Skip to main content
Top
Published in: Rheologica Acta 2/2008

01-03-2008 | Original Contribution

On the burst of branched polymer melts during inflation

Authors: Henrik Koblitz Rasmussen, Kaijia Yu

Published in: Rheologica Acta | Issue 2/2008

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Two molten low-density polyethylene melts, shaped as plates, have been inflated into a circular cylinder during isothermal conditions. Lowering the inflation rates allow the plates to be inflated into a larger volume of the cylinder before bursting. Numerical simulations of the inflations have been performed, using a time-strain separable constitutive K-BKZ equation based on the potential function from the Doi–Edwards theory. The material parameters in the constitutive model are based on liner viscoelastic and time dependent uniaxial elongational viscosities. The numerical calculations show quantitative agreement with the experiments, including the appearance of the burst, for a wide range of experimental conditions. This strongly suggests that the initiation of the burst in the polymer melts is a hydrodynamic phenomenon.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bach A, Almdal K, Rasmussen HK, Hassager O (2003a) Elongational viscosity of narrow molar mass distribution polystyrene. Macromolecules 36:5174–5179CrossRef Bach A, Almdal K, Rasmussen HK, Hassager O (2003a) Elongational viscosity of narrow molar mass distribution polystyrene. Macromolecules 36:5174–5179CrossRef
go back to reference Bach A, Rasmussen HK, Hassager O (2003b) Extensional viscosity for polymer melts measured in the filament stretching rheometer. J Rheol 47:429–441CrossRef Bach A, Rasmussen HK, Hassager O (2003b) Extensional viscosity for polymer melts measured in the filament stretching rheometer. J Rheol 47:429–441CrossRef
go back to reference Bach A, Rasmussen HK, Longin P-Y, Hassager O (2002) Growth of non axisymmetric disturbances of the free surface in the filament stretching rheometer: experiments and simulation. J Non-Newton Fluid Mech 108:163–186CrossRef Bach A, Rasmussen HK, Longin P-Y, Hassager O (2002) Growth of non axisymmetric disturbances of the free surface in the filament stretching rheometer: experiments and simulation. J Non-Newton Fluid Mech 108:163–186CrossRef
go back to reference Bastian H (2001) Non-linear viscoelasticity of linear and long-chain-branched polymer melts in shear and extensional flows. PhD Thesis, Institut fuĺr Kunststofftechnologie der Universität Stuttgart. Bastian H (2001) Non-linear viscoelasticity of linear and long-chain-branched polymer melts in shear and extensional flows. PhD Thesis, Institut fuĺr Kunststofftechnologie der Universität Stuttgart.
go back to reference Cox WP, Merz EH (1958) Correlation of dynamic and steady flow viscosities. J Polym Sci 28:619–622CrossRef Cox WP, Merz EH (1958) Correlation of dynamic and steady flow viscosities. J Polym Sci 28:619–622CrossRef
go back to reference Currie PK (1982) Constitutive equations for polymer melts predicted by the Doi–Edwards and Curtiss-Bird kinetic theory models. J Non-Newton Fluid Mech 11:53–68CrossRef Currie PK (1982) Constitutive equations for polymer melts predicted by the Doi–Edwards and Curtiss-Bird kinetic theory models. J Non-Newton Fluid Mech 11:53–68CrossRef
go back to reference Denson CD, Gallo RJ (1971) Measurements on the biaxial extension viscosity of bulk polymers: the inflation of a thin polymer sheet. Polym Eng Sci 11:174–176CrossRef Denson CD, Gallo RJ (1971) Measurements on the biaxial extension viscosity of bulk polymers: the inflation of a thin polymer sheet. Polym Eng Sci 11:174–176CrossRef
go back to reference Doi M, Edwards SF (1978) Dynamics of concentrated polymer systems, III, the constitutive equation. J Chem Soc Faraday Trans 74:1818–1832CrossRef Doi M, Edwards SF (1978) Dynamics of concentrated polymer systems, III, the constitutive equation. J Chem Soc Faraday Trans 74:1818–1832CrossRef
go back to reference Doi M, Edwards SF (1979) Dynamics of concentrated polymer systems, IV, Rheological properties. J Chem Soc Faraday Trans 75:38–54CrossRef Doi M, Edwards SF (1979) Dynamics of concentrated polymer systems, IV, Rheological properties. J Chem Soc Faraday Trans 75:38–54CrossRef
go back to reference Eriksson T, Rasmussen HK (2005) The effects of polymer melt rheology on the replication of surface microstructures in iso thermal moulding. J Non-Newton Fluid Mech 127:191–200 Eriksson T, Rasmussen HK (2005) The effects of polymer melt rheology on the replication of surface microstructures in iso thermal moulding. J Non-Newton Fluid Mech 127:191–200
