-noise characteristics, giving the system its remarkable detector capabilities. In this review, we present an introduction to the basic molecular mechanisms of olfactory transduction in olfactory sensory neurons.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Boccaccio A, Menini A (2007) Temporal development of cyclic nucleotide-gated and Ca2+-activated Cl ? currents in isolated mouse olfactory sensory neurons. J.Neurophysiol 98:153–160CrossRef Boccaccio A, Menini A (2007) Temporal development of cyclic nucleotide-gated and Ca2+-activated Cl ? currents in isolated mouse olfactory sensory neurons. J.Neurophysiol 98:153–160CrossRef
2.
Zurück zum Zitat Boccaccio A, Lagostena L, Hagen V, Menini A (2006) Fast adaptation in mouse olfactory sensory neurons does not require the activity of phosphodiesterase. J Gen Physiol 128:171–184CrossRef Boccaccio A, Lagostena L, Hagen V, Menini A (2006) Fast adaptation in mouse olfactory sensory neurons does not require the activity of phosphodiesterase. J Gen Physiol 128:171–184CrossRef
3.
Zurück zum Zitat Bonigk W, Bradley J, Muller F, Sesti F, Boekhoff I, Ronnett GV, Kaupp UB, Frings S (1999) The native rat olfactory cyclic nucleotide-gated channel is composed of three distinct subunits. J Neurosci 19:5332–5347 Bonigk W, Bradley J, Muller F, Sesti F, Boekhoff I, Ronnett GV, Kaupp UB, Frings S (1999) The native rat olfactory cyclic nucleotide-gated channel is composed of three distinct subunits. J Neurosci 19:5332–5347
4.
Zurück zum Zitat Borisy FF, Ronnett GV, Cunningham AM, Juilfs D, Beavo J, Snyder SH (1992) Calcium/calmodulin-activated phosphodiesterase expressed in olfactory receptor neurons. J Neurosci 12:915–923 Borisy FF, Ronnett GV, Cunningham AM, Juilfs D, Beavo J, Snyder SH (1992) Calcium/calmodulin-activated phosphodiesterase expressed in olfactory receptor neurons. J Neurosci 12:915–923
5.
Zurück zum Zitat Bradley J, Bonigk W, Yau KW, Frings S (2004) Calmodulin permanently associates with rat olfactory CNG channels under native conditions. Nat Neurosci 7:705–710CrossRef Bradley J, Bonigk W, Yau KW, Frings S (2004) Calmodulin permanently associates with rat olfactory CNG channels under native conditions. Nat Neurosci 7:705–710CrossRef
6.
Zurück zum Zitat Brunet LJ, Gold GH, Ngai J (1996) General anosmia caused by a targeted disruption of the mouse olfactory cyclic nucleotide-gated cation channel. Neuron 17:681–693CrossRef Brunet LJ, Gold GH, Ngai J (1996) General anosmia caused by a targeted disruption of the mouse olfactory cyclic nucleotide-gated cation channel. Neuron 17:681–693CrossRef
7.
Zurück zum Zitat Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65(1):175–187CrossRef Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65(1):175–187CrossRef
8.
Zurück zum Zitat Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, Pfeffer U, Ravazzolo R, Zegarra-Moran O, Galietta LJ (2008) TMEM16A, A membrane protein associated with calcium-dependent chloride channel activity. Science 322:590–594CrossRef Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, Pfeffer U, Ravazzolo R, Zegarra-Moran O, Galietta LJ (2008) TMEM16A, A membrane protein associated with calcium-dependent chloride channel activity. Science 322:590–594CrossRef
9.
Zurück zum Zitat Chen TY, Yau KW (1994) Direct modulation by Ca-calmodulin of cyclic nucleotide-activated channel of rat olfactory receptor neurons. Nature 368:545–548CrossRef Chen TY, Yau KW (1994) Direct modulation by Ca-calmodulin of cyclic nucleotide-activated channel of rat olfactory receptor neurons. Nature 368:545–548CrossRef
10.
