Skip to main content
Top
Published in: Archive of Applied Mechanics 1/2023

18-05-2022 | Original

On the fractional homogenization of one-dimensional elastic metamaterials with viscoelastic foundation

Authors: Wei Ding, John P. Hollkamp, Sansit Patnaik, Fabio Semperlotti

Published in: Archive of Applied Mechanics | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This work investigates the application of space–time fractional-order operators to the simulation of linear elastic waves propagating in 1D periodic structures resting on a viscoelastic foundation. More specifically, this study focuses on the possible application of fractional-order mathematics as the foundation to develop efficient reduced-order models capable of capturing the wave dynamics in periodic, viscoelastic one-dimensional metamaterials. By leveraging a space–time fractional formulation of the wave equation, we develop a homogenized model capable of capturing either material or geometric inhomogeneity and viscoelastic behavior. First, we derive the dispersion relation for a 1D infinite periodic bar resting on a longitudinal viscoelastic foundation using integer order formulation, which serves as a reference point in this work. Then, we obtain the dispersion relationships associated with two different fractional formulations. The first formulation relies on the use of time-fractional derivatives and focuses on capturing the dissipation induced by the viscoelastic foundation. The second formulation relies on the use of space–time fractional derivatives in order to lead to a homogenized one-dimensional model of the periodic bar. In order to achieve real-valued fractional orders, a matching approach between the dispersion relations of the fractional- and integer-order differential equations is used. Numerical simulations show that the space–time fractional wave equation serves as an effective homogenized model that well represents the wave propagation in a 1D periodic bar on a viscoelastic foundation. The results also illustrate that the use of space-fractional derivatives allows modeling the dynamics within (low order) frequency band gaps, a result typically not achievable with classical homogenization techniques.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
Recall that for a 1D viscoelastic element the stress and strain (also strain rate) are related as: \(\sigma (x) = E \epsilon (x) + E^\prime {\dot{\epsilon }}(x) \equiv E {\mathrm {d}u}/{\mathrm {d}x} + E^\prime {\mathrm {d} {\dot{u}}}/{\mathrm {d}x}\) [13]
 
Literature
1.
go back to reference Craster, R.V., Guenneau, S.: Acoustic Metamaterials: Negative Refraction, Imaging, Lensing and Cloaking, vol. 166. Springer, Berlin (2012) Craster, R.V., Guenneau, S.: Acoustic Metamaterials: Negative Refraction, Imaging, Lensing and Cloaking, vol. 166. Springer, Berlin (2012)
2.
go back to reference Hussein, M.I., Leamy, M.J., Ruzzene, M.: Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook. Appl. Mech. Rev. 66, 38 (2014)CrossRef Hussein, M.I., Leamy, M.J., Ruzzene, M.: Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook. Appl. Mech. Rev. 66, 38 (2014)CrossRef
3.
go back to reference Trainiti, G., Ruzzene, M.: Non-reciprocal elastic wave propagation in spatiotemporal periodic structures. New J. Phys. 18, 083047 (2016)CrossRef Trainiti, G., Ruzzene, M.: Non-reciprocal elastic wave propagation in spatiotemporal periodic structures. New J. Phys. 18, 083047 (2016)CrossRef
4.
go back to reference Zhu, H., Patnaik, S., Walsh, T.F., Jared, B.H., Semperlotti, F.: Nonlocal elastic metasurfaces: enabling broadband wave control via intentional nonlocality. Proc. Natl. Acad. Sci. 117, 26099–26108 (2020)CrossRef Zhu, H., Patnaik, S., Walsh, T.F., Jared, B.H., Semperlotti, F.: Nonlocal elastic metasurfaces: enabling broadband wave control via intentional nonlocality. Proc. Natl. Acad. Sci. 117, 26099–26108 (2020)CrossRef
5.
go back to reference Nair, S., Jokar, M., Semperlotti, F.: Nonlocal acoustic black hole metastructures: achieving broadband and low frequency passive vibration attenuation. Mech. Syst. Signal Process. 169, 108716 (2022)CrossRef Nair, S., Jokar, M., Semperlotti, F.: Nonlocal acoustic black hole metastructures: achieving broadband and low frequency passive vibration attenuation. Mech. Syst. Signal Process. 169, 108716 (2022)CrossRef
6.
