Skip to main content
Top

2018 | OriginalPaper | Chapter

9. On the Investigation of Detonation Re-initiation Mechanisms and the Influences of the Geometry Confinements and Mixture Properties

Authors : Lei Li, Jiun-Ming Li, Chiang Juay Teo, Po-Hsiung Chang, Van Bo Nguyen, Boo Cheong Khoo

Published in: Detonation Control for Propulsion

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The topic of detonation re-initiation is studied through both experimental measurements and numerical simulations using a bifurcation channel and the detonation research facilities in Temasek Laboratories. The main objective is to understand the re-initiation mechanisms through shock reflections, and investigate the performance of detonation re-initiation at different test conditions. Stable and unstable detonation waves are both taken into consideration. It is found that the re-initiation through shock reflection is mainly achieved through the interactions of the multiple transverse waves. The details of the generation and evolution of the transverse waves are also clarified. The influence of the geometry confinement to detonation re-initiation is investigated. It is found that the length of the bifurcation channel can affect the re-initiation results by limiting the shock reflection times, which is discovered to be the main reason leading to the discrepancies between the previous similar studies. The width of the bifurcation channel is also critical as it can directly affect the induction length during detonation diffraction which determines the shock reflection strength. The differences of re-initiation using various mixture properties are also addressed, and a sudden transitional behavior of detonation re-initiation is found between stable and unstable detonation waves. Regarding the reason why a certain number of shock reflections are required before successful re-initiation, it can be explained using the relative relation between the shock reflection strength and the corresponding marginal solution curve of a quasi-steady detonation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bhattacharjee, R. R. (2013). Experimental investigation of detonation re-initiation mechanisms following a Mach reflection of a quenched detonation. Dissertation for the fulfilment of Master degree, Ottawa University, Ottawa. Bhattacharjee, R. R. (2013). Experimental investigation of detonation re-initiation mechanisms following a Mach reflection of a quenched detonation. Dissertation for the fulfilment of Master degree, Ottawa University, Ottawa.
go back to reference Bhattacharjee, R. R., Lau-Chapdelaine, S. S. M., Maines, G., Maley, L., & Radulescu, M. I. (2013). Detonation re-initiation mechanism following the Mach reflection of a quenched detonation. Proceedings of the Combustion Institute 34: 1893–1901. Bhattacharjee, R. R., Lau-Chapdelaine, S. S. M., Maines, G., Maley, L., & Radulescu, M. I. (2013). Detonation re-initiation mechanism following the Mach reflection of a quenched detonation. Proceedings of the Combustion Institute 34: 1893–1901.
go back to reference Boeck, L. R., Kellenberger, M., Rainsford, G., & Ciccarelli, G. (2017). Simultaneous OH-PLIF and schlieren imaging of flame acceleration in an obstacle-laden channel. Proceedings of the Combustion Institute 36: 2807–2814. Boeck, L. R., Kellenberger, M., Rainsford, G., & Ciccarelli, G. (2017). Simultaneous OH-PLIF and schlieren imaging of flame acceleration in an obstacle-laden channel. Proceedings of the Combustion Institute 36: 2807–2814.
go back to reference Brophy, C. M., Werner, L. T. S., & Sinibaldi, J. O. (2003). Performance characterization of a valveless pulse detonation engine. AIAA Paper 2003–1344. Brophy, C. M., Werner, L. T. S., & Sinibaldi, J. O. (2003). Performance characterization of a valveless pulse detonation engine. AIAA Paper 2003–1344.
go back to reference Browne, S., & Shepherd, J. (2004). Numerical solution methods for shock and detonation jump conditions. GALCIT technical report FM2006.006. Browne, S., & Shepherd, J. (2004). Numerical solution methods for shock and detonation jump conditions. GALCIT technical report FM2006.006.
go back to reference Ciccarelli, G., & Dorofeev, S. (2008). Flame acceleration and transition to detonation in ducts. Progress in Energy and Combustion Science, 34(4), 499–550.CrossRef Ciccarelli, G., & Dorofeev, S. (2008). Flame acceleration and transition to detonation in ducts. Progress in Energy and Combustion Science, 34(4), 499–550.CrossRef
go back to reference Eckett, C. A. (2001). Numerical and analytical studies of the dynamics of gaseous detonations. Dissertation for the fulfilment of degree of Doctor of Philosophy, California Institute of Technology, Pasadena. Eckett, C. A. (2001). Numerical and analytical studies of the dynamics of gaseous detonations. Dissertation for the fulfilment of degree of Doctor of Philosophy, California Institute of Technology, Pasadena.
