Skip to main content
Top
Published in: Acta Mechanica 10/2023

09-07-2023 | Original Paper

On vibration and passive control of axially translating string with damping at both ends using reflected traveling wave superposition method

Authors: Yuanfeng Wu, Enwei Chen, Guangxu Dong, Yuteng He, Yimin Lu, Haozheng Wei

Published in: Acta Mechanica | Issue 10/2023

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The axially translating string has received wide attention due to its adverse effect of transverse vibration on security and stability in engineering. Most of the current literature focuses on classical boundary cases (e.g., fixed boundary, free boundary), while non-classical boundaries, such as damped boundary, spring-damped boundary, and mass-spring-damped boundary, are more relevant because they are in line with engineering practice. Boundary damping has a significant effect on system vibration, and the damping-damping boundary has rarely been studied. Thus, this paper is dedicated to the modeling, calculation and vibration passive control of a translating string with damping at both ends. First, the equations of motion and boundary conditions are deduced according to extended Hamilton’s principle, with the boundary damping forces as the controlling forces. Second, the analytical solutions of vibration response and system energy expressions are derived using the reflected traveling wave superposition method (RTWSM). Next, to stabilize the system under the boundary damping forces, the boundary damping ranges that satisfy the exponential decay of the system energy are obtained. To further solve for optimal damping in the above ranges, RTWSM model and the boundary energy reflection are employed. Finally, the vibration responses of translating strings with different boundary damping values are simulated. The result shows that boundary damping in feasible intervals facilitates vibration attenuation effectively.
Appendix
Available only for authorised users
Literature
1.
go back to reference Pham, P.T., Hong, K.S.: Dynamic models of axially moving systems: a review. Nonlinear Dyn. 100(1), 315–349 (2020)CrossRef Pham, P.T., Hong, K.S.: Dynamic models of axially moving systems: a review. Nonlinear Dyn. 100(1), 315–349 (2020)CrossRef
2.
go back to reference Hong, K.S., Chen, L.Q., Pham, P.T., Yang, X.D.: Control of Axially Moving Systems. Springer, Singapore (2022)CrossRef Hong, K.S., Chen, L.Q., Pham, P.T., Yang, X.D.: Control of Axially Moving Systems. Springer, Singapore (2022)CrossRef
3.
go back to reference Marynowski, K., Kapitaniak, T.: Dynamics of axially moving continua. Int. J. Mech. Sci. 81, 26–41 (2014)CrossRef Marynowski, K., Kapitaniak, T.: Dynamics of axially moving continua. Int. J. Mech. Sci. 81, 26–41 (2014)CrossRef
4.
go back to reference Zhang, N.H., Wang, J.J., Cheng, C.J.: Complex-mode Galerkin approach in transverse vibration of an axially accelerating viscoelastic string. Appl. Math. Mech.-Engl. Ed. 28(1), 1–9 (2007)CrossRefMATH Zhang, N.H., Wang, J.J., Cheng, C.J.: Complex-mode Galerkin approach in transverse vibration of an axially accelerating viscoelastic string. Appl. Math. Mech.-Engl. Ed. 28(1), 1–9 (2007)CrossRefMATH
5.
go back to reference Chen, L.Q., Zhao, W., Ding, H.: On Galerkin discretization of axially moving nonlinear strings. Acta Mech. Solida Sin. 22(4), 369–376 (2009)CrossRef Chen, L.Q., Zhao, W., Ding, H.: On Galerkin discretization of axially moving nonlinear strings. Acta Mech. Solida Sin. 22(4), 369–376 (2009)CrossRef
6.
go back to reference Asnafi, A.: Melnikov-based criterion to obtain the critical velocity in axially moving viscoelastic strings under a set of non-Gaussian parametric bounded noise. Acta Mech. 232(9), 3495–3508 (2021)MathSciNetCrossRefMATH Asnafi, A.: Melnikov-based criterion to obtain the critical velocity in axially moving viscoelastic strings under a set of non-Gaussian parametric bounded noise. Acta Mech. 232(9), 3495–3508 (2021)MathSciNetCrossRefMATH
7.