go back to reference Ao, X., Chan, C.T.: Far-field image magnification for acoustic waves using anisotropic acoustic metamaterials. Phys. Rev. E 77, 025601 (2008)CrossRef Ao, X., Chan, C.T.: Far-field image magnification for acoustic waves using anisotropic acoustic metamaterials. Phys. Rev. E 77, 025601 (2008)CrossRef
7.
go back to reference Zhang, S., Xia, C., Fang, N.: Broadband acoustic cloak for ultrasound waves. Phys. Rev. Lett. 106, 024301 (2011)CrossRef Zhang, S., Xia, C., Fang, N.: Broadband acoustic cloak for ultrasound waves. Phys. Rev. Lett. 106, 024301 (2011)CrossRef
8.
go back to reference Zhu, H., Semperlotti, F.: Metamaterial based embedded acoustic filters for structural applications. AIP Adv. 3, 092121 (2013)CrossRef Zhu, H., Semperlotti, F.: Metamaterial based embedded acoustic filters for structural applications. AIP Adv. 3, 092121 (2013)CrossRef
9.
go back to reference Zhu, H., Semperlotti, F.: Phononic thin plates with embedded acoustic black holes. Phys. Rev. B 91, 104304 (2015)CrossRef Zhu, H., Semperlotti, F.: Phononic thin plates with embedded acoustic black holes. Phys. Rev. B 91, 104304 (2015)CrossRef
10.
go back to reference Miniaci, M., et al.: Design and fabrication of bioinspired hierarchical dissipative elastic metamaterials. Phys. Rev. Appl. 10, 024012 (2018)CrossRef Miniaci, M., et al.: Design and fabrication of bioinspired hierarchical dissipative elastic metamaterials. Phys. Rev. Appl. 10, 024012 (2018)CrossRef
11.
go back to reference Bhattiprolu, U., Bajaj, A.K., Davies, P.: Periodic response predictions of beams on nonlinear and viscoelastic unilateral foundations using incremental harmonic balance method. Int. J. Solids Struct. 99, 28–39 (2016)CrossRef Bhattiprolu, U., Bajaj, A.K., Davies, P.: Periodic response predictions of beams on nonlinear and viscoelastic unilateral foundations using incremental harmonic balance method. Int. J. Solids Struct. 99, 28–39 (2016)CrossRef
12.
go back to reference Erturk, A., Inman, D.J.: Piezoelectric Energy Harvesting. Wiley, Hoboken (2011)CrossRef Erturk, A., Inman, D.J.: Piezoelectric Energy Harvesting. Wiley, Hoboken (2011)CrossRef
13.
go back to reference Kerr, A.D.: Elastic and viscoelastic foundation models. J. Appl. Mech. 31, 491–498 (1964)MATHCrossRef Kerr, A.D.: Elastic and viscoelastic foundation models. J. Appl. Mech. 31, 491–498 (1964)MATHCrossRef
14.
go back to reference Yadav, O.P., Vyas, N.S.: Stick-slips and jerks in an SDOF system with dry friction and clearance. Int. J. Non-Linear Mech. 137, 103790 (2021)CrossRef Yadav, O.P., Vyas, N.S.: Stick-slips and jerks in an SDOF system with dry friction and clearance. Int. J. Non-Linear Mech. 137, 103790 (2021)CrossRef
15.
go back to reference Khan, M., Li, B., Tan, K.: Impact load wave transmission in elastic metamaterials. Int. J. Impact Eng. 118, 50–59 (2018)CrossRef Khan, M., Li, B., Tan, K.: Impact load wave transmission in elastic metamaterials. Int. J. Impact Eng. 118, 50–59 (2018)CrossRef
16.
go back to reference Yadav, O.P., Balaga, S.R., Vyas, N.S.: Forced vibrations of a spring-dashpot mechanism with dry friction and backlash. Int. J. Non-Linear Mech. 124, 103500 (2020)CrossRef Yadav, O.P., Balaga, S.R., Vyas, N.S.: Forced vibrations of a spring-dashpot mechanism with dry friction and backlash. Int. J. Non-Linear Mech. 124, 103500 (2020)CrossRef
17.
go back to reference Kargarnovin, M., Younesian, D., Thompson, D., Jones, C.: Response of beams on nonlinear viscoelastic foundations to harmonic moving loads. Comput. Struct. 83, 1865–1877 (2005)CrossRef Kargarnovin, M., Younesian, D., Thompson, D., Jones, C.: Response of beams on nonlinear viscoelastic foundations to harmonic moving loads. Comput. Struct. 83, 1865–1877 (2005)CrossRef
18.
