Skip to main content
Top
Published in: Meccanica 9/2017

11-10-2016

On the determination of deformation from strain

Author: Marzio Lembo

Published in: Meccanica | Issue 9/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The problem of finding a deformation corresponding to a given Cauchy–Green strain is approached with a procedure that employs the Gram decomposition of the deformation gradient. It is shown that the rotation occurring in that decomposition can be obtained by solving a system of partial differential equations in the group of rotations or in its Lie algebra. The equivalence between the integrability conditions of these two systems and those of the systems of equations arising in the usual procedures for determining a deformation from the strain is proved. Examples of application of the proposed procedure are given.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Faraut J (2008) Analysis on Lie groups. An introduction. Cambridge University Press, CambridgeCrossRefMATH Faraut J (2008) Analysis on Lie groups. An introduction. Cambridge University Press, CambridgeCrossRefMATH
2.
go back to reference Ciarlet PG, Gratie L, Mandare C (2009) Intrinsic methods in elasticity: a mathematical survey. Discrete Continuous Dyn Syst 23:133–164MathSciNetCrossRefMATH Ciarlet PG, Gratie L, Mandare C (2009) Intrinsic methods in elasticity: a mathematical survey. Discrete Continuous Dyn Syst 23:133–164MathSciNetCrossRefMATH
3.
go back to reference Manville O (1903) Sur la déformation finie d’un milieu continu. Mém Soc Sci Bordeaux 2:83–162MATH Manville O (1903) Sur la déformation finie d’un milieu continu. Mém Soc Sci Bordeaux 2:83–162MATH
4.
go back to reference Marcolongo R (1905) Le formule del Saint-Venant per le deformazioni finite. Rend Circ Mat Palermo 19:151–155CrossRefMATH Marcolongo R (1905) Le formule del Saint-Venant per le deformazioni finite. Rend Circ Mat Palermo 19:151–155CrossRefMATH
5.
go back to reference Cafiero D (1906) La deformazione finita di un corpo continuo. Atti Acc Peloritana 21:179–228MATH Cafiero D (1906) La deformazione finita di un corpo continuo. Atti Acc Peloritana 21:179–228MATH
6.
go back to reference Crudeli U (1914) Sopra le deformazioni finite. Le equazioni del De Saint-Venant. Rend Accad Lincei 20:306–308MATH Crudeli U (1914) Sopra le deformazioni finite. Le equazioni del De Saint-Venant. Rend Accad Lincei 20:306–308MATH
7.
go back to reference Burgatti P (1914) Sulle deformazioni finite dei corpi continui. Mem Accad Sci Bologna 1:237–244 Burgatti P (1914) Sulle deformazioni finite dei corpi continui. Mem Accad Sci Bologna 1:237–244
8.
go back to reference Signorini A (1930) Sulle deformazioni finite dei sistemi continui. Rend Accad Lincei 12:312–316MATH Signorini A (1930) Sulle deformazioni finite dei sistemi continui. Rend Accad Lincei 12:312–316MATH
9.
go back to reference Truesdell C, Toupin R (1960) The classical field theories. In: Flügge S (ed) Handbuch der physik. Springer, Berlin Truesdell C, Toupin R (1960) The classical field theories. In: Flügge S (ed) Handbuch der physik. Springer, Berlin
10.
go back to reference Riemann B (1876) Commentatio mathematica, qua respondere tentatur quaestioni ab Ill\(^\text{ ma }\) Academia Parisiensi propositae (1861). In: Bernhard Riemann Gesammelte Mathematische Werke. Teubner, Leipzig, pp 370–399 Riemann B (1876) Commentatio mathematica, qua respondere tentatur quaestioni ab Ill\(^\text{ ma }\) Academia Parisiensi propositae (1861). In: Bernhard Riemann Gesammelte Mathematische Werke. Teubner, Leipzig, pp 370–399
11.
go back to reference Spivak M (1999) Differential geometry. A comprehensive introduction, 3rd edn. Publish or Perish Inc., HoustonMATH Spivak M (1999) Differential geometry. A comprehensive introduction, 3rd edn. Publish or Perish Inc., HoustonMATH
12.
go back to reference Christoffel EB (1869) Ueber die transformation der homogenen Differentialausdrücke zweiten Grades. Journal für die Reine und Angewandte Mathematik 70:46–70MathSciNetCrossRefMATH Christoffel EB (1869) Ueber die transformation der homogenen Differentialausdrücke zweiten Grades. Journal für die Reine und Angewandte Mathematik 70:46–70MathSciNetCrossRefMATH
14.
