Skip to main content
Top
Published in: Neural Computing and Applications 2/2019

30-06-2017 | Original Article

On robustness of radial basis function network with input perturbation

Authors: Prasenjit Dey, Madhumita Gopal, Payal Pradhan, Tandra Pal

Published in: Neural Computing and Applications | Issue 2/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this article, we have proposed a methodology for making a radial basis function network (RBFN) robust with respect to additive and multiplicative input noises. This is achieved by properly selecting the centers and widths for the radial basis function (RBF) units of the hidden layer. For this purpose, firstly, a set of self-organizing map (SOM) networks are trained for center selection. For training a SOM network, random Gaussian noise is injected in the samples of each class of the data set. The number of SOM networks is same as the number of classes present in the data set, and each of the SOM networks is trained separately by the samples belonging to a particular class. The weight vector associated with a unit in the output layer of a particular SOM network corresponding to a class is used as the center of a RBF unit for that class. To determine the widths of the RBF units, p-nearest neighbor algorithm is used class-wise. Proper selection of centers and widths makes the RBFN robust with respect to input perturbation and outliers present in the data set. The weights between the hidden and output layers of RBFN are obtained by pseudo inverse method. To test the robustness of the proposed method in additive and multiplicative noise scenarios, ten standard data sets have been used for classification. Proposed method has been compared with three existing methods, where the centers have been generated in three ways: randomly, using k-means algorithm, and based on SOM network. Simulation results show the superiority of the proposed method compared to those methods. Wilcoxon signed-rank test also shows that the proposed method is statistically better than those methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Lowe D (1988) Multi-variable functional interpolation and adaptive networks. Complex Syst 2:321–355MATH Lowe D (1988) Multi-variable functional interpolation and adaptive networks. Complex Syst 2:321–355MATH
2.
go back to reference Saha A, Wu CL, Tang DS (1993) Approximation, dimension reduction, and nonconvex optimization using linear superpositions of gaussians. IEEE Trans Comput 42(10):1222–1233MathSciNetCrossRefMATH Saha A, Wu CL, Tang DS (1993) Approximation, dimension reduction, and nonconvex optimization using linear superpositions of gaussians. IEEE Trans Comput 42(10):1222–1233MathSciNetCrossRefMATH
3.
go back to reference Bernier JL, Díaz AF, Fernández F, Cañas A, González J, Martin-Smith P, Ortega J (2003) Assessing the noise immunity and generalization of radial basis function networks. Neural Process Lett 18(1):35–48CrossRef Bernier JL, Díaz AF, Fernández F, Cañas A, González J, Martin-Smith P, Ortega J (2003) Assessing the noise immunity and generalization of radial basis function networks. Neural Process Lett 18(1):35–48CrossRef
4.
go back to reference Webb AR (1994) Functional approximation by feed-forward networks: a least-squares approach to generalization. IEEE Trans Neural Netw 5(3):363–371MathSciNetCrossRef Webb AR (1994) Functional approximation by feed-forward networks: a least-squares approach to generalization. IEEE Trans Neural Netw 5(3):363–371MathSciNetCrossRef
5.
go back to reference Haykin S, Network N (2004) A comprehensive foundation. Neural Netw 2:2004 Haykin S, Network N (2004) A comprehensive foundation. Neural Netw 2:2004
6.
go back to reference Eickhoff R, Rückert U (2007) Robustness of radial basis functions. Neurocomputing 70(16):2758–2767CrossRef Eickhoff R, Rückert U (2007) Robustness of radial basis functions. Neurocomputing 70(16):2758–2767CrossRef
7.
go back to reference Yu H, Xie T, Paszczynski S, Wilamowski BM (2011) Advantages of radial basis function networks for dynamic system design. IEEE Trans Ind Electron 58(12):5438–5450CrossRef Yu H, Xie T, Paszczynski S, Wilamowski BM (2011) Advantages of radial basis function networks for dynamic system design. IEEE Trans Ind Electron 58(12):5438–5450CrossRef
8.
go back to reference Cover TM (1965) Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Trans Electron Comput 3:326–334CrossRefMATH Cover TM (1965) Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Trans Electron Comput 3:326–334CrossRefMATH
9.
go back to reference Moody J, Darken CJ (1989) Fast learning in networks of locally-tuned processing units. Neural Comput 1(2):281–294CrossRef Moody J, Darken CJ (1989) Fast learning in networks of locally-tuned processing units. Neural Comput 1(2):281–294CrossRef