go back to reference Failla, G., Zingales, M.: Advanced materials modelling via fractional calculus: challenges and perspectives. Proc. R. Soc. A 378, 20200050 (2020) Failla, G., Zingales, M.: Advanced materials modelling via fractional calculus: challenges and perspectives. Proc. R. Soc. A 378, 20200050 (2020)
19.
go back to reference Navarro, E.A., Gimeno, B., Cruz, J.L.: Modelling of periodic structures using the finite difference time domain method combined with the Floquet theorem. Electron. Lett. 29, 446–447 (1993)CrossRef Navarro, E.A., Gimeno, B., Cruz, J.L.: Modelling of periodic structures using the finite difference time domain method combined with the Floquet theorem. Electron. Lett. 29, 446–447 (1993)CrossRef
20.
go back to reference Sigalas, M.M., Garcıa, N.: Theoretical study of three dimensional elastic band gaps with the finite-difference time-domain method. J. Appl. Phys. 87, 3122–3125 (2000)CrossRef Sigalas, M.M., Garcıa, N.: Theoretical study of three dimensional elastic band gaps with the finite-difference time-domain method. J. Appl. Phys. 87, 3122–3125 (2000)CrossRef
21.
go back to reference Shi, S., Chen, C., Prather, D.W.: Plane-wave expansion method for calculating band structure of photonic crystal slabs with perfectly matched layers. J. Opt. Soc. Am. A 21, 1769–1775 (2004)CrossRef Shi, S., Chen, C., Prather, D.W.: Plane-wave expansion method for calculating band structure of photonic crystal slabs with perfectly matched layers. J. Opt. Soc. Am. A 21, 1769–1775 (2004)CrossRef
22.
go back to reference Nemat-Nasser, S.: General variational methods for waves in elastic composites. J. Elast. 2, 73–90 (1972)CrossRef Nemat-Nasser, S.: General variational methods for waves in elastic composites. J. Elast. 2, 73–90 (1972)CrossRef
23.
go back to reference Patnaik, S., Jokar, M., Semperlotti, F.: Variable-order approach to nonlocal elasticity: theoretical formulation, order identification via deep learning, and applications. Comput. Mech. 69, 267–298 (2022)MathSciNetMATHCrossRef Patnaik, S., Jokar, M., Semperlotti, F.: Variable-order approach to nonlocal elasticity: theoretical formulation, order identification via deep learning, and applications. Comput. Mech. 69, 267–298 (2022)MathSciNetMATHCrossRef
24.
go back to reference Patnaik, S., Jokar, M., Ding, W., Semperlotti, F.: On the role of the microstructure in the deformation of porous solids (2022). arXiv preprint arXiv:2202.06750 Patnaik, S., Jokar, M., Ding, W., Semperlotti, F.: On the role of the microstructure in the deformation of porous solids (2022). arXiv preprint arXiv:​2202.​06750
25.
go back to reference Mei, J., Liu, Z., Wen, W., Sheng, P.: Effective dynamic mass density of composites. Phys. Rev. B 76, 134205 (2007)CrossRef Mei, J., Liu, Z., Wen, W., Sheng, P.: Effective dynamic mass density of composites. Phys. Rev. B 76, 134205 (2007)CrossRef
26.
go back to reference Manevitch, L.I., Andrianov, I.V., Oshmyan, V.G.: Mechanics of Periodically Heterogeneous Structures. Springer, Berlin (2013)MATH Manevitch, L.I., Andrianov, I.V., Oshmyan, V.G.: Mechanics of Periodically Heterogeneous Structures. Springer, Berlin (2013)MATH
27.
go back to reference Craster, R.V., Kaplunov, J., Pichugin, A.V.: High-frequency homogenization for periodic media. Proc. R. Soc. A Math. Phys. Eng. Sci. 466, 2341–2362 (2010)MathSciNetMATH Craster, R.V., Kaplunov, J., Pichugin, A.V.: High-frequency homogenization for periodic media. Proc. R. Soc. A Math. Phys. Eng. Sci. 466, 2341–2362 (2010)MathSciNetMATH
28.
go back to reference Hollkamp, J.P., Sen, M., Semperlotti, F.: Analysis of dispersion and propagation properties in a periodic rod using a space-fractional wave equation. J. Sound Vib. 441, 204–220 (2019)CrossRef Hollkamp, J.P., Sen, M., Semperlotti, F.: Analysis of dispersion and propagation properties in a periodic rod using a space-fractional wave equation. J. Sound Vib. 441, 204–220 (2019)CrossRef
29.