go back to reference Flory PJ (1976) Statistical thermodynamics of random networks. Proc R Soc A 351:351–380CrossRef Flory PJ (1976) Statistical thermodynamics of random networks. Proc R Soc A 351:351–380CrossRef
go back to reference Hassager O, Kristensen SB, Larsen JR, Neergaard J (1999) Inflation and Instability of a Polymeric Membrane. J Non-Newton Fluid Mech 88:185–204CrossRef Hassager O, Kristensen SB, Larsen JR, Neergaard J (1999) Inflation and Instability of a Polymeric Membrane. J Non-Newton Fluid Mech 88:185–204CrossRef
go back to reference Kamei E, Onogi S (1975) Extensional and fractural properties of monodisperse polystyrene at elevated temperatures. Appl Polym Symp 27:19–46 Kamei E, Onogi S (1975) Extensional and fractural properties of monodisperse polystyrene at elevated temperatures. Appl Polym Symp 27:19–46
go back to reference Laun HM (1986) Prediction of elastic strains of polymer melts in shear and elongation. J Rheol 30:459–501CrossRef Laun HM (1986) Prediction of elastic strains of polymer melts in shear and elongation. J Rheol 30:459–501CrossRef
go back to reference Malkin AY, Petrie CJS (1997) Some conditions for rupture of polymer liquids in extension. J Rheol 41:1–25CrossRef Malkin AY, Petrie CJS (1997) Some conditions for rupture of polymer liquids in extension. J Rheol 41:1–25CrossRef
go back to reference Marrucci G, Ianniruberto G (2004) Interchain pressure effect in extensional flows of entangled polymer melts. Macromolecules 37:3934–3942CrossRef Marrucci G, Ianniruberto G (2004) Interchain pressure effect in extensional flows of entangled polymer melts. Macromolecules 37:3934–3942CrossRef
go back to reference Meissner J, Hostettler J (1994) A new elongational rheometer for polymer melts and other highly viscoelastic liquids. Rheol Acta 33:1–21CrossRef Meissner J, Hostettler J (1994) A new elongational rheometer for polymer melts and other highly viscoelastic liquids. Rheol Acta 33:1–21CrossRef
go back to reference Nielsen JK, Rasmussen HK (2007) Reversed extension flow of monodisperse polystyrene. Phys Rev E (in press) Nielsen JK, Rasmussen HK (2007) Reversed extension flow of monodisperse polystyrene. Phys Rev E (in press)
go back to reference Nielsen JK, Rasmussen HK, Denberg M, Almdal K, Hassager O (2006) Nonlinear branch–point dynamics of multiarm polystyrene. Macromolecules 39:8844–8853 (2006)CrossRef Nielsen JK, Rasmussen HK, Denberg M, Almdal K, Hassager O (2006) Nonlinear branch–point dynamics of multiarm polystyrene. Macromolecules 39:8844–8853 (2006)CrossRef
go back to reference Nielsen JK, Rasmussen HK, Hassager O (2007) Stress relaxation of narrow molar mass distribution polystyrene following uni-axial extension. J Rheol (in press) Nielsen JK, Rasmussen HK, Hassager O (2007) Stress relaxation of narrow molar mass distribution polystyrene following uni-axial extension. J Rheol (in press)
go back to reference Nordmaier E, Lanver U, Lechner MD (1990) The molecular structure of low-density polyethylene 1. long-chain branching and solution properties. Macromolecules 23:1072–1076.CrossRef Nordmaier E, Lanver U, Lechner MD (1990) The molecular structure of low-density polyethylene 1. long-chain branching and solution properties. Macromolecules 23:1072–1076.CrossRef
go back to reference Olley P, Wagner MH (2006) A modification of the convective constraint release mechanism in the molecular stress function model giving enhanced vortex growth. J Non-Newton Fluid Mech 135:68–81CrossRef Olley P, Wagner MH (2006) A modification of the convective constraint release mechanism in the molecular stress function model giving enhanced vortex growth. J Non-Newton Fluid Mech 135:68–81CrossRef
go back to reference Raible T, Demarmels A, Meissner J (1979) Stress and recovery maxima in LDPE melt elongation. Polym Bull 1:397–402CrossRef Raible T, Demarmels A, Meissner J (1979) Stress and recovery maxima in LDPE melt elongation. Polym Bull 1:397–402CrossRef
go back to reference Rasmussen HK (1999) Time-dependent finite-element method for the simulation of three-dimensional viscoelastic flow with integral models. J Non-Newton Fluid Mech 84:217–232CrossRef Rasmussen HK (1999) Time-dependent finite-element method for the simulation of three-dimensional viscoelastic flow with integral models. J Non-Newton Fluid Mech 84:217–232CrossRef
go back to reference Rasmussen HK (2000) Lagrangian viscoelastic flow computations using Rivlin–Sawyers constitutive model. J Non-Newton Fluid Mech 92:227–243CrossRef Rasmussen HK (2000) Lagrangian viscoelastic flow computations using Rivlin–Sawyers constitutive model. J Non-Newton Fluid Mech 92:227–243CrossRef
