Skip to main content
Top

2018 | OriginalPaper | Chapter

8. Pulse Detonation Cycle at Kilohertz Frequency

Authors : Ken Matsuoka, Haruna Taki, Jiro Kasahara, Hiroaki Watanabe, Akiko Matsuo, Takuma Endo

Published in: Detonation Control for Propulsion

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

To realize kilohertz and higher frequency of a pulse detonation cycle (PDC), enhancement of deflagration-to-detonation transition (DDT) is necessary. A novel semi-valveless PDC method, in which the inner diameter of the oxidizer feed line is equal to that of the combustor, can increase the pressure of detonable mixture by increasing total pressure of supplying oxidizer. In demonstration experiments, ethylene as fuel, pure oxygen as the oxidizer and the combustor having an inner diameter of 10 mm and length of 100 or 60 mm were used. A PDC was successfully operated at the frequency of up to 1916 Hz. Under the condition of 1010 Hz operation, the total pressure of supplying oxidizer were varied. As the results, it was found that the DDT distance and time decreased by approximately 50% when the total pressure of supplying oxidizer increased by 242%.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ciccarelli, G., & Dorofeev, S. (2008). Flame acceleration and transition to detonation in ducts. Progress in Energy and Combustion Science, 34(4), 499–550.CrossRef Ciccarelli, G., & Dorofeev, S. (2008). Flame acceleration and transition to detonation in ducts. Progress in Energy and Combustion Science, 34(4), 499–550.CrossRef
go back to reference Endo, T., Yatsufusa, T., Taki, S., & Kasahara, J. (2004a). Thermodynamic analysis of the performance of a pulse detonation turbine engine. Science and Technology of Energetic Materials, 65(103), 103–110. (in Japanese). Endo, T., Yatsufusa, T., Taki, S., & Kasahara, J. (2004a). Thermodynamic analysis of the performance of a pulse detonation turbine engine. Science and Technology of Energetic Materials, 65(103), 103–110. (in Japanese).
go back to reference Endo, T., Kasahara, J., Matsuo, A., Inaba, K., Sato, S., & Fujiwara, T. (2004b). Pressure history at the thrust wall of a simplified pulse detonation engine. AIAA Journal, 42(9), 1921–1930.CrossRef Endo, T., Kasahara, J., Matsuo, A., Inaba, K., Sato, S., & Fujiwara, T. (2004b). Pressure history at the thrust wall of a simplified pulse detonation engine. AIAA Journal, 42(9), 1921–1930.CrossRef
go back to reference Endo, T., Obayashi, R., Tajiri, T., Kimura, K., Morohashi, Y., Johzaki, T., Matsuoka, K., Hanafusa, T., & Mizunari, S. (2016). Thermal spray using a high-frequency pulse detonation combustor operated in the liquid-purge mode. Journal of Thermal Spray Technology, 25(3), 494–508.CrossRef Endo, T., Obayashi, R., Tajiri, T., Kimura, K., Morohashi, Y., Johzaki, T., Matsuoka, K., Hanafusa, T., & Mizunari, S. (2016). Thermal spray using a high-frequency pulse detonation combustor operated in the liquid-purge mode. Journal of Thermal Spray Technology, 25(3), 494–508.CrossRef
go back to reference Gordon, S., & McBride, B. J. (1996). Computer program for calculation of complex chemical equilibrium compositions and applications. NASA Reference Publication 1311. Gordon, S., & McBride, B. J. (1996). Computer program for calculation of complex chemical equilibrium compositions and applications. NASA Reference Publication 1311.
go back to reference Gou, X., Sun, W., Chen, Z., & Ju, Y. (2010). A dynamic multi-timescale method for combustion modeling with detailed and reduced chemical kinetic mechanisms. Combustion and Flame, 157, 1111–1121.CrossRef Gou, X., Sun, W., Chen, Z., & Ju, Y. (2010). A dynamic multi-timescale method for combustion modeling with detailed and reduced chemical kinetic mechanisms. Combustion and Flame, 157, 1111–1121.CrossRef