go back to reference Andrianov, I.V., Bolshakov, V.I., Danishevskyy, V.V., Weichert, D.: Higher order asymptotic homogenization and wave propagation in periodic composite materials. Proc. R. Soc. A Math. Phys. Eng. Sci. 464, 1181–1201 (2008)MathSciNetMATH Andrianov, I.V., Bolshakov, V.I., Danishevskyy, V.V., Weichert, D.: Higher order asymptotic homogenization and wave propagation in periodic composite materials. Proc. R. Soc. A Math. Phys. Eng. Sci. 464, 1181–1201 (2008)MathSciNetMATH
30.
go back to reference Chatterjee, A.: Asymptotic solution for solitary waves in a chain of elastic spheres. Phys. Rev. E 59, 5912 (1999)CrossRef Chatterjee, A.: Asymptotic solution for solitary waves in a chain of elastic spheres. Phys. Rev. E 59, 5912 (1999)CrossRef
31.
go back to reference Ramírez-Torres, A., et al.: Three scales asymptotic homogenization and its application to layered hierarchical hard tissues. Int. J. Solids Struct. 130, 190–198 (2018)CrossRef Ramírez-Torres, A., et al.: Three scales asymptotic homogenization and its application to layered hierarchical hard tissues. Int. J. Solids Struct. 130, 190–198 (2018)CrossRef
32.
go back to reference Goda, I., Ganghoffer, J.-F.: 3d plastic collapse and brittle fracture surface models of trabecular bone from asymptotic homogenization method. Int. J. Eng. Sci. 87, 58–82 (2015)MATHCrossRef Goda, I., Ganghoffer, J.-F.: 3d plastic collapse and brittle fracture surface models of trabecular bone from asymptotic homogenization method. Int. J. Eng. Sci. 87, 58–82 (2015)MATHCrossRef
33.
go back to reference Huang, Y., Yan, D., Yang, Z., Liu, G.: 2d and 3d homogenization and fracture analysis of concrete based on in-situ x-ray computed tomography images and monte carlo simulations. Eng. Fract. Mech. 163, 37–54 (2016)CrossRef Huang, Y., Yan, D., Yang, Z., Liu, G.: 2d and 3d homogenization and fracture analysis of concrete based on in-situ x-ray computed tomography images and monte carlo simulations. Eng. Fract. Mech. 163, 37–54 (2016)CrossRef
34.
go back to reference Ramírez-Torres, A., et al.: An asymptotic homogenization approach to the microstructural evolution of heterogeneous media. Int. J. Non-Linear Mech. 106, 245–257 (2018)CrossRef Ramírez-Torres, A., et al.: An asymptotic homogenization approach to the microstructural evolution of heterogeneous media. Int. J. Non-Linear Mech. 106, 245–257 (2018)CrossRef
35.
go back to reference Fish, J., Yang, Z., Yuan, Z.: A second-order reduced asymptotic homogenization approach for nonlinear periodic heterogeneous materials. Int. J. Numer. Methods Eng. 119, 469–489 (2019)MathSciNetCrossRef Fish, J., Yang, Z., Yuan, Z.: A second-order reduced asymptotic homogenization approach for nonlinear periodic heterogeneous materials. Int. J. Numer. Methods Eng. 119, 469–489 (2019)MathSciNetCrossRef
36.
go back to reference Saeb, S., Steinmann, P., Javili, A.: Aspects of computational homogenization at finite deformations: a unifying review from Reuss’ to Voigt’s bound. Appl. Mech. Rev. 68, 33 (2016)CrossRef Saeb, S., Steinmann, P., Javili, A.: Aspects of computational homogenization at finite deformations: a unifying review from Reuss’ to Voigt’s bound. Appl. Mech. Rev. 68, 33 (2016)CrossRef
37.
go back to reference Kouznetsova, V., Geers, M.G., Brekelmans, W.: Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput. Methods Appl. Mech. Eng. 193, 5525–5550 (2004)MATHCrossRef Kouznetsova, V., Geers, M.G., Brekelmans, W.: Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput. Methods Appl. Mech. Eng. 193, 5525–5550 (2004)MATHCrossRef
38.
go back to reference Yvonnet, J.: Computational Homogenization of Heterogeneous Materials with Finite Elements. Springer, Berlin (2019)MATHCrossRef Yvonnet, J.: Computational Homogenization of Heterogeneous Materials with Finite Elements. Springer, Berlin (2019)MATHCrossRef
39.