Zurück zum Zitat Chess A, Simon I, Cedar H, Axel R (1994) Allelic inactivation regulates olfactory receptor gene expression. Cell 78:823–834CrossRef Chess A, Simon I, Cedar H, Axel R (1994) Allelic inactivation regulates olfactory receptor gene expression. Cell 78:823–834CrossRef
11.
Zurück zum Zitat Crumling MA, Gold GH (1998) Ion concentrations in the mucus covering the olfactory epithelium in rodents. Soc Neurosci Abstr 24:2099 Crumling MA, Gold GH (1998) Ion concentrations in the mucus covering the olfactory epithelium in rodents. Soc Neurosci Abstr 24:2099
12.
Zurück zum Zitat Dzeja C, Hagen V, Kaupp UB, Frings S (1999) Ca2+ permeation in cyclic nucleotide-gated channels. EMBO J 18:131–144CrossRef Dzeja C, Hagen V, Kaupp UB, Frings S (1999) Ca2+ permeation in cyclic nucleotide-gated channels. EMBO J 18:131–144CrossRef
13.
Zurück zum Zitat Firestein S, Picco C, Menini A (1993) The relation between stimulus and response in olfactory receptor cells of the tiger salamander. J Physiol 468:1–10 Firestein S, Picco C, Menini A (1993) The relation between stimulus and response in olfactory receptor cells of the tiger salamander. J Physiol 468:1–10
14.
Zurück zum Zitat Frings S, Reuter D, Kleene SJ (2000) Neuronal Ca2+-activated Cl ? channels–homing in on an elusive channel species. Prog Neurobiol 60:247–289CrossRef Frings S, Reuter D, Kleene SJ (2000) Neuronal Ca2+-activated Cl ? channels–homing in on an elusive channel species. Prog Neurobiol 60:247–289CrossRef
15.
Zurück zum Zitat Graziadei P, Bannister LH (1967) Some observations on the fine structure of the olfactory epithelium in the domestic duck. Z Zellforsch Mikrosk Anat 80:220–228CrossRef Graziadei P, Bannister LH (1967) Some observations on the fine structure of the olfactory epithelium in the domestic duck. Z Zellforsch Mikrosk Anat 80:220–228CrossRef
16.
Zurück zum Zitat Kaneko H, Putzier I, Frings S, Kaupp UB, Gensch T (2004) Chloride accumulation in mammalian olfactory sensory neurons. J Neurosci 24:7931–7938CrossRef Kaneko H, Putzier I, Frings S, Kaupp UB, Gensch T (2004) Chloride accumulation in mammalian olfactory sensory neurons. J Neurosci 24:7931–7938CrossRef
17.
Zurück zum Zitat Katada S, Hirokawa T, Oka Y, Suwa M, Touhara K (2005) Structural basis for a broad but selective ligand spectrum of a mouse olfactory receptor: mapping the odorant-binding site. J Neurosci 25:1806–1815CrossRef Katada S, Hirokawa T, Oka Y, Suwa M, Touhara K (2005) Structural basis for a broad but selective ligand spectrum of a mouse olfactory receptor: mapping the odorant-binding site. J Neurosci 25:1806–1815CrossRef
18.
Zurück zum Zitat Kaupp UB, Seifert R (2002) Cyclic nucleotide-gated ion channels. Physiol Rev 82:769–824 Kaupp UB, Seifert R (2002) Cyclic nucleotide-gated ion channels. Physiol Rev 82:769–824
19.
Zurück zum Zitat Kleene SJ (1993) Origin of the chloride current in olfactory transduction. Neuron 11:123–132CrossRef Kleene SJ (1993) Origin of the chloride current in olfactory transduction. Neuron 11:123–132CrossRef
20.
Zurück zum Zitat Kleene SJ (1997) High-gain, low-noise amplification in olfactory transduction. Biophys J 73:1110–1117CrossRef Kleene SJ (1997) High-gain, low-noise amplification in olfactory transduction. Biophys J 73:1110–1117CrossRef
21.