go back to reference van Horssen, W.T., Ponomareva, S.V.: On the construction of the solution of an equation describing an axially moving string. J. Sound Vib. 287(1–2), 359–366 (2005)CrossRefMATH van Horssen, W.T., Ponomareva, S.V.: On the construction of the solution of an equation describing an axially moving string. J. Sound Vib. 287(1–2), 359–366 (2005)CrossRefMATH
8.
go back to reference Ghayesh, M.H., Moradian, N.: Nonlinear dynamic response of axially moving, stretched viscoelastic strings. Arch. Appl. Mech. 81(6), 781–799 (2011)CrossRefMATH Ghayesh, M.H., Moradian, N.: Nonlinear dynamic response of axially moving, stretched viscoelastic strings. Arch. Appl. Mech. 81(6), 781–799 (2011)CrossRefMATH
9.
go back to reference Yang, X.D., Wu, H., Qian, Y.J., Zhang, W., Lim, C.W.: Nonlinear vibration analysis of axially moving strings based on gyroscopic modes decoupling. J. Sound Vib. 393, 308–320 (2017)CrossRef Yang, X.D., Wu, H., Qian, Y.J., Zhang, W., Lim, C.W.: Nonlinear vibration analysis of axially moving strings based on gyroscopic modes decoupling. J. Sound Vib. 393, 308–320 (2017)CrossRef
10.
go back to reference Gaiko, N.V., van Horssen, W.T.: On the transverse, low frequency vibrations of a traveling string with boundary damping. J. Vib. Acoust.-Trans. ASME. 137(4), 041004 (2015)CrossRef Gaiko, N.V., van Horssen, W.T.: On the transverse, low frequency vibrations of a traveling string with boundary damping. J. Vib. Acoust.-Trans. ASME. 137(4), 041004 (2015)CrossRef
11.
go back to reference Gaiko, N.V., van Horssen, W.T.: Resonances and vibrations in an elevator cable system due to boundary sway. J. Sound Vib. 424, 272–292 (2018)CrossRef Gaiko, N.V., van Horssen, W.T.: Resonances and vibrations in an elevator cable system due to boundary sway. J. Sound Vib. 424, 272–292 (2018)CrossRef
12.
go back to reference Chen, E.W., Ferguson, N.S.: Analysis of energy dissipation in an elastic moving string with a viscous damper at one end. J. Sound Vib. 333(9), 2556–2570 (2014)CrossRef Chen, E.W., Ferguson, N.S.: Analysis of energy dissipation in an elastic moving string with a viscous damper at one end. J. Sound Vib. 333(9), 2556–2570 (2014)CrossRef
13.
go back to reference Chen, E.W., Li, M.B., Ferguson, N., Lu, Y.M.: An adaptive higher order finite element model and modal energy for the vibration of a traveling string. J. Vib. Control. 25(5), 996–1007 (2019)MathSciNetCrossRef Chen, E.W., Li, M.B., Ferguson, N., Lu, Y.M.: An adaptive higher order finite element model and modal energy for the vibration of a traveling string. J. Vib. Control. 25(5), 996–1007 (2019)MathSciNetCrossRef
14.
go back to reference Chen, E.W., Zhang, K., Ferguson, N.S., Wang, J., Lu, Y.M.: On the reflected wave superposition method for a travelling string with mixed boundary supports. J. Sound Vib. 440, 129–146 (2019)CrossRef Chen, E.W., Zhang, K., Ferguson, N.S., Wang, J., Lu, Y.M.: On the reflected wave superposition method for a travelling string with mixed boundary supports. J. Sound Vib. 440, 129–146 (2019)CrossRef
15.
go back to reference Chen, E.W., Luo, Q., Ferguson, N.S., Lu, Y.M.: A reflected wave superposition method for vibration and energy of a travelling string. J. Sound Vib. 400, 40–57 (2017)CrossRef Chen, E.W., Luo, Q., Ferguson, N.S., Lu, Y.M.: A reflected wave superposition method for vibration and energy of a travelling string. J. Sound Vib. 400, 40–57 (2017)CrossRef
16.
go back to reference Ulsoy, A.G.: Vibration control in rotating or translating elastic systems. J. Dyn. Syst. Meas. Control-Trans. ASME. 106(1), 6–14 (1984)CrossRefMATH Ulsoy, A.G.: Vibration control in rotating or translating elastic systems. J. Dyn. Syst. Meas. Control-Trans. ASME. 106(1), 6–14 (1984)CrossRefMATH
17.
go back to reference Fung, R.F., Liao, C.C.: Application of variable structure control in the nonlinear string system. Int. J. Mech. Sci. 37(9), 985–993 (1995)CrossRefMATH Fung, R.F., Liao, C.C.: Application of variable structure control in the nonlinear string system. Int. J. Mech. Sci. 37(9), 985–993 (1995)CrossRefMATH