10.
go back to reference Bishop C (1991) Improving the generalization properties of radial basis function neural networks. Neural Comput 3(4):579–588CrossRef Bishop C (1991) Improving the generalization properties of radial basis function neural networks. Neural Comput 3(4):579–588CrossRef
11.
go back to reference Chen S, Cowan CF, Grant PM (1991) Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans Neural Netw 2(2):302–309CrossRef Chen S, Cowan CF, Grant PM (1991) Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans Neural Netw 2(2):302–309CrossRef
12.
go back to reference Whitehead BA, Choate TD (1996) Cooperative-competitive genetic evolution of radial basis function centers and widths for time series prediction. IEEE Trans Neural Netw 7(4):869–880CrossRef Whitehead BA, Choate TD (1996) Cooperative-competitive genetic evolution of radial basis function centers and widths for time series prediction. IEEE Trans Neural Netw 7(4):869–880CrossRef
13.
go back to reference Schölkopf B, Sung KK, Burges CJ, Girosi F, Niyogi P, Poggio T, Vapnik V (1997) Comparing support vector machines with gaussian kernels to radial basis function classifiers. IEEE Trans Signal Process 45(11):2758–2765CrossRef Schölkopf B, Sung KK, Burges CJ, Girosi F, Niyogi P, Poggio T, Vapnik V (1997) Comparing support vector machines with gaussian kernels to radial basis function classifiers. IEEE Trans Signal Process 45(11):2758–2765CrossRef
14.
go back to reference Mao K (2002) Rbf neural network center selection based on fisher ratio class separability measure. IEEE Trans Neural Netw 13(5):1211–1217CrossRef Mao K (2002) Rbf neural network center selection based on fisher ratio class separability measure. IEEE Trans Neural Netw 13(5):1211–1217CrossRef
15.
go back to reference Mao KZ, Huang GB (2005) Neuron selection for RBF neural network classifier based on data structure preserving criterion. IEEE Trans Neural Netw 16(6):1531–1540CrossRef Mao KZ, Huang GB (2005) Neuron selection for RBF neural network classifier based on data structure preserving criterion. IEEE Trans Neural Netw 16(6):1531–1540CrossRef
16.
go back to reference Orr MJ (1995) Regularization in the selection of radial basis function centers. Neural Comput 7(3):606–623CrossRef Orr MJ (1995) Regularization in the selection of radial basis function centers. Neural Comput 7(3):606–623CrossRef
18.
go back to reference Schwenker F, Kestler HA, Palm G (2001) Three learning phases for radial-basis-function networks. Neural Netw 14(4):439–458CrossRefMATH Schwenker F, Kestler HA, Palm G (2001) Three learning phases for radial-basis-function networks. Neural Netw 14(4):439–458CrossRefMATH
19.
go back to reference Fritzke B (1994) Growing cell structures a self-organizing network for unsupervised and supervised learning. Neural Netw 7(9):1441–1460CrossRef Fritzke B (1994) Growing cell structures a self-organizing network for unsupervised and supervised learning. Neural Netw 7(9):1441–1460CrossRef
20.
go back to reference Anouar F, Badran F, Thiria S (1998) Probabilistic self-organizing map and radial basis function networks. Neurocomputing 20(1):83–96CrossRefMATH Anouar F, Badran F, Thiria S (1998) Probabilistic self-organizing map and radial basis function networks. Neurocomputing 20(1):83–96CrossRefMATH
21.
go back to reference Bouchired S, Ibnkahla M, Roviras D, Castanié F (1998) Equalization of satellite mobile communication channels using combined self-organizing maps and RBF networks. In: Proceedings of the 1998 IEEE international conference on acoustics, speech and signal processing, 1998, vol 6. IEEE, pp 3377–3379 Bouchired S, Ibnkahla M, Roviras D, Castanié F (1998) Equalization of satellite mobile communication channels using combined self-organizing maps and RBF networks. In: Proceedings of the 1998 IEEE international conference on acoustics, speech and signal processing, 1998, vol 6. IEEE, pp 3377–3379
22.
go back to reference Andrieu C, De Freitas N, Doucet A (2001) Robust full bayesian learning for radial basis networks. Neural Comput 13(10):2359–2407CrossRefMATH Andrieu C, De Freitas N, Doucet A (2001) Robust full bayesian learning for radial basis networks. Neural Comput 13(10):2359–2407CrossRefMATH
23.
go back to reference Townsend NW, Tarassenko L (1999) Estimations of error bounds for neural-network function approximators. IEEE Trans Neural Netw 10(2):217–230CrossRef Townsend NW, Tarassenko L (1999) Estimations of error bounds for neural-network function approximators. IEEE Trans Neural Netw 10(2):217–230CrossRef
24.
go back to reference Ikonomopoulos A, Endou A (1998) Wavelet decomposition and radial basis function networks for system monitoring. IEEE Trans Nuclear Sci 45(5):2293–2301CrossRef Ikonomopoulos A, Endou A (1998) Wavelet decomposition and radial basis function networks for system monitoring. IEEE Trans Nuclear Sci 45(5):2293–2301CrossRef