go back to reference Antman SS (1976) Ordinary differential equations of nonlinear elasticity I: foundations of the theories of non-linearly elastic rods and shells. Arch Ration Mech Anal 61:307–351MATH Antman SS (1976) Ordinary differential equations of nonlinear elasticity I: foundations of the theories of non-linearly elastic rods and shells. Arch Ration Mech Anal 61:307–351MATH
16.
go back to reference Murakawa H, Atluri S (1978) Finite elasticity solution using hybrid finite elements based on complementary energy principle. J Appl Mech 45:539–547CrossRefMATH Murakawa H, Atluri S (1978) Finite elasticity solution using hybrid finite elements based on complementary energy principle. J Appl Mech 45:539–547CrossRefMATH
17.
18.
go back to reference Lembo M (2013) On the determination of the rotation from the stretch. Int J Solids Struct 50:1005–1012CrossRef Lembo M (2013) On the determination of the rotation from the stretch. Int J Solids Struct 50:1005–1012CrossRef
19.
go back to reference Ciarlet PG, Gratie L, Iosifescu O, Mandare C, Vallée C (2006) Rotation fields and the fundamental theorem of Riemannian geometry in \(R^3\). C R Acad Sci Paris Ser I 343:415–421MathSciNetCrossRefMATH Ciarlet PG, Gratie L, Iosifescu O, Mandare C, Vallée C (2006) Rotation fields and the fundamental theorem of Riemannian geometry in \(R^3\). C R Acad Sci Paris Ser I 343:415–421MathSciNetCrossRefMATH
20.
go back to reference Ciarlet PG, Gratie L, Iosifescu O, Mandare C, Vallée C (2007) Another approach to the fundamental theorem of Riemannian geometry in \(R^3\), by way of rotation fields. J Math Pures Appl 87:237–252MathSciNetCrossRefMATH Ciarlet PG, Gratie L, Iosifescu O, Mandare C, Vallée C (2007) Another approach to the fundamental theorem of Riemannian geometry in \(R^3\), by way of rotation fields. J Math Pures Appl 87:237–252MathSciNetCrossRefMATH
21.
go back to reference Pietraszkiewicz W, Badur J (1983) On non-classical forms of compatibility conditions in continuum mechanics. In: Brilla J (ed) Trends in applications of pure mathematics to mechanics. Pitman, London, pp 197–227 Pietraszkiewicz W, Badur J (1983) On non-classical forms of compatibility conditions in continuum mechanics. In: Brilla J (ed) Trends in applications of pure mathematics to mechanics. Pitman, London, pp 197–227
23.
go back to reference Hamdouni A (2000) Interprétation géométrique de la décomposition des équations de compatibilité en grandes déformations. C R Acad Sci Paris Ser IIb 328:709–712ADSMATH Hamdouni A (2000) Interprétation géométrique de la décomposition des équations de compatibilité en grandes déformations. C R Acad Sci Paris Ser IIb 328:709–712ADSMATH
24.
go back to reference Duda FP, Martins LC (1995) Compatibility conditions for the Cauchy-Green strain fields: solutions for the plane case. J Elast 39:247–264MathSciNetCrossRefMATH Duda FP, Martins LC (1995) Compatibility conditions for the Cauchy-Green strain fields: solutions for the plane case. J Elast 39:247–264MathSciNetCrossRefMATH
25.
go back to reference Vallée C, Fortuné D (1996) Compatibility equations in shell theory. Int J Eng Sci 34:495–499CrossRefMATH Vallée C, Fortuné D (1996) Compatibility equations in shell theory. Int J Eng Sci 34:495–499CrossRefMATH
26.
go back to reference Hamdouni A, Elamri K, Vallée C, Millet O (1998) Intrinsic formulation of compatibility conditions in nonlinear shell theory. Int J Eng Sci 36:421–429MathSciNetCrossRefMATH Hamdouni A, Elamri K, Vallée C, Millet O (1998) Intrinsic formulation of compatibility conditions in nonlinear shell theory. Int J Eng Sci 36:421–429MathSciNetCrossRefMATH
27.
go back to reference Pietraszkiewicz W, Vallée C (2007) A method of shell theory in determination of the surface from components of its two fundamental forms. Z Angew Math Mech 87:603–615MathSciNetCrossRefMATH Pietraszkiewicz W, Vallée C (2007) A method of shell theory in determination of the surface from components of its two fundamental forms. Z Angew Math Mech 87:603–615MathSciNetCrossRefMATH
28.
go back to reference Ciarlet PG, Iosifescu O (2008) Justification of the Darboux–Vallée–Fortuné compatibility relation in the theory of surfaces. C R Acad Sci Paris Ser I 346:1197–1202CrossRefMATH Ciarlet PG, Iosifescu O (2008) Justification of the Darboux–Vallée–Fortuné compatibility relation in the theory of surfaces. C R Acad Sci Paris Ser I 346:1197–1202CrossRefMATH