Zurück zum Zitat Kleene SJ (2008) The electrochemical basis of odor transduction in vertebrate olfactory cilia. Chem Senses 33:839–859CrossRef Kleene SJ (2008) The electrochemical basis of odor transduction in vertebrate olfactory cilia. Chem Senses 33:839–859CrossRef
22.
Zurück zum Zitat Kleene SJ, Gesteland RC (1981) Dissociation of frog olfactory epithelium with N-ethylmaleimide. Brain Res 21:536–540CrossRef Kleene SJ, Gesteland RC (1981) Dissociation of frog olfactory epithelium with N-ethylmaleimide. Brain Res 21:536–540CrossRef
23.
Zurück zum Zitat Kleene SJ, Gesteland RC (1991) Calcium-activated chloride conductance in frog olfactory cilia. J Neurosci 11:3624–3629 Kleene SJ, Gesteland RC (1991) Calcium-activated chloride conductance in frog olfactory cilia. J Neurosci 11:3624–3629
24.
Zurück zum Zitat Kurahashi T (1989) Activation by odorants of cation-selective conductance in the olfactory receptor cell isolated from the newt. J Physiol 419:177–192 Kurahashi T (1989) Activation by odorants of cation-selective conductance in the olfactory receptor cell isolated from the newt. J Physiol 419:177–192
25.
Zurück zum Zitat Kurahashi T, Menini A (1997) Mechanism of odorant adaptation in the olfactory receptor cell. Nature 385:725–729CrossRef Kurahashi T, Menini A (1997) Mechanism of odorant adaptation in the olfactory receptor cell. Nature 385:725–729CrossRef
26.
Zurück zum Zitat Kurahashi T, Shibuya T (1990) Ca2(+)-dependent adaptive properties in the solitary olfactory receptor cell of the newt. Brain Res 515:261–268CrossRef Kurahashi T, Shibuya T (1990) Ca2(+)-dependent adaptive properties in the solitary olfactory receptor cell of the newt. Brain Res 515:261–268CrossRef
27.
Zurück zum Zitat Kurahashi T, Yau KW (1993) Co-existence of cationic and chloride components in odorant-induced current of vertebrate olfactory receptor cells. Nature 363:71–74CrossRef Kurahashi T, Yau KW (1993) Co-existence of cationic and chloride components in odorant-induced current of vertebrate olfactory receptor cells. Nature 363:71–74CrossRef
28.
Zurück zum Zitat Lagostena L, Menini A (2003) Whole-cell recordings and photolysis of caged compounds in olfactory sensory neurons isolated from the mouse. Chem Senses 28:705–716CrossRef Lagostena L, Menini A (2003) Whole-cell recordings and photolysis of caged compounds in olfactory sensory neurons isolated from the mouse. Chem Senses 28:705–716CrossRef
29.
Zurück zum Zitat Larsson HP, Kleene SJ, Lecar H (1997) Noise analysis of ion channels in non-space-clamped cables: estimates of channel parameters in olfactory cilia. Biophys J 72:1193–1203CrossRef Larsson HP, Kleene SJ, Lecar H (1997) Noise analysis of ion channels in non-space-clamped cables: estimates of channel parameters in olfactory cilia. Biophys J 72:1193–1203CrossRef
30.
Zurück zum Zitat Leinders-Zufall T, Rand MN, Shepherd GM, Greer CA, Zufall F (1997) Calcium entry through cyclic nucleotide-gated channels in individual cilia of olfactory receptor cells: spatiotemporal dynamics. J Neurosci 17:4136–4148 Leinders-Zufall T, Rand MN, Shepherd GM, Greer CA, Zufall F (1997) Calcium entry through cyclic nucleotide-gated channels in individual cilia of olfactory receptor cells: spatiotemporal dynamics. J Neurosci 17:4136–4148
31.
Zurück zum Zitat Lowe G, Gold GH (1993) Contribution of the ciliary cyclic nucleotide-gated conductance to olfactory transduction in the salamander. J Physiol 462:175–196 Lowe G, Gold GH (1993) Contribution of the ciliary cyclic nucleotide-gated conductance to olfactory transduction in the salamander. J Physiol 462:175–196
32.