25.
go back to reference Lee CC, Chung PC, Tsai JR, Chang CI (1999) Robust radial basis function neural networks. IEEE Trans Syst Man Cybern B Cybern 29(6):674–685 Lee CC, Chung PC, Tsai JR, Chang CI (1999) Robust radial basis function neural networks. IEEE Trans Syst Man Cybern B Cybern 29(6):674–685
26.
go back to reference Bruzzone L, Prieto DF (1999) A technique for the selection of kernel-function parameters in rbf neural networks for classification of remote-sensing images. IEEE Trans Geosci Remote Sens 37(2):1179–1184CrossRef Bruzzone L, Prieto DF (1999) A technique for the selection of kernel-function parameters in rbf neural networks for classification of remote-sensing images. IEEE Trans Geosci Remote Sens 37(2):1179–1184CrossRef
27.
go back to reference Ho KI, Leung CS, Sum J (2010) Convergence and objective functions of some fault/noise-injection-based online learning algorithms for rbf networks. IEEE Trans Neural Netw 21(6):938–947CrossRef Ho KI, Leung CS, Sum J (2010) Convergence and objective functions of some fault/noise-injection-based online learning algorithms for rbf networks. IEEE Trans Neural Netw 21(6):938–947CrossRef
28.
go back to reference Tinós R, Terra MH (2001) Fault detection and isolation in robotic manipulators using a multilayer perceptron and a rbf network trained by the Kohonen’s self-organizing map. Rev Soc Bras Autom Contr Autom 12(1):11–18 Tinós R, Terra MH (2001) Fault detection and isolation in robotic manipulators using a multilayer perceptron and a rbf network trained by the Kohonen’s self-organizing map. Rev Soc Bras Autom Contr Autom 12(1):11–18
29.
go back to reference Shi D, Yeung DS, Gao J (2005) Sensitivity analysis applied to the construction of radial basis function networks. Neural Netw 18(7):951–957CrossRefMATH Shi D, Yeung DS, Gao J (2005) Sensitivity analysis applied to the construction of radial basis function networks. Neural Netw 18(7):951–957CrossRefMATH
30.
go back to reference Yeung DS, Chan PP, Ng WW (2009) Radial basis function network learning using localized generalization error bound. Inf Sci 179(19):3199–3217CrossRefMATH Yeung DS, Chan PP, Ng WW (2009) Radial basis function network learning using localized generalization error bound. Inf Sci 179(19):3199–3217CrossRefMATH
31.
go back to reference Tu S, Ben K, Tian L, Zhang L (2008) Combination of SOM and RBF based on incremental learning for acoustic fault identification of underwater vehicles. In: Congress on image and signal processing, 2008 (CISP’08), vol 4. IEEE, pp 38–42 Tu S, Ben K, Tian L, Zhang L (2008) Combination of SOM and RBF based on incremental learning for acoustic fault identification of underwater vehicles. In: Congress on image and signal processing, 2008 (CISP’08), vol 4. IEEE, pp 38–42
32.
go back to reference Yao W, Chen X, Luo W (2009) A gradient-based sequential radial basis function neural network modeling method. Neural Comput Appl 18(5):477–484CrossRef Yao W, Chen X, Luo W (2009) A gradient-based sequential radial basis function neural network modeling method. Neural Comput Appl 18(5):477–484CrossRef
33.
go back to reference Han H, Chen Q, Qiao J (2010) Research on an online self-organizing radial basis function neural network. Neural Comput Appl 19(5):667–676CrossRef Han H, Chen Q, Qiao J (2010) Research on an online self-organizing radial basis function neural network. Neural Comput Appl 19(5):667–676CrossRef
34.
go back to reference Ding S, Xu L, Su C, Jin F (2012) An optimizing method of rbf neural network based on genetic algorithm. Neural Comput Appl 21(2):333–336CrossRef Ding S, Xu L, Su C, Jin F (2012) An optimizing method of rbf neural network based on genetic algorithm. Neural Comput Appl 21(2):333–336CrossRef
36.
go back to reference Bishop CM (1995) Training with noise is equivalent to Tikhonov regularization. Neural Comput 7(1):108–116CrossRef Bishop CM (1995) Training with noise is equivalent to Tikhonov regularization. Neural Comput 7(1):108–116CrossRef
37.
38.
go back to reference Frank A, Asuncion A (2010) UCI machine learning repository, vol 213. University of California, Irvine Frank A, Asuncion A (2010) UCI machine learning repository, vol 213. University of California, Irvine
Metadata
Title
On robustness of radial basis function network with input perturbation
Authors
Prasenjit Dey
Madhumita Gopal
Payal Pradhan
Tandra Pal
Publication date
30-06-2017
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 2/2019
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-017-3086-5

Other articles of this Issue 2/2019

Neural Computing and Applications 2/2019 Go to the issue

Premium Partner