go back to reference Edwards, D. H., Nettleton, M. A., & Thomas, G. O. (1979). The diffraction of a planar detonation wave at an abrupt area change. Journal of Fluid Mechanics, 95, 79–96.CrossRef Edwards, D. H., Nettleton, M. A., & Thomas, G. O. (1979). The diffraction of a planar detonation wave at an abrupt area change. Journal of Fluid Mechanics, 95, 79–96.CrossRef
go back to reference Edwards, D. H., & Thomas, G. O. (1981). Diffraction of a planar detonation in various fuel-oxygen mixtures at an area change. Progress in Astronautics and Aeronautics, 75, 341–357. Edwards, D. H., & Thomas, G. O. (1981). Diffraction of a planar detonation in various fuel-oxygen mixtures at an area change. Progress in Astronautics and Aeronautics, 75, 341–357.
go back to reference Frolov, S. M., Aksenov, V. S., & Shamshin, I. O. (2007a). Shock wave and detonation propagation through U-bend tubes. Proceedings of the Combustion Institute 31(2): 2421–2428. Frolov, S. M., Aksenov, V. S., & Shamshin, I. O. (2007a). Shock wave and detonation propagation through U-bend tubes. Proceedings of the Combustion Institute 31(2): 2421–2428.
go back to reference Frolov, S. M., Aksenov, V. S., & Shamshin, I. O. (2007b). Reactive shock and detonation propagation in U-bend tubes. Journal of Loss Prevention in Process Industry, 20(4–6), 501–508.CrossRef Frolov, S. M., Aksenov, V. S., & Shamshin, I. O. (2007b). Reactive shock and detonation propagation in U-bend tubes. Journal of Loss Prevention in Process Industry, 20(4–6), 501–508.CrossRef
go back to reference Gamezo, V. N., Ogawa, T., & Oran, E. S. (2007). Numerical simulations of flame propagation and DDT in obstructed channels filled with hydrogen–air mixture. Proceedings of the Combustion Institute 31: 2463–2471. Gamezo, V. N., Ogawa, T., & Oran, E. S. (2007). Numerical simulations of flame propagation and DDT in obstructed channels filled with hydrogen–air mixture. Proceedings of the Combustion Institute 31: 2463–2471.
go back to reference Gordon and McBride (1994): National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio. Gordon and McBride (1994): National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio.
go back to reference He, L. (1996). Theoretical determination of the critical conditions for the direct initiation of detonations in hydrogen-oxygen mixtures. Combustion and Flame, 104, 401–418.CrossRef He, L. (1996). Theoretical determination of the critical conditions for the direct initiation of detonations in hydrogen-oxygen mixtures. Combustion and Flame, 104, 401–418.CrossRef
go back to reference He, L., & Clavin, P. (1994). On the direct initiation of gaseous detonations by an energy source. Journal of Fluid Mechanics, 277, 227–248.MathSciNetCrossRefMATH He, L., & Clavin, P. (1994). On the direct initiation of gaseous detonations by an energy source. Journal of Fluid Mechanics, 277, 227–248.MathSciNetCrossRefMATH
go back to reference Knystautas, R., Lee, J. H. S., & Guirao, C. M. (1982). The critical tube diameter for detonation failure in hydrocarbon–air mixtures. Combustion and Flame, 48, 63–83.CrossRef Knystautas, R., Lee, J. H. S., & Guirao, C. M. (1982). The critical tube diameter for detonation failure in hydrocarbon–air mixtures. Combustion and Flame, 48, 63–83.CrossRef
go back to reference Laderman, A. J., Urtiew, P. A., & Oppenheim, A. K. (1963). On the generation of a shock wave by flame in an explosive gas, Ninth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh 265–274. Laderman, A. J., Urtiew, P. A., & Oppenheim, A. K. (1963). On the generation of a shock wave by flame in an explosive gas, Ninth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh 265–274.