go back to reference Moulinec, H., Suquet, P.: A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput. Methods Appl. Mech. Eng. 157, 69–94 (1998)MathSciNetMATHCrossRef Moulinec, H., Suquet, P.: A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput. Methods Appl. Mech. Eng. 157, 69–94 (1998)MathSciNetMATHCrossRef
40.
go back to reference Schneider, M., Ospald, F., Kabel, M.: Computational homogenization of elasticity on a staggered grid. Int. J. Numer. Methods Eng. 105, 693–720 (2016)MathSciNetMATHCrossRef Schneider, M., Ospald, F., Kabel, M.: Computational homogenization of elasticity on a staggered grid. Int. J. Numer. Methods Eng. 105, 693–720 (2016)MathSciNetMATHCrossRef
41.
go back to reference Le, B., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. Int. J. Numer. Methods Eng. 104, 1061–1084 (2015)MathSciNetMATHCrossRef Le, B., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. Int. J. Numer. Methods Eng. 104, 1061–1084 (2015)MathSciNetMATHCrossRef
42.
go back to reference Lu, X., et al.: A data-driven computational homogenization method based on neural networks for the nonlinear anisotropic electrical response of graphene/polymer nanocomposites. Comput. Mech. 64, 307–321 (2019)MathSciNetMATHCrossRef Lu, X., et al.: A data-driven computational homogenization method based on neural networks for the nonlinear anisotropic electrical response of graphene/polymer nanocomposites. Comput. Mech. 64, 307–321 (2019)MathSciNetMATHCrossRef
43.
go back to reference Hollkamp, J.P., Sen, M., Semperlotti, F.: Model-order reduction of lumped parameter systems via fractional calculus. J. Sound Vib. 419, 526–543 (2018)CrossRef Hollkamp, J.P., Sen, M., Semperlotti, F.: Model-order reduction of lumped parameter systems via fractional calculus. J. Sound Vib. 419, 526–543 (2018)CrossRef
44.
go back to reference Hollkamp, J.P., Semperlotti, F.: Application of fractional order operators to the simulation of ducts with acoustic black hole terminations. J. Sound Vib. 465, 115035 (2020)CrossRef Hollkamp, J.P., Semperlotti, F.: Application of fractional order operators to the simulation of ducts with acoustic black hole terminations. J. Sound Vib. 465, 115035 (2020)CrossRef
45.
go back to reference Patnaik, S., Semperlotti, F.: A generalized fractional-order elastodynamic theory for non-local attenuating media. Proc. R. Soc. A 476, 20200200 (2020)MathSciNetMATHCrossRef Patnaik, S., Semperlotti, F.: A generalized fractional-order elastodynamic theory for non-local attenuating media. Proc. R. Soc. A 476, 20200200 (2020)MathSciNetMATHCrossRef
46.
go back to reference Patnaik, S., Hollkamp, J.P., Sidhardh, S., Semperlotti, F.: Fractional order models for the homogenization and wave propagation analysis in periodic elastic beams. Meccanica 57, 1–17 (2021)MathSciNet Patnaik, S., Hollkamp, J.P., Sidhardh, S., Semperlotti, F.: Fractional order models for the homogenization and wave propagation analysis in periodic elastic beams. Meccanica 57, 1–17 (2021)MathSciNet
47.
go back to reference Szajek, K., Sumelka, W., Bekus, K., Blaszczyk, T.: Designing of dynamic spectrum shifting in terms of non-local space-fractional mechanics. Energies 14, 506 (2021)CrossRef Szajek, K., Sumelka, W., Bekus, K., Blaszczyk, T.: Designing of dynamic spectrum shifting in terms of non-local space-fractional mechanics. Energies 14, 506 (2021)CrossRef
49.
go back to reference Carpinteri, A., Cornetti, P., Sapora, A.: A fractional calculus approach to nonlocal elasticity. Eur. Phys. J. Spec. Top. 193, 193–204 (2011)MATHCrossRef Carpinteri, A., Cornetti, P., Sapora, A.: A fractional calculus approach to nonlocal elasticity. Eur. Phys. J. Spec. Top. 193, 193–204 (2011)MATHCrossRef
50.
go back to reference Ding, W., Patnaik, S., Semperlotti, F.: Multiscale nonlocal elasticity: a distributed order fractional formulation (2021). arXiv preprint arXiv:2201.01219 Ding, W., Patnaik, S., Semperlotti, F.: Multiscale nonlocal elasticity: a distributed order fractional formulation (2021). arXiv preprint arXiv:​2201.​01219
51.