29.
go back to reference Pietraszkiewicz W, Szwabowicz ML, Vallée C (2008) Determination of the midsurface of a deformed shell from prescribed surface strains and bendings via the polar decomposition. Int J Non Linear Mech 43:579–587CrossRefMATH Pietraszkiewicz W, Szwabowicz ML, Vallée C (2008) Determination of the midsurface of a deformed shell from prescribed surface strains and bendings via the polar decomposition. Int J Non Linear Mech 43:579–587CrossRefMATH
31.
go back to reference Sugiyama H, Gerstmayr J, Shabana AA (2006) Deformation modes in finite element absolute nodal coordinate formulation. Sound Vib 298:1129–1149ADSMathSciNetCrossRefMATH Sugiyama H, Gerstmayr J, Shabana AA (2006) Deformation modes in finite element absolute nodal coordinate formulation. Sound Vib 298:1129–1149ADSMathSciNetCrossRefMATH
32.
go back to reference Mohamed A-NA, Shabana AA (2011) A nonlinear visco-elastic constitutive model for large rotation finite element formulations. Multibody Syst Dyn 26:57–79MathSciNetCrossRefMATH Mohamed A-NA, Shabana AA (2011) A nonlinear visco-elastic constitutive model for large rotation finite element formulations. Multibody Syst Dyn 26:57–79MathSciNetCrossRefMATH
33.
go back to reference Srinivasa AR (2012) On the use of the upper triangular (or QR) decomposition for developing constitutive equations for Green-elastic materials. Int J Eng Sci 60:1–12MathSciNetCrossRef Srinivasa AR (2012) On the use of the upper triangular (or QR) decomposition for developing constitutive equations for Green-elastic materials. Int J Eng Sci 60:1–12MathSciNetCrossRef
34.
go back to reference Freed AD, Srinivasa AR (2015) Logaritmic strain and its material derivative for QR decomposition of the deformation gradient. Acta Mech 226:2645–2670MathSciNetCrossRefMATH Freed AD, Srinivasa AR (2015) Logaritmic strain and its material derivative for QR decomposition of the deformation gradient. Acta Mech 226:2645–2670MathSciNetCrossRefMATH
35.
go back to reference Hoger A, Carlson DE (1984) Determination of the stretch and rotation in the polar decomposition of the deformation gradient. Q Appl Math 42:113–117MathSciNetCrossRefMATH Hoger A, Carlson DE (1984) Determination of the stretch and rotation in the polar decomposition of the deformation gradient. Q Appl Math 42:113–117MathSciNetCrossRefMATH
36.
go back to reference Franca LP (1989) An algorithm to compute the square root of a \(3 \times 3\) positive definite matrix. Comput Math Appl. 18:459–466MathSciNetCrossRefMATH Franca LP (1989) An algorithm to compute the square root of a \(3 \times 3\) positive definite matrix. Comput Math Appl. 18:459–466MathSciNetCrossRefMATH
37.
go back to reference Martins LC, Podio-Guidugli P (1979) A variational approach to the polar decomposition theorem. Rend Accad Naz Lincei (Classe Sci Fis Mat Nat) 66:487–493MathSciNetMATH Martins LC, Podio-Guidugli P (1979) A variational approach to the polar decomposition theorem. Rend Accad Naz Lincei (Classe Sci Fis Mat Nat) 66:487–493MathSciNetMATH
38.
go back to reference Grioli G (1940) Una proprietà di minimo nella cinematica delle deformazioni finite. Boll Un Matem Ital 2:252–255MATH Grioli G (1940) Una proprietà di minimo nella cinematica delle deformazioni finite. Boll Un Matem Ital 2:252–255MATH
39.
go back to reference Serre D (2010) Matrices, theory and applications, 2nd edn. Springer, New YorkMATH Serre D (2010) Matrices, theory and applications, 2nd edn. Springer, New YorkMATH
40.
go back to reference Lee JM (2002) Introduction to Smooth manifolds. Springer, New YorkMATH Lee JM (2002) Introduction to Smooth manifolds. Springer, New YorkMATH
41.
go back to reference Hall BC (2004) Lie groups, Lie algebras, and representations. An elementary introduction, 2nd edn. Springer, New York Hall BC (2004) Lie groups, Lie algebras, and representations. An elementary introduction, 2nd edn. Springer, New York
Metadata
Title
On the determination of deformation from strain
Author
Marzio Lembo
Publication date
11-10-2016
Publisher
Springer Netherlands
Published in
Meccanica / Issue 9/2017
Print ISSN: 0025-6455
Electronic ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-016-0545-5

Other articles of this Issue 9/2017

Meccanica 9/2017 Go to the issue

Premium Partners