go back to reference Heiser, W. H., & Pratt, D. T. (2002). Thermodynamic cycle analysis of pulse detonation engines. Journal of Propulsion and Power, 18(1), 68–76.CrossRef Heiser, W. H., & Pratt, D. T. (2002). Thermodynamic cycle analysis of pulse detonation engines. Journal of Propulsion and Power, 18(1), 68–76.CrossRef
go back to reference Kailasanath, K. (2000). Review of propulsion applications of detonation wave. AIAA Journal, 38(9), 1698–1708.CrossRef Kailasanath, K. (2000). Review of propulsion applications of detonation wave. AIAA Journal, 38(9), 1698–1708.CrossRef
go back to reference Kailasanath, K. (2003). Recent developments in the research on pulse detonation engines. AIAA Journal, 41(2), 145–159.CrossRef Kailasanath, K. (2003). Recent developments in the research on pulse detonation engines. AIAA Journal, 41(2), 145–159.CrossRef
go back to reference Kuznetsov, M., Alekseev, V., Matsukov, I., & Dorofeev, S. (2005). DDT in a smooth tube filled with a hydrogen–oxygen mixture. Shock Waves, 14(3), 205–215.CrossRef Kuznetsov, M., Alekseev, V., Matsukov, I., & Dorofeev, S. (2005). DDT in a smooth tube filled with a hydrogen–oxygen mixture. Shock Waves, 14(3), 205–215.CrossRef
go back to reference Matsuo, K. (1994). Compressible fluid dynamics — Theory and analysis in internal flow. Tokyo: Rikogakusha Publ., Ltd.. (in Japanese). Matsuo, K. (1994). Compressible fluid dynamics — Theory and analysis in internal flow. Tokyo: Rikogakusha Publ., Ltd.. (in Japanese).
go back to reference Matsuoka, K. (2016). Experimental study on control technique of pulsed detonation. International workshop on detonation for propulsion 2016, Singapore, July 2016. Matsuoka, K. (2016). Experimental study on control technique of pulsed detonation. International workshop on detonation for propulsion 2016, Singapore, July 2016.
go back to reference Matsuoka, K., Esumi, M., Ikeguchi, K., Kasahara, J., Matsuo, A., & Funaki, I. (2012). Optical and thrust measurement of a pulse detonation combustor with a coaxial rotary valve. Combustion and Flame, 159(3), 1321–1338.CrossRef Matsuoka, K., Esumi, M., Ikeguchi, K., Kasahara, J., Matsuo, A., & Funaki, I. (2012). Optical and thrust measurement of a pulse detonation combustor with a coaxial rotary valve. Combustion and Flame, 159(3), 1321–1338.CrossRef
go back to reference Matsuoka, K., Mukai, T., & Endo, T. (2015). Development of a liquid-purge method for high-frequency operation of pulse detonation combustor. Combustion Science and Technology, 187(5), 747–764.CrossRef Matsuoka, K., Mukai, T., & Endo, T. (2015). Development of a liquid-purge method for high-frequency operation of pulse detonation combustor. Combustion Science and Technology, 187(5), 747–764.CrossRef
go back to reference Matsuoka, K., Morozumi, T., Takagi, S., Kasahara, J., Matsuo, A., & Funaki, I. (2016). Flight validation of a rotary-valved four-cylinder pulse detonation rocket. Journal of Propulsion and Power, 32(2), 383–391.CrossRef Matsuoka, K., Morozumi, T., Takagi, S., Kasahara, J., Matsuo, A., & Funaki, I. (2016). Flight validation of a rotary-valved four-cylinder pulse detonation rocket. Journal of Propulsion and Power, 32(2), 383–391.CrossRef
go back to reference Matsuoka, K., Muto, K., Kasahara, J., Watanabe, H., Matsuo, A., & Endo, T. (2017a). Development of high-frequency pulse detonation combustor without purging material. Journal of Propulsion and Power, 33. Special Section on Pressure Gain Combustion, 43–50.CrossRef Matsuoka, K., Muto, K., Kasahara, J., Watanabe, H., Matsuo, A., & Endo, T. (2017a). Development of high-frequency pulse detonation combustor without purging material. Journal of Propulsion and Power, 33. Special Section on Pressure Gain Combustion, 43–50.CrossRef