go back to reference Lee, J. H. S. (1977). Initiation of gaseous detonation. Annual Review of Physical Chemistry, 28, 75–104.CrossRef Lee, J. H. S. (1977). Initiation of gaseous detonation. Annual Review of Physical Chemistry, 28, 75–104.CrossRef
go back to reference Li et al. (2013): 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference San Jose, CA Li et al. (2013): 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference San Jose, CA
go back to reference Li, L., Li, J., Nguyen, V. B., Teo, C. J., Chang, P. H., & Khoo, B. C. (2017). A study of detonation re-initiation through multiple reflections in a 90-degree bifurcation channel. Combustion and Flame, 180, 207–216.CrossRef Li, L., Li, J., Nguyen, V. B., Teo, C. J., Chang, P. H., & Khoo, B. C. (2017). A study of detonation re-initiation through multiple reflections in a 90-degree bifurcation channel. Combustion and Flame, 180, 207–216.CrossRef
go back to reference Lv, Y., & Ihme, M. (2015). Computational analysis of re-ignition and re-initiation mechanisms of quenched detonation waves behind a backward facing step. Proceedings of the Combustion Institute 35(2): 1963–1972. Lv, Y., & Ihme, M. (2015). Computational analysis of re-ignition and re-initiation mechanisms of quenched detonation waves behind a backward facing step. Proceedings of the Combustion Institute 35(2): 1963–1972.
go back to reference MacBride and Gorden (1996): National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio MacBride and Gorden (1996): National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio
go back to reference Mitrofanov, V. V., & Soloukhin, R. I. (1964). The diffraction of multifront detonation waves. Soviet Physics Doklady, 9(12), 1055. Mitrofanov, V. V., & Soloukhin, R. I. (1964). The diffraction of multifront detonation waves. Soviet Physics Doklady, 9(12), 1055.
go back to reference Murray, S. B., & Lee, J. H. S. (1983). On the transformation of planar detonations to cylindrical detonation. Combustion and Flame, 52, 269–289.CrossRef Murray, S. B., & Lee, J. H. S. (1983). On the transformation of planar detonations to cylindrical detonation. Combustion and Flame, 52, 269–289.CrossRef
go back to reference Oppenheim, A. K., Laderman, A. J., & Urtiew, P. A. (1962). The onset of retonation. Combustion and Flame, 6, 193–197.CrossRef Oppenheim, A. K., Laderman, A. J., & Urtiew, P. A. (1962). The onset of retonation. Combustion and Flame, 6, 193–197.CrossRef
go back to reference Oran, E. S., & Gamezo, V. N. (2007). Origins of the deflagration-to-detonation transition in gas-phase combustion. Combustion and Flame, 148(1–2), 4–47.CrossRef Oran, E. S., & Gamezo, V. N. (2007). Origins of the deflagration-to-detonation transition in gas-phase combustion. Combustion and Flame, 148(1–2), 4–47.CrossRef
go back to reference Pintgen, F. (2004). Detonation diffraction in mixtures with various degrees of instability. Dissertation for fulfilment of Degree of Doctor of Philosophy, California Institute of Technology, Pasadena. Pintgen, F. (2004). Detonation diffraction in mixtures with various degrees of instability. Dissertation for fulfilment of Degree of Doctor of Philosophy, California Institute of Technology, Pasadena.
go back to reference Polley, N. L., Egbert, M. Q., & Petersen, E. L. (2013). Methods for re-initiation and critical conditions for a planar detonation transforming to a cylindrical detonation within a confined volume. Combustion and Flame, 160, 212–221.CrossRef Polley, N. L., Egbert, M. Q., & Petersen, E. L. (2013). Methods for re-initiation and critical conditions for a planar detonation transforming to a cylindrical detonation within a confined volume. Combustion and Flame, 160, 212–221.CrossRef
go back to reference Radulescu, M. I. (2003). The propagation and failure mechanism of gaseous detonations: experiments in porous-walled tubes. Dissertation for the fulfilment of degree of Doctor of Philosophy, Mcgill University, Montreal. Radulescu, M. I. (2003). The propagation and failure mechanism of gaseous detonations: experiments in porous-walled tubes. Dissertation for the fulfilment of degree of Doctor of Philosophy, Mcgill University, Montreal.