Zurück zum Zitat Lowe G, Gold GH (1993) Nonlinear amplification by calcium-dependent chloride channels in olfactory receptor cells. Nature 366:283–286CrossRef Lowe G, Gold GH (1993) Nonlinear amplification by calcium-dependent chloride channels in olfactory receptor cells. Nature 366:283–286CrossRef
33.
Zurück zum Zitat Lynch JW, Barry PH (1989) Action potentials initiated by single channels opening in a small neuron (rat olfactory receptor). Biophys J 55:755–768CrossRef Lynch JW, Barry PH (1989) Action potentials initiated by single channels opening in a small neuron (rat olfactory receptor). Biophys J 55:755–768CrossRef
34.
Zurück zum Zitat Malnic B, Hirono J, Sato T, Buck LB (1999) Combinatorial receptor codes for odors. Cell 96:713–723CrossRef Malnic B, Hirono J, Sato T, Buck LB (1999) Combinatorial receptor codes for odors. Cell 96:713–723CrossRef
35.
Zurück zum Zitat Menco BP (1997) Ultrastructural aspects of olfactory signaling. Chem Senses 22:295–311CrossRef Menco BP (1997) Ultrastructural aspects of olfactory signaling. Chem Senses 22:295–311CrossRef
36.
Zurück zum Zitat Menini A, Lagostena L, Boccaccio A (2004) Olfaction: from odorant molecules to the olfactory cortex. News Physiol Sci 19:101–104 Menini A, Lagostena L, Boccaccio A (2004) Olfaction: from odorant molecules to the olfactory cortex. News Physiol Sci 19:101–104
37.
Zurück zum Zitat Mombaerts P (2001) The human repertoire of odorant receptor genes and pseudogenes. Annu Rev Genomics Hum Genet 2:493–510CrossRef Mombaerts P (2001) The human repertoire of odorant receptor genes and pseudogenes. Annu Rev Genomics Hum Genet 2:493–510CrossRef
38.
Zurück zum Zitat Mombaerts P (2004) Genes and ligands for odorant, vomeronasal and taste receptors. Nat Rev Neurosci 5:263–278CrossRef Mombaerts P (2004) Genes and ligands for odorant, vomeronasal and taste receptors. Nat Rev Neurosci 5:263–278CrossRef
39.
Zurück zum Zitat Morrison EE, Costanzo RM (1990) Morphology of the human olfactory epithelium. J Comp Neurol 297:1–13CrossRef Morrison EE, Costanzo RM (1990) Morphology of the human olfactory epithelium. J Comp Neurol 297:1–13CrossRef
40.
Zurück zum Zitat Nakamura T, Gold GH (1987) A cyclic nucleotide-gated conductance in olfactory receptor cilia. Nature 325:442–444CrossRef Nakamura T, Gold GH (1987) A cyclic nucleotide-gated conductance in olfactory receptor cilia. Nature 325:442–444CrossRef
41.
Zurück zum Zitat Nickell WT, Kleene NK, Gesteland RC, Kleene SJ (2006) Neuronal chloride accumulation in olfactory epithelium of mice lacking NKCC1. J Neurophysiol 95:2003–2006CrossRef Nickell WT, Kleene NK, Gesteland RC, Kleene SJ (2006) Neuronal chloride accumulation in olfactory epithelium of mice lacking NKCC1. J Neurophysiol 95:2003–2006CrossRef
42.
Zurück zum Zitat Nickell WT, Kleene NK, Kleene SJ (2007) Mechanisms of neuronal chloride accumulation in intact mouse olfactory epithelium. J Physiol 583:1005–1020CrossRef Nickell WT, Kleene NK, Kleene SJ (2007) Mechanisms of neuronal chloride accumulation in intact mouse olfactory epithelium. J Physiol 583:1005–1020CrossRef
43.
Zurück zum Zitat Pifferi S, Boccaccio A, Menini A (2006) Cyclic nucleotide-gated ion channels in sensory transduction. FEBS Lett 580:2853–2859CrossRef Pifferi S, Boccaccio A, Menini A (2006) Cyclic nucleotide-gated ion channels in sensory transduction. FEBS Lett 580:2853–2859CrossRef
44.
