Skip to main content
Top
Published in: Structural and Multidisciplinary Optimization 5/2017

01-06-2017 | RESEARCH PAPER

On filter boundary conditions in topology optimization

Authors: Anders Clausen, Erik Andreassen

Published in: Structural and Multidisciplinary Optimization | Issue 5/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Most research papers on topology optimization involve filters for regularization. Typically, boundary effects from the filters are ignored. Despite significant drawbacks the inappropriate homogeneous Neumann boundary conditions are used, probably because they are trivial to implement. In this paper we define three requirements that boundary conditions must fulfill in order to eliminate boundary effects. Previously suggested approaches are briefly reviewed in the light of these requirements. A new approach referred to as the “domain extension approach” is suggested. It effectively eliminates boundary effects and results in well performing designs. The approach is intuitive, simple and easy to implement.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Allaire G, Jouve F, Michailidis G (2016) Thickness control in structural optimization via a level set method. Struct Multidiscip Optim 53(6):1349–1382MathSciNetCrossRef Allaire G, Jouve F, Michailidis G (2016) Thickness control in structural optimization via a level set method. Struct Multidiscip Optim 53(6):1349–1382MathSciNetCrossRef
go back to reference Andreassen E, Clausen A, Schevenels M, Lazarov B S, Sigmund O (2011) Efficient topology optimization in matlab using 88 lines of code. Struct Multidiscip Optim 43(1):1–16CrossRefMATH Andreassen E, Clausen A, Schevenels M, Lazarov B S, Sigmund O (2011) Efficient topology optimization in matlab using 88 lines of code. Struct Multidiscip Optim 43(1):1–16CrossRefMATH
go back to reference Bruns T E, Tortorelli D A (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459CrossRefMATH Bruns T E, Tortorelli D A (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459CrossRefMATH
go back to reference Clausen A, Aage N, Sigmund O (2015) Topology optimization of coated structures and material interface problems. Comput Methods Appl Mech Eng 290:524–541MathSciNetCrossRef Clausen A, Aage N, Sigmund O (2015) Topology optimization of coated structures and material interface problems. Comput Methods Appl Mech Eng 290:524–541MathSciNetCrossRef
go back to reference Guest J, Prevost J, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254MathSciNetCrossRefMATH Guest J, Prevost J, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254MathSciNetCrossRefMATH
go back to reference Lazarov B S, Sigmund O (2011) Filters in topology optimization based on helmholtz-type differential equations. Int J Numer Methods Eng 86(6):765–781MathSciNetCrossRefMATH Lazarov B S, Sigmund O (2011) Filters in topology optimization based on helmholtz-type differential equations. Int J Numer Methods Eng 86(6):765–781MathSciNetCrossRefMATH
go back to reference Lazarov B S, Schevenels M, Sigmund O (2011) Robust design of large-displacement compliant mechanisms. Mech Sci 2(2):175–182CrossRef Lazarov B S, Schevenels M, Sigmund O (2011) Robust design of large-displacement compliant mechanisms. Mech Sci 2(2):175–182CrossRef
go back to reference Lazarov B S, Wang F, Sigmund O (2016) Length scale and manufacturability in density-based topology optimization. Arch Appl Mech 86:189–218CrossRef Lazarov B S, Wang F, Sigmund O (2016) Length scale and manufacturability in density-based topology optimization. Arch Appl Mech 86:189–218CrossRef
go back to reference Sigmund O (1994) Design of material structures using topology optimization. PhD thesis, Department of Solid Mechanics, Technical University of Denmark Sigmund O (1994) Design of material structures using topology optimization. PhD thesis, Department of Solid Mechanics, Technical University of Denmark
go back to reference Sigmund O (1997) On the design of compliant mechanisms using topology optimization. J Struct Mech 25 (4):493–524 Sigmund O (1997) On the design of compliant mechanisms using topology optimization. J Struct Mech 25 (4):493–524
go back to reference Sigmund O (2009) Manufacturing tolerant topology optimization. Acta Mechanica Sinica 25(2):227–239CrossRefMATH Sigmund O (2009) Manufacturing tolerant topology optimization. Acta Mechanica Sinica 25(2):227–239CrossRefMATH
go back to reference Wang F, Lazarov B S, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767–784CrossRefMATH Wang F, Lazarov B S, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767–784CrossRefMATH
go back to reference Wang Y, Zhang L, Wang M Y (2016) Length scale control for structural optimization by level sets. Comput Methods Appl Mech Eng 305:891–909MathSciNetCrossRef Wang Y, Zhang L, Wang M Y (2016) Length scale control for structural optimization by level sets. Comput Methods Appl Mech Eng 305:891–909MathSciNetCrossRef
go back to reference Xu S, Cai Y, Cheng G (2010) Volume preserving nonlinear density filter based on heaviside functions. Struct Multidiscip Optim 41(4):495–505MathSciNetCrossRefMATH Xu S, Cai Y, Cheng G (2010) Volume preserving nonlinear density filter based on heaviside functions. Struct Multidiscip Optim 41(4):495–505MathSciNetCrossRefMATH
go back to reference Zhou M, Lazarov B S, Sigmund O (2014) Topology optimization for optical projection lithography with manufacturing uncertainties. Appl Opt 53(12):2720–2729CrossRef Zhou M, Lazarov B S, Sigmund O (2014) Topology optimization for optical projection lithography with manufacturing uncertainties. Appl Opt 53(12):2720–2729CrossRef
go back to reference Zhou M, Lazarov B S, Wang F, Sigmund O (2015) Minimum length scale in topology optimization by geometric constraints. Comput Methods Appl Mech Eng 293:266–282MathSciNetCrossRef Zhou M, Lazarov B S, Wang F, Sigmund O (2015) Minimum length scale in topology optimization by geometric constraints. Comput Methods Appl Mech Eng 293:266–282MathSciNetCrossRef
Metadata
Title
On filter boundary conditions in topology optimization
Authors
Anders Clausen
Erik Andreassen
Publication date
01-06-2017
Publisher
Springer Berlin Heidelberg
Published in
Structural and Multidisciplinary Optimization / Issue 5/2017
Print ISSN: 1615-147X
Electronic ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-017-1709-1

Other articles of this Issue 5/2017

Structural and Multidisciplinary Optimization 5/2017 Go to the issue

Premium Partners