go back to reference Szajek, K., Sumelka, W.: Discrete mass-spring structure identification in nonlocal continuum space-fractional model. Eur. Phys. J. Plus 134, 1–19 (2019)CrossRef Szajek, K., Sumelka, W.: Discrete mass-spring structure identification in nonlocal continuum space-fractional model. Eur. Phys. J. Plus 134, 1–19 (2019)CrossRef
52.
go back to reference Alvarez-Ramirez, J., Fernandez-Anaya, G., Valdes-Parada, F.J., Ochoa-Tapia, J.A.: A high-order extension for the Cattaneo’s diffusion equation. Physica A Stat. Mech. Appl. 368, 345–354 (2006)MathSciNetCrossRef Alvarez-Ramirez, J., Fernandez-Anaya, G., Valdes-Parada, F.J., Ochoa-Tapia, J.A.: A high-order extension for the Cattaneo’s diffusion equation. Physica A Stat. Mech. Appl. 368, 345–354 (2006)MathSciNetCrossRef
53.
go back to reference Tarasov, V.E.: Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, Berlin (2011) Tarasov, V.E.: Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, Berlin (2011)
54.
55.
go back to reference Szabo, T.L.: Causal theories and data for acoustic attenuation obeying a frequency power law. J. Acoust. Soc. Am. 97, 14–24 (1995)CrossRef Szabo, T.L.: Causal theories and data for acoustic attenuation obeying a frequency power law. J. Acoust. Soc. Am. 97, 14–24 (1995)CrossRef
56.
go back to reference Chen, W., Holm, S.: Fractional Laplacian time–space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency. J. Acoust. Soc. Am. 115, 1424–1430 (2004)CrossRef Chen, W., Holm, S.: Fractional Laplacian time–space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency. J. Acoust. Soc. Am. 115, 1424–1430 (2004)CrossRef
57.
go back to reference Holm, S., Näsholm, S.P.: A causal and fractional all-frequency wave equation for lossy media. J. Acoust. Soc. Am. 130, 2195–2202 (2011)CrossRef Holm, S., Näsholm, S.P.: A causal and fractional all-frequency wave equation for lossy media. J. Acoust. Soc. Am. 130, 2195–2202 (2011)CrossRef
58.
go back to reference Chatterjee, A.: Statistical origins of fractional derivatives in viscoelasticity. J. Sound Vib. 284, 1239–1245 (2005)CrossRef Chatterjee, A.: Statistical origins of fractional derivatives in viscoelasticity. J. Sound Vib. 284, 1239–1245 (2005)CrossRef
59.
go back to reference Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. World Scientific, Singapore (2010)MATHCrossRef Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. World Scientific, Singapore (2010)MATHCrossRef
60.
go back to reference Patnaik, S., Semperlotti, F.: Modeling contacts and hysteretic behavior in discrete systems via variable-order fractional operators. J. Comput. Nonlinear Dyn. 15, 10 (2020) Patnaik, S., Semperlotti, F.: Modeling contacts and hysteretic behavior in discrete systems via variable-order fractional operators. J. Comput. Nonlinear Dyn. 15, 10 (2020)
61.
go back to reference Patnaik, S., Semperlotti, F.: Variable-order fracture mechanics and its application to dynamic fracture. NPJ Comput. Mater. 7, 1–8 (2021)CrossRef Patnaik, S., Semperlotti, F.: Variable-order fracture mechanics and its application to dynamic fracture. NPJ Comput. Mater. 7, 1–8 (2021)CrossRef
62.
go back to reference Meng, R., Yin, D., Drapaca, C.S.: Variable-order fractional description of compression deformation of amorphous glassy polymers. Comput. Mech. 64, 163–171 (2019)MathSciNetMATHCrossRef Meng, R., Yin, D., Drapaca, C.S.: Variable-order fractional description of compression deformation of amorphous glassy polymers. Comput. Mech. 64, 163–171 (2019)MathSciNetMATHCrossRef
63.
go back to reference Orosco, J., Coimbra, C.F.M.: Variable-order modeling of nonlocal emergence in many-body systems: application to radiative dispersion. Phys. Rev. E 98, 032208 (2018)CrossRef Orosco, J., Coimbra, C.F.M.: Variable-order modeling of nonlocal emergence in many-body systems: application to radiative dispersion. Phys. Rev. E 98, 032208 (2018)CrossRef
64.