Zurück zum Zitat Pifferi S, Pascarella G, Boccaccio A, Mazzatenta A, Gustincich S, Menini A, Zucchelli S (2006) Bestrophin-2 is a candidate calcium-activated chloride channel involved in olfactory transduction. Proc Natl Acad Sci USA 103:12929–12934CrossRef Pifferi S, Pascarella G, Boccaccio A, Mazzatenta A, Gustincich S, Menini A, Zucchelli S (2006) Bestrophin-2 is a candidate calcium-activated chloride channel involved in olfactory transduction. Proc Natl Acad Sci USA 103:12929–12934CrossRef
45.
Zurück zum Zitat Pifferi S, Dibattista M, Menini A (2009) TMEM16B induces chloride currents activated by calcium in mammalian cells. Pflugers Arch 458:1023–1038CrossRef Pifferi S, Dibattista M, Menini A (2009) TMEM16B induces chloride currents activated by calcium in mammalian cells. Pflugers Arch 458:1023–1038CrossRef
46.
Zurück zum Zitat Pifferi S, Dibattista M, Sagheddu C, Boccaccio A, Al Qteishat A, Ghirardi F, Tirindelli R, Menini A (2009) Calcium-activated chloride currents in olfactory sensory neurons from mice lacking bestrophin-2. J Physiol 587:4265–4279CrossRef Pifferi S, Dibattista M, Sagheddu C, Boccaccio A, Al Qteishat A, Ghirardi F, Tirindelli R, Menini A (2009) Calcium-activated chloride currents in olfactory sensory neurons from mice lacking bestrophin-2. J Physiol 587:4265–4279CrossRef
47.
Zurück zum Zitat Pifferi S, Menini A, Kurahashi T (2009) Signal transduction in vertebrate olfactory cilia. In: Menini A (ed) The neurobiology of olfaction. CRC Press/Taylor & Francis Group, Boca Raton, pp 203–224CrossRef Pifferi S, Menini A, Kurahashi T (2009) Signal transduction in vertebrate olfactory cilia. In: Menini A (ed) The neurobiology of olfaction. CRC Press/Taylor & Francis Group, Boca Raton, pp 203–224CrossRef
48.
Zurück zum Zitat Pun RY, Kleene SJ (2004) An estimate of the resting membrane resistance of frog olfactory receptor neurons. J Physiol 559:535–542CrossRef Pun RY, Kleene SJ (2004) An estimate of the resting membrane resistance of frog olfactory receptor neurons. J Physiol 559:535–542CrossRef
49.
Zurück zum Zitat Reisert J, Bauer PJ, Yau KW, Frings S (2003) The Ca-activated Cl channel and its control in rat olfactory receptor neurons. J Gen Physiol 122:349–363CrossRef Reisert J, Bauer PJ, Yau KW, Frings S (2003) The Ca-activated Cl channel and its control in rat olfactory receptor neurons. J Gen Physiol 122:349–363CrossRef
50.
Zurück zum Zitat Reisert J, Lai J, Yau KW, Bradley J (2005) Mechanism of the excitatory Cl ? response in mouse olfactory receptor neurons. Neuron 45:553–561CrossRef Reisert J, Lai J, Yau KW, Bradley J (2005) Mechanism of the excitatory Cl ? response in mouse olfactory receptor neurons. Neuron 45:553–561CrossRef
51.
Zurück zum Zitat Reuter D, Zierold K, Schroder WH, Frings S (1998) A depolarizing chloride current contributes to chemoelectrical transduction in olfactory sensory neurons in situ. J Neurosci 18:6623–6630 Reuter D, Zierold K, Schroder WH, Frings S (1998) A depolarizing chloride current contributes to chemoelectrical transduction in olfactory sensory neurons in situ. J Neurosci 18:6623–6630
52.