go back to reference Matsuoka, K., Muto, K., Kasahara, J., Watanabe, H., Matsuo, A., & Endo T. (2017b). Investigation of fluid motion in valveless pulse detonation combustor with high-frequency operation. Proceedings of the Combustion Institute 36(2):2641–2647. Matsuoka, K., Muto, K., Kasahara, J., Watanabe, H., Matsuo, A., & Endo T. (2017b). Investigation of fluid motion in valveless pulse detonation combustor with high-frequency operation. Proceedings of the Combustion Institute 36(2):2641–2647.
go back to reference Shchelkin, K. I., & Troshin, Y. K. (1965). Gasdynamics of combustion. Baltimore: Mono Book Corporation. Shchelkin, K. I., & Troshin, Y. K. (1965). Gasdynamics of combustion. Baltimore: Mono Book Corporation.
go back to reference Singh, D. J., & Jachimowski, C. J. (1994). Quasiglobal reaction model for ethylene combustion. AIAA Journal, 32(1), 213–216.CrossRef Singh, D. J., & Jachimowski, C. J. (1994). Quasiglobal reaction model for ethylene combustion. AIAA Journal, 32(1), 213–216.CrossRef
go back to reference Stamps, D. W., & Tieszen, S. R. (1991). The influence of initial pressure and temperature on hydrogen-air-diluent detonations. Combustion and Flame, 83(3), 353–364.CrossRef Stamps, D. W., & Tieszen, S. R. (1991). The influence of initial pressure and temperature on hydrogen-air-diluent detonations. Combustion and Flame, 83(3), 353–364.CrossRef
go back to reference Takahashi, T., Mitsunobu, A., Ogawa, Y., Kato, S., Yokoyama, H., Susa, A., & Endo, T. (2012). Experiments on energy balance and thermal efficiency of pulse detonation turbine engine. Science and Technology of Energetic Materials, 73(6), 181–187. Takahashi, T., Mitsunobu, A., Ogawa, Y., Kato, S., Yokoyama, H., Susa, A., & Endo, T. (2012). Experiments on energy balance and thermal efficiency of pulse detonation turbine engine. Science and Technology of Energetic Materials, 73(6), 181–187.
go back to reference Wang, K., Fan, W., Lu, W., Chen, F., Zhang, Q., & Yan, C. (2014). Study on a liquid-fueled and valveless pulse detonation rocket engine without the purge process. Energy, 71(15), 605–614. Wang, K., Fan, W., Lu, W., Chen, F., Zhang, Q., & Yan, C. (2014). Study on a liquid-fueled and valveless pulse detonation rocket engine without the purge process. Energy, 71(15), 605–614.
go back to reference Watanabe, H. Matsuo, A. Matsuoka, K., & Kasahara, J. (2017). Numerical investigation on burned gas backflow in liquid fuel purge method. 2016 AIAA Science and Technology Forum and Exposition, AIAA2017–1284, Jan. 9–13, 2017, Texas, USA. Watanabe, H. Matsuo, A. Matsuoka, K., & Kasahara, J. (2017). Numerical investigation on burned gas backflow in liquid fuel purge method. 2016 AIAA Science and Technology Forum and Exposition, AIAA2017–1284, Jan. 9–13, 2017, Texas, USA.
go back to reference Wu, M.-H., & Lu, T.-H. (2012). Development of a chemical microthruster based on pulsed detonation. Journal of Micromechanics and Microengineering, 22(10), Paper 105040.CrossRef Wu, M.-H., & Lu, T.-H. (2012). Development of a chemical microthruster based on pulsed detonation. Journal of Micromechanics and Microengineering, 22(10), Paper 105040.CrossRef
go back to reference Wu, Y., Ma, F., & Yang, V. (2003). System performance and thermodynamic cycle analysis of airbreathing pulse detonation engines. Journal of Propulsion and Power, 19(556), 556–567.CrossRef Wu, Y., Ma, F., & Yang, V. (2003). System performance and thermodynamic cycle analysis of airbreathing pulse detonation engines. Journal of Propulsion and Power, 19(556), 556–567.CrossRef
go back to reference Yee, H. C. (1989). A class of high-resolution explicit and implicit shock-capturing methods. NASA Technical Memorandum 101088. Yee, H. C. (1989). A class of high-resolution explicit and implicit shock-capturing methods. NASA Technical Memorandum 101088.
Metadata
Title
Pulse Detonation Cycle at Kilohertz Frequency
Authors
Ken Matsuoka
Haruna Taki
Jiro Kasahara
Hiroaki Watanabe
Akiko Matsuo
Takuma Endo
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-68906-7_8

Premium Partners