go back to reference Radulescu, M. I., & Maxwell, B. M. (2011). The mechanism of detonation attenuation by a porous medium and its subsequent re-initiation. Journal of Fluid Mechanics, 667, 96–134.CrossRefMATH Radulescu, M. I., & Maxwell, B. M. (2011). The mechanism of detonation attenuation by a porous medium and its subsequent re-initiation. Journal of Fluid Mechanics, 667, 96–134.CrossRefMATH
go back to reference Roy, G. D., Frolov, S. M., Borisov, A. A., & Netzer, D. W. (2004). Pulse detonation propulsion: Challenges, current status, and future perspective. Progress in Energy and Combustion Science, 30, 545–672.CrossRef Roy, G. D., Frolov, S. M., Borisov, A. A., & Netzer, D. W. (2004). Pulse detonation propulsion: Challenges, current status, and future perspective. Progress in Energy and Combustion Science, 30, 545–672.CrossRef
go back to reference Schultz, E., & Shepherd, J. (2000). Validation of detailed reaction mechanisms for detonation simulation, Explosion Dynamics Laboratory Report FM99–5, California Institute of Technology, Pasadena. Schultz, E., & Shepherd, J. (2000). Validation of detailed reaction mechanisms for detonation simulation, Explosion Dynamics Laboratory Report FM99–5, California Institute of Technology, Pasadena.
go back to reference Sedov, L. I. (1946). Propagation of strong blast waves. Journal of Applied Mathematics and Mechanics, 10, 241–250. Sedov, L. I. (1946). Propagation of strong blast waves. Journal of Applied Mathematics and Mechanics, 10, 241–250.
go back to reference Silvestrini, M., Genova, B., Parisi, G., & Leon Trujillo, F. J. (2008). Flame acceleration and DDT run-up distance for smooth and obstacles filled tubes. Journal of Loss Prevention in Process Industry, 21(5), 555–562.CrossRef Silvestrini, M., Genova, B., Parisi, G., & Leon Trujillo, F. J. (2008). Flame acceleration and DDT run-up distance for smooth and obstacles filled tubes. Journal of Loss Prevention in Process Industry, 21(5), 555–562.CrossRef
go back to reference Taylor, G. I. (1950). The dynamics of the combustion products behind plane and spherical detonation front in explosives. Proceedings of the Royal Society of London A 200: 235–247. Taylor, G. I. (1950). The dynamics of the combustion products behind plane and spherical detonation front in explosives. Proceedings of the Royal Society of London A 200: 235–247.
go back to reference Thomas, G. O., & Williams, R. L. (2011). Detonation interaction with wedges and bends. Shock Waves, 11(6), 481–492.CrossRef Thomas, G. O., & Williams, R. L. (2011). Detonation interaction with wedges and bends. Shock Waves, 11(6), 481–492.CrossRef
go back to reference Vandermeiren, M., & Van Tiggelen, P. J. (1984). Cellular structure in detonation of acetylene-oxygen mixture. Progress in Astronautics and Aeronautics, 94, 104–117. Vandermeiren, M., & Van Tiggelen, P. J. (1984). Cellular structure in detonation of acetylene-oxygen mixture. Progress in Astronautics and Aeronautics, 94, 104–117.
go back to reference Wang, C. J., Xu, S. L., & Guo, C. M. (2008). Study on gaseous detonation propagation in a bifurcated tube. Journal of Fluid Mechanics, 599, 81–110.CrossRefMATH Wang, C. J., Xu, S. L., & Guo, C. M. (2008). Study on gaseous detonation propagation in a bifurcated tube. Journal of Fluid Mechanics, 599, 81–110.CrossRefMATH
go back to reference Wang, H., & Frenklach, M. (1997). Detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames. Combustion and Flame, 110, 173–221.CrossRef Wang, H., & Frenklach, M. (1997). Detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames. Combustion and Flame, 110, 173–221.CrossRef
go back to reference Wang, J., Lee, J. H. S., & Ng, H. S. (2015). Velocity deficits in thin channels for a cylindrically expanding detonation. 25th International Colloquium on the Dynamics of Explosions and Reactive Systems, Leeds. Wang, J., Lee, J. H. S., & Ng, H. S. (2015). Velocity deficits in thin channels for a cylindrically expanding detonation. 25th International Colloquium on the Dynamics of Explosions and Reactive Systems, Leeds.
Metadata
Title
On the Investigation of Detonation Re-initiation Mechanisms and the Influences of the Geometry Confinements and Mixture Properties
Authors
Lei Li
Jiun-Ming Li
Chiang Juay Teo
Po-Hsiung Chang
Van Bo Nguyen
Boo Cheong Khoo
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-68906-7_9

Premium Partners