Zurück zum Zitat Schild D, Restrepo D (1998) Transduction mechanisms in vertebrate olfactory receptor cells. Physiol Rev 78:429–466 Schild D, Restrepo D (1998) Transduction mechanisms in vertebrate olfactory receptor cells. Physiol Rev 78:429–466
53.
Zurück zum Zitat Schroeder BC, Chen T, Jan YN, Jan JY (2008) Expression cloning of TMEM16a as calcium-activated chloride channel subunit. Cell 134:1019–1929CrossRef Schroeder BC, Chen T, Jan YN, Jan JY (2008) Expression cloning of TMEM16a as calcium-activated chloride channel subunit. Cell 134:1019–1929CrossRef
54.
Zurück zum Zitat Song Y, Cygnar KD, Sagdullaev B, Valley M, Hirsh S, Stephan A, Reisert J, Zhao H (2008) Olfactory CNG channel desensitization by Ca2+/CaM via the B1b subunit affects response termination but not sensitivity to recurring stimulation. Neuron 58:374–386CrossRef Song Y, Cygnar KD, Sagdullaev B, Valley M, Hirsh S, Stephan A, Reisert J, Zhao H (2008) Olfactory CNG channel desensitization by Ca2+/CaM via the B1b subunit affects response termination but not sensitivity to recurring stimulation. Neuron 58:374–386CrossRef
55.
Zurück zum Zitat Stephan AB, Shum EY, Hirsh S, Cygnar KD, Reisert J, Zhao H (2009) ANO2 is the cilial calcium-activated chloride channel that may mediate olfactory amplification. Proc Natl Acad Sci USA 106:11776–11781CrossRef Stephan AB, Shum EY, Hirsh S, Cygnar KD, Reisert J, Zhao H (2009) ANO2 is the cilial calcium-activated chloride channel that may mediate olfactory amplification. Proc Natl Acad Sci USA 106:11776–11781CrossRef
56.
Zurück zum Zitat Tirindelli R, Dibattista M, Pifferi S, Menini A (2009) From pheromones to behavior. Physiol Rev 89:921–956CrossRef Tirindelli R, Dibattista M, Pifferi S, Menini A (2009) From pheromones to behavior. Physiol Rev 89:921–956CrossRef
57.
Zurück zum Zitat Torre V, Ashmore JF, Lamb TD, Menini A (1995) Transduction and adaptation in sensory receptor cells. J Neurosci 15:7757–7768 Torre V, Ashmore JF, Lamb TD, Menini A (1995) Transduction and adaptation in sensory receptor cells. J Neurosci 15:7757–7768
58.
Zurück zum Zitat Whisman M, Goetzinger J, Cotton F, Brinkman, D (1978) Odorant evaluation: a study of ethanethiol and tetrahdrothiophene as warning agents in propane. Environ Sci Technol 12:1285–1288CrossRef Whisman M, Goetzinger J, Cotton F, Brinkman, D (1978) Odorant evaluation: a study of ethanethiol and tetrahdrothiophene as warning agents in propane. Environ Sci Technol 12:1285–1288CrossRef
59.
Zurück zum Zitat Yang YD, Cho H, Koo JY, Tak MH, Cho Y, Shim WS, Park SP, Lee J, Lee B, Kim BM, Raouf R, Shin YK, Oh U (2008) TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455:1210–1215CrossRef Yang YD, Cho H, Koo JY, Tak MH, Cho Y, Shim WS, Park SP, Lee J, Lee B, Kim BM, Raouf R, Shin YK, Oh U (2008) TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455:1210–1215CrossRef
60.
Zurück zum Zitat Zheng J, Zagotta WN (2004) Stoichiometry and assembly of olfactory cyclic nucleotide-gated channels. Neuron 42:411–421CrossRef Zheng J, Zagotta WN (2004) Stoichiometry and assembly of olfactory cyclic nucleotide-gated channels. Neuron 42:411–421CrossRef
Metadaten
Titel
Odorant Detection and Discrimination in the Olfactory System
verfasst von
Simone Pifferi
Anna Menini
Copyright-Jahr
2011
Verlag
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-1324-6_1

Neuer Inhalt