go back to reference Akhavan-Safaei, A., Samiee, M., Zayernouri, M.: Data-driven fractional subgrid-scale modeling for scalar turbulence: a nonlocal les approach. J. Comput. Phys. 446, 110571 (2021)MathSciNetMATHCrossRef Akhavan-Safaei, A., Samiee, M., Zayernouri, M.: Data-driven fractional subgrid-scale modeling for scalar turbulence: a nonlocal les approach. J. Comput. Phys. 446, 110571 (2021)MathSciNetMATHCrossRef
65.
go back to reference Suzuki, J.L., Tuttle, T.G., Roccabianca, S., Zayernouri, M.: A data-driven memory-dependent modeling framework for anomalous rheology: application to urinary bladder tissue. Fractal Fract. 5, 223 (2021)CrossRef Suzuki, J.L., Tuttle, T.G., Roccabianca, S., Zayernouri, M.: A data-driven memory-dependent modeling framework for anomalous rheology: application to urinary bladder tissue. Fractal Fract. 5, 223 (2021)CrossRef
66.
go back to reference Manconi, E., Sorokin, S.: On the effect of damping on dispersion curves in plates. Int. J. Solids Struct. 50, 1966–1973 (2013)CrossRef Manconi, E., Sorokin, S.: On the effect of damping on dispersion curves in plates. Int. J. Solids Struct. 50, 1966–1973 (2013)CrossRef
67.
go back to reference Wang, Y.-F., Wang, Y.-S., Laude, V.: Wave propagation in two-dimensional viscoelastic metamaterials. Phys. Rev. B 92, 104110 (2015)CrossRef Wang, Y.-F., Wang, Y.-S., Laude, V.: Wave propagation in two-dimensional viscoelastic metamaterials. Phys. Rev. B 92, 104110 (2015)CrossRef
68.
go back to reference Frazier, M.J., Hussein, M.I.: Generalized Bloch’s theorem for viscous metamaterials: dispersion and effective properties based on frequencies and wavenumbers that are simultaneously complex. C. R. Phys. 17, 565–577 (2016)CrossRef Frazier, M.J., Hussein, M.I.: Generalized Bloch’s theorem for viscous metamaterials: dispersion and effective properties based on frequencies and wavenumbers that are simultaneously complex. C. R. Phys. 17, 565–577 (2016)CrossRef
69.
go back to reference Aladwani, A., Nouh, M.: Mechanics of metadamping in flexural dissipative metamaterials: analysis and design in frequency and time domains. Int. J. Mech. Sci. 173, 105459 (2020)CrossRef Aladwani, A., Nouh, M.: Mechanics of metadamping in flexural dissipative metamaterials: analysis and design in frequency and time domains. Int. J. Mech. Sci. 173, 105459 (2020)CrossRef
70.
go back to reference Aladwani, A., Nouh, M.: Strategic damping placement in viscoelastic bandgap structures: dissecting the metadamping phenomenon in multiresonator metamaterials. J. Appl. Mech. 88, 021003 (2021)CrossRef Aladwani, A., Nouh, M.: Strategic damping placement in viscoelastic bandgap structures: dissecting the metadamping phenomenon in multiresonator metamaterials. J. Appl. Mech. 88, 021003 (2021)CrossRef
71.
go back to reference Brillouin, L.: Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices. Courier Corporation, Chelmsford (2003)MATH Brillouin, L.: Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices. Courier Corporation, Chelmsford (2003)MATH
72.
go back to reference Yu, D., Wen, J., Shen, H., Xiao, Y., Wen, X.: Propagation of flexural wave in periodic beam on elastic foundations. Phys. Lett. A 376, 626–630 (2012)CrossRef Yu, D., Wen, J., Shen, H., Xiao, Y., Wen, X.: Propagation of flexural wave in periodic beam on elastic foundations. Phys. Lett. A 376, 626–630 (2012)CrossRef
73.
go back to reference Wang, K., Zhou, J., Xu, D., Ouyang, H.: Lower band gaps of longitudinal wave in a one-dimensional periodic rod by exploiting geometrical nonlinearity. Mech. Syst. Signal Process. 124, 664–678 (2019)CrossRef Wang, K., Zhou, J., Xu, D., Ouyang, H.: Lower band gaps of longitudinal wave in a one-dimensional periodic rod by exploiting geometrical nonlinearity. Mech. Syst. Signal Process. 124, 664–678 (2019)CrossRef
74.
