Skip to main content
Top
Published in: The International Journal of Advanced Manufacturing Technology 9-10/2020

07-09-2020 | ORIGINAL ARTICLE

Off-line correction method suitable for a machining robotapplication to composite materials

Authors: Guillaume Carriere, Mourad Benoussaad, Vincent Wagner, Gilles Dessein, Benjamin Boniface

Published in: The International Journal of Advanced Manufacturing Technology | Issue 9-10/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Robotic machining finds its place in a multitude of applications with increasingly restrictive dimensional tolerances. In the machining of left-handed shapes for the production of large composite supports (4-m diameter), the expected shape accuracy is a few hundredths. The industrial robot is not initially compatible with such performance criteria. The literature possesses several ways to improve the accuracy of industrial robots such as stiffness, or stress modeling with dynamic measurement of forces during machining. These methods are difficult to apply in an industrial context because they are too costly in terms of time and investments related to the identification means. This study proposes a new off-line correction based on the mirror correction applied during machining. This method is quickly applicable and required only a 3D vision system. Moreover, it is adapted to any 6-axis serial robot, unlike exiting methods that requires a robot modeling and characterization, which is adapted to a specific robot only. After measuring the position of the tool during a first machining operation, this measurement is compared with the initial program setpoint for identify the robot deviation. A smart and autonomous process is used to re-edit the toolpath to compensate for the deviation. A new machining operation quantifies the correction by producing a part with improved shape tolerances. This article presents the development method, the implementation, and the results obtained following its industrial context. A gain of more than 80% is identified and an analysis of this result is proposed. Future complementary developments are suggested as perspectives.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Muller C (2019) Welcome to the IFR press conference. Shanghai Muller C (2019) Welcome to the IFR press conference. Shanghai
2.
go back to reference Shiakolas PS, Conrad KI, Yih TC (2002) On the accuracy, repeatability, and degree of influence of kinematics parameters for industrial robots. Int J Model Simul 22(4):245–254CrossRef Shiakolas PS, Conrad KI, Yih TC (2002) On the accuracy, repeatability, and degree of influence of kinematics parameters for industrial robots. Int J Model Simul 22(4):245–254CrossRef
3.
go back to reference Dumas C, Boudelier A, Caro S, Garnier S, Ritou M, Furet B (2011) Development of a robotic cell for trimming composites. Mecanique Ind 12(6):487–494CrossRef Dumas C, Boudelier A, Caro S, Garnier S, Ritou M, Furet B (2011) Development of a robotic cell for trimming composites. Mecanique Ind 12(6):487–494CrossRef
4.
go back to reference Olabi A (2011) Improving the accuracy of industrial robots for high-speed machining applications, National higher school of arts and crafts Olabi A (2011) Improving the accuracy of industrial robots for high-speed machining applications, National higher school of arts and crafts
5.
go back to reference Belchior J, Guillo M, Courteille E, Maurine P, Leotoing L, Guines D (2013) Off-line compensation of the tool path deviations on robotic machining: application to incremental sheet forming. Robot Comput Integr Manuf 29(4):58–69CrossRef Belchior J, Guillo M, Courteille E, Maurine P, Leotoing L, Guines D (2013) Off-line compensation of the tool path deviations on robotic machining: application to incremental sheet forming. Robot Comput Integr Manuf 29(4):58–69CrossRef
6.
go back to reference Gallot G, Dumas C, Garnier S, Caro S, Furet B (2012) Dynamic path correction for robotic processing, 13rd national conference aip primeca. (France) Gallot G, Dumas C, Garnier S, Caro S, Furet B (2012) Dynamic path correction for robotic processing, 13rd national conference aip primeca. (France)
8.
go back to reference Garnier S (2017) Identification and modelling for the development of machining monitoring and production robotics, phd thesis. (France) Garnier S (2017) Identification and modelling for the development of machining monitoring and production robotics, phd thesis. (France)
9.
go back to reference Schneider U, Drust M, Ansaloni M, Lehmann C, Pellicciari M, Leali F, Gunnink JW, Verl A (2016) Improving robotic machining accuracy through experimental error investigation and modular compensation. The International Journal of Advanced Manufacturing Technology 85:3–15CrossRef Schneider U, Drust M, Ansaloni M, Lehmann C, Pellicciari M, Leali F, Gunnink JW, Verl A (2016) Improving robotic machining accuracy through experimental error investigation and modular compensation. The International Journal of Advanced Manufacturing Technology 85:3–15CrossRef
10.
go back to reference Teti R (2002) Machining of composite materials. CIRP Ann-Manuf Technol 51:611–634CrossRef Teti R (2002) Machining of composite materials. CIRP Ann-Manuf Technol 51:611–634CrossRef
15.
go back to reference Siciliano B, Kathib O (2008) Handbook of robotics, springer Siciliano B, Kathib O (2008) Handbook of robotics, springer