go back to reference Rasmussen HK (2002) Lagrangian viscoelastic flow computations using a generalized molecular stress function model. J Non-Newton Fluid Mech 106:107–120CrossRef Rasmussen HK (2002) Lagrangian viscoelastic flow computations using a generalized molecular stress function model. J Non-Newton Fluid Mech 106:107–120CrossRef
go back to reference Rasmussen HK, Bach A (2005) On the bursting of linear polymer melts in inflation processes. Rheol Acta 44:435–445CrossRef Rasmussen HK, Bach A (2005) On the bursting of linear polymer melts in inflation processes. Rheol Acta 44:435–445CrossRef
go back to reference Rasmussen HK, Christensen JH, Gøttsche S (2000) Inflation of polymer melts into elliptic and circular cylinders. J Non-Newton Fluid Mech 93:245–263CrossRef Rasmussen HK, Christensen JH, Gøttsche S (2000) Inflation of polymer melts into elliptic and circular cylinders. J Non-Newton Fluid Mech 93:245–263CrossRef
go back to reference Rasmussen HK, Eriksson T (2007) Gas displacement of polymer melts in a cylinder: experiments and viscoelastic simulations. J Non-Newton Fluid Mech 143:1–9CrossRef Rasmussen HK, Eriksson T (2007) Gas displacement of polymer melts in a cylinder: experiments and viscoelastic simulations. J Non-Newton Fluid Mech 143:1–9CrossRef
go back to reference Rasmussen HK, Laille P, Yu K (2007) Large amplitude oscillatory elongation flow. Rheol Acta (in press) Rasmussen HK, Laille P, Yu K (2007) Large amplitude oscillatory elongation flow. Rheol Acta (in press)
go back to reference Rasmussen HK, Nielsen JK, Bach A, Hassager O (2005) Viscosity overshoot in the start-up of uniaxial elongation of low density polyethylene melts. J Rheol 49:369–381CrossRef Rasmussen HK, Nielsen JK, Bach A, Hassager O (2005) Viscosity overshoot in the start-up of uniaxial elongation of low density polyethylene melts. J Rheol 49:369–381CrossRef
go back to reference Rolon-Garrido VH, Wagner MH, Luap C, Schweizer T (2006) Modeling non-Gaussian extensibility effects in elongation of nearly monodisperse polystyrene melts. J Rheol 50:327–340CrossRef Rolon-Garrido VH, Wagner MH, Luap C, Schweizer T (2006) Modeling non-Gaussian extensibility effects in elongation of nearly monodisperse polystyrene melts. J Rheol 50:327–340CrossRef
go back to reference Winter HH, Chambon F (1986) Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J Rheol 30:367–382CrossRef Winter HH, Chambon F (1986) Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J Rheol 30:367–382CrossRef
go back to reference Wagner MH (1978) A constitutive analysis of uniaxial elongational flow data of a low-density polyethylene melt. J Non-Newton Fluid Mech 4:39–55CrossRef Wagner MH (1978) A constitutive analysis of uniaxial elongational flow data of a low-density polyethylene melt. J Non-Newton Fluid Mech 4:39–55CrossRef
go back to reference Wagner MH, Bastian H, Hachmann P, Meissner J, Münstedt H, Kurzbeck S, Langouche F (2000) The strain hardening behaviour of linear and long-chain-branched polyolefin melts in extensional flows. Rheol Acta 39:97–109CrossRef Wagner MH, Bastian H, Hachmann P, Meissner J, Münstedt H, Kurzbeck S, Langouche F (2000) The strain hardening behaviour of linear and long-chain-branched polyolefin melts in extensional flows. Rheol Acta 39:97–109CrossRef
go back to reference Wagner MH, Ehrecke P, Hachmann P, Meissner J (1998) A constitutive analysis of uniaxial, equibiaxial and planar extension of a commercial linear high-density polyethylene melt. J Rheol 42:621–638CrossRef Wagner MH, Ehrecke P, Hachmann P, Meissner J (1998) A constitutive analysis of uniaxial, equibiaxial and planar extension of a commercial linear high-density polyethylene melt. J Rheol 42:621–638CrossRef
go back to reference Wagner MH, Rubio P, Bastian H (2001) The molecular stress function model for polydisperse polymer melts with dissipative convective constraint release. J Rheol 45:1387–1412CrossRef Wagner MH, Rubio P, Bastian H (2001) The molecular stress function model for polydisperse polymer melts with dissipative convective constraint release. J Rheol 45:1387–1412CrossRef
go back to reference Wagner MH, Schaeffer J (1994) Assessment of nonlinear strain measures for extensional and shearing flows of polymer melts. Rheol Acta 33:506–516CrossRef Wagner MH, Schaeffer J (1994) Assessment of nonlinear strain measures for extensional and shearing flows of polymer melts. Rheol Acta 33:506–516CrossRef
Metadata
Title
On the burst of branched polymer melts during inflation
Authors
Henrik Koblitz Rasmussen
Kaijia Yu
Publication date
01-03-2008
Publisher
Springer-Verlag
Published in
Rheologica Acta / Issue 2/2008
Print ISSN: 0035-4511
Electronic ISSN: 1435-1528
DOI
https://doi.org/10.1007/s00397-007-0222-7

Other articles of this Issue 2/2008

Rheologica Acta 2/2008 Go to the issue

Premium Partners