go back to reference Bagley, R.L., Torvik, P.: A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27, 201–210 (1983)MATHCrossRef Bagley, R.L., Torvik, P.: A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27, 201–210 (1983)MATHCrossRef
75.
go back to reference Torvik, P., Bagley, R.: On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech. Trans. ASME 51, 294–298 (1984)MATHCrossRef Torvik, P., Bagley, R.: On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech. Trans. ASME 51, 294–298 (1984)MATHCrossRef
76.
go back to reference Narahari Achar, B., Hanneken, J.: Microscopic formulation of fractional calculus theory of viscoelasticity based on lattice dynamics. Physica Scr. 2009, 014011–014018 (2009)CrossRef Narahari Achar, B., Hanneken, J.: Microscopic formulation of fractional calculus theory of viscoelasticity based on lattice dynamics. Physica Scr. 2009, 014011–014018 (2009)CrossRef
77.
go back to reference Mashayekhi, S., Miles, P., Hussaini, M.Y., Oates, W.S.: Fractional viscoelasticity in fractal and non-fractal media: theory, experimental validation, and uncertainty analysis. J. Mech. Phys. Solids 111, 134–156 (2018)MathSciNetMATHCrossRef Mashayekhi, S., Miles, P., Hussaini, M.Y., Oates, W.S.: Fractional viscoelasticity in fractal and non-fractal media: theory, experimental validation, and uncertainty analysis. J. Mech. Phys. Solids 111, 134–156 (2018)MathSciNetMATHCrossRef
78.
go back to reference Mashayekhi, S., Hussaini, M.Y., Oates, W.: A physical interpretation of fractional viscoelasticity based on the fractal structure of media: theory and experimental validation. J. Mech. Phys. Solids 128, 137–150 (2019)MathSciNetCrossRef Mashayekhi, S., Hussaini, M.Y., Oates, W.: A physical interpretation of fractional viscoelasticity based on the fractal structure of media: theory and experimental validation. J. Mech. Phys. Solids 128, 137–150 (2019)MathSciNetCrossRef
79.
80.
go back to reference Alotta, G., Di Paola, M., Failla, G., Pinnola, F.P.: On the dynamics of non-local fractional viscoelastic beams under stochastic agencies. Compos. Part B Eng. 137, 102–110 (2018)CrossRef Alotta, G., Di Paola, M., Failla, G., Pinnola, F.P.: On the dynamics of non-local fractional viscoelastic beams under stochastic agencies. Compos. Part B Eng. 137, 102–110 (2018)CrossRef
81.
go back to reference Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, New York (2004) Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, New York (2004)
82.
go back to reference Garrappa, R., Kaslik, E., Popolizio, M.: Evaluation of fractional integrals and derivatives of elementary functions: overview and tutorial. Mathematics 7, 407 (2019)CrossRef Garrappa, R., Kaslik, E., Popolizio, M.: Evaluation of fractional integrals and derivatives of elementary functions: overview and tutorial. Mathematics 7, 407 (2019)CrossRef
83.
go back to reference Patnaik, S., Sidhardh, S., Semperlotti, F.: Towards a unified approach to nonlocal elasticity via fractional-order mechanics. Int. J. Mech. Sci. 189, 105992 (2021)MATHCrossRef Patnaik, S., Sidhardh, S., Semperlotti, F.: Towards a unified approach to nonlocal elasticity via fractional-order mechanics. Int. J. Mech. Sci. 189, 105992 (2021)MATHCrossRef
84.
go back to reference Gómez-Aguilar, J., et al.: Modeling of a mass-spring-damper system by fractional derivatives with and without a singular kernel. Entropy 17, 6289–6303 (2015)MathSciNetMATHCrossRef Gómez-Aguilar, J., et al.: Modeling of a mass-spring-damper system by fractional derivatives with and without a singular kernel. Entropy 17, 6289–6303 (2015)MathSciNetMATHCrossRef
Metadata
Title
On the fractional homogenization of one-dimensional elastic metamaterials with viscoelastic foundation
Authors
Wei Ding
John P. Hollkamp
Sansit Patnaik
Fabio Semperlotti
Publication date
18-05-2022
Publisher
Springer Berlin Heidelberg
Published in
Archive of Applied Mechanics / Issue 1/2023
Print ISSN: 0939-1533
Electronic ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-022-02170-w

Other articles of this Issue 1/2023

Archive of Applied Mechanics 1/2023 Go to the issue

Premium Partners