16.
go back to reference Schneider U, Ansaloni M, Drust M, Leali F, Verl A, (2013) Experimental investigation of sources of error in robot machining, International Workshop on Robotics in Smart Manufacturing. Springer, pp. 14–26 Schneider U, Ansaloni M, Drust M, Leali F, Verl A, (2013) Experimental investigation of sources of error in robot machining, International Workshop on Robotics in Smart Manufacturing. Springer, pp. 14–26
17.
go back to reference Mustafa S.K, Pey Y.T, Yang G, Chen I (2010) A geometrical approach for online error compensation of industrial manipulator, Proceedings of ieee/asme international conference on advanced intelligent mechatronics, pp. 738–743 (montreal, Canada) Mustafa S.K, Pey Y.T, Yang G, Chen I (2010) A geometrical approach for online error compensation of industrial manipulator, Proceedings of ieee/asme international conference on advanced intelligent mechatronics, pp. 738–743 (montreal, Canada)
18.
go back to reference Schneider U, Drust M, Diaz Posada J, Verl A (2013) Position control of an industrial robot using an optical measurement system for machining purposes Schneider U, Drust M, Diaz Posada J, Verl A (2013) Position control of an industrial robot using an optical measurement system for machining purposes
19.
go back to reference Zhang H, Wang J, Zhang G, Gan Z, Pan Z, Cui H, Zhu Z (2005) Machining with flexible manipulator, Improving robotic machining performance. IEEE, pp. 1127–1132 Zhang H, Wang J, Zhang G, Gan Z, Pan Z, Cui H, Zhu Z (2005) Machining with flexible manipulator, Improving robotic machining performance. IEEE, pp. 1127–1132
20.
go back to reference Pan Z, Zhang H, Zhu Z, Wang J (2006) Chatter analysis of robotic machining process. J Mater Process Technol 173(3):301–309CrossRef Pan Z, Zhang H, Zhu Z, Wang J (2006) Chatter analysis of robotic machining process. J Mater Process Technol 173(3):301–309CrossRef
21.
go back to reference Chen T, Xiang J, Gao F, Liu X, Liu G (2019) Study on cutting performance of diamond-coated rhombic milling cutter in machining carbon fiber composites. Int J Adv Manuf Technol 103(9-12):4731–4737CrossRef Chen T, Xiang J, Gao F, Liu X, Liu G (2019) Study on cutting performance of diamond-coated rhombic milling cutter in machining carbon fiber composites. Int J Adv Manuf Technol 103(9-12):4731–4737CrossRef
24.
go back to reference NF E66-520-1 (1997) Operating range of cutting tools - tool-material pair NF E66-520-1 (1997) Operating range of cutting tools - tool-material pair
27.
29.
go back to reference Morandeau A, Leroy R, Bouchou A, Bonhoure D (2011) Usinage des composites renforcés en fibres de carbone: stratégie de surfaçage pour limiter les efforts de coupe, 17th National Composites Days (JNC17). p. 126 Morandeau A, Leroy R, Bouchou A, Bonhoure D (2011) Usinage des composites renforcés en fibres de carbone: stratégie de surfaçage pour limiter les efforts de coupe, 17th National Composites Days (JNC17). p. 126
30.
go back to reference Olabi A, Damak M, Bearee R, Gibaru O, Leleu S (2012) Improving the accuracy of industrial robots by offline compensation of joints errors. In: Industrial Technology (ICIT), 2012 IEEE International Conference On. IEEE, pp. 492–497. Olabi A, Damak M, Bearee R, Gibaru O, Leleu S (2012) Improving the accuracy of industrial robots by offline compensation of joints errors. In: Industrial Technology (ICIT), 2012 IEEE International Conference On. IEEE, pp. 492–497.
31.
go back to reference Lei WT, Sung MP (2008) Nurbs-based fast geometric error compensation for cnc machine tools. Int J Mach Tools Manuf 48(3-4):307–319CrossRef Lei WT, Sung MP (2008) Nurbs-based fast geometric error compensation for cnc machine tools. Int J Mach Tools Manuf 48(3-4):307–319CrossRef
32.
go back to reference Guiassa R (2012) Methods of compensating for machining errors using measurement on machine tools, Phd thesis, Polytechnique school of Montreal Guiassa R (2012) Methods of compensating for machining errors using measurement on machine tools, Phd thesis, Polytechnique school of Montreal
33.
go back to reference Shen H, Fu J, He Y, Yao X (2012) On-line asynchronous compensation methods for static/quasi-static error implemented on cnc machine tools. Int J Mach Tools Manuf 60:14–26CrossRef Shen H, Fu J, He Y, Yao X (2012) On-line asynchronous compensation methods for static/quasi-static error implemented on cnc machine tools. Int J Mach Tools Manuf 60:14–26CrossRef
34.
go back to reference Thiery C, Scherrer B (2010) Least-Squares λ Policy Iteration: optimism and bias-variance trade-off for optimal control, 26 Thiery C, Scherrer B (2010) Least-Squares λ Policy Iteration: optimism and bias-variance trade-off for optimal control, 26
Metadata
Title
Off-line correction method suitable for a machining robotapplication to composite materials
Authors
Guillaume Carriere
Mourad Benoussaad
Vincent Wagner
Gilles Dessein
Benjamin Boniface
Publication date
07-09-2020
Publisher
Springer London
Published in
The International Journal of Advanced Manufacturing Technology / Issue 9-10/2020
Print ISSN: 0268-3768
Electronic ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-020-05947-x

Other articles of this Issue 9-10/2020

The International Journal of Advanced Manufacturing Technology 9-10/2020 Go to the issue

Premium Partners