18.
go back to reference Wang, L., Chen, H.H., He, X.D.: Active H∞ control of the vibration of an axially moving cantilever beam by magnetic force. Mech. Syst. Sig. Process. 25(8), 2863–2878 (2011)CrossRef Wang, L., Chen, H.H., He, X.D.: Active H∞ control of the vibration of an axially moving cantilever beam by magnetic force. Mech. Syst. Sig. Process. 25(8), 2863–2878 (2011)CrossRef
19.
go back to reference Hong, K.S., Pham, P.T.: Control of axially moving systems: a review. Int. J. Control Autom. Syst. 17(12), 2983–3008 (2019)CrossRef Hong, K.S., Pham, P.T.: Control of axially moving systems: a review. Int. J. Control Autom. Syst. 17(12), 2983–3008 (2019)CrossRef
20.
go back to reference He, W., Qin, H., Liu, J.K.: Modelling and vibration control for a flexible string system in three-dimensional space. IET Contr. Theory Appl. 9(16), 2387–2394 (2015)MathSciNetCrossRef He, W., Qin, H., Liu, J.K.: Modelling and vibration control for a flexible string system in three-dimensional space. IET Contr. Theory Appl. 9(16), 2387–2394 (2015)MathSciNetCrossRef
21.
go back to reference Yang, B.: Noncolocated control of a damped stringusing time delay. J. Dyn. Syst. Meas. Control-Trans. ASME. 114(4), 736–740 (1992)CrossRef Yang, B.: Noncolocated control of a damped stringusing time delay. J. Dyn. Syst. Meas. Control-Trans. ASME. 114(4), 736–740 (1992)CrossRef
22.
go back to reference Nguyen, Q.C., Hong, K.S.: Asymptotic stabilization of a nonlinear axially moving string by adaptive boundary control. J. Sound Vib. 329(22), 4588–4603 (2010)CrossRef Nguyen, Q.C., Hong, K.S.: Asymptotic stabilization of a nonlinear axially moving string by adaptive boundary control. J. Sound Vib. 329(22), 4588–4603 (2010)CrossRef
23.
go back to reference Cheng, Y., Wu, Y.H., Guo, B.Z.: Absolute boundary stabilization for an axially moving Kirchhoff beam. Automatica 129, 109667 (2021)MathSciNetCrossRefMATH Cheng, Y., Wu, Y.H., Guo, B.Z.: Absolute boundary stabilization for an axially moving Kirchhoff beam. Automatica 129, 109667 (2021)MathSciNetCrossRefMATH
24.
go back to reference Fung, R.F., Wu, J.W., Lu, P.Y.: Adaptive boundary control of an axially moving string system. J. Vib. Acoust.-Trans. ASME. 124(3), 435–440 (2002)CrossRef Fung, R.F., Wu, J.W., Lu, P.Y.: Adaptive boundary control of an axially moving string system. J. Vib. Acoust.-Trans. ASME. 124(3), 435–440 (2002)CrossRef
25.
go back to reference Lee, S.Y., Mote, C.D.: Vibration control of an axially moving string by boundary control. J. Dyn. Syst. Meas. Control-Trans. ASME. 118(1), 66–74 (1996)CrossRefMATH Lee, S.Y., Mote, C.D.: Vibration control of an axially moving string by boundary control. J. Dyn. Syst. Meas. Control-Trans. ASME. 118(1), 66–74 (1996)CrossRefMATH
26.
27.
go back to reference Moslemi, A., Khadem, S.E., Khazaee, M., Davarpanah, A.: Nonlinear vibration and dynamic stability analysis of an axially moving beam with a nonlinear energy sink. Nonlinear Dyn. 104(3), 1955–1972 (2021)CrossRef Moslemi, A., Khadem, S.E., Khazaee, M., Davarpanah, A.: Nonlinear vibration and dynamic stability analysis of an axially moving beam with a nonlinear energy sink. Nonlinear Dyn. 104(3), 1955–1972 (2021)CrossRef
29.
go back to reference Chen, E.W., Yuan, J.F., Ferguson, N.S., Zhang, K., Zhu, W.D., Lu, Y.M., Wei, H.Z.: A wave solution for energy dissipation and exchange at nonclassical boundaries of a traveling string. Mech. Syst. Sig. Process. 150, 107272 (2021)CrossRef Chen, E.W., Yuan, J.F., Ferguson, N.S., Zhang, K., Zhu, W.D., Lu, Y.M., Wei, H.Z.: A wave solution for energy dissipation and exchange at nonclassical boundaries of a traveling string. Mech. Syst. Sig. Process. 150, 107272 (2021)CrossRef
30.
go back to reference Kim, C.W., Hong, K.S., Park, H.: Boundary control of an axially moving string: actuator dynamics included. J. Mech. Sci. Technol. 19(1), 40–50 (2005)CrossRef Kim, C.W., Hong, K.S., Park, H.: Boundary control of an axially moving string: actuator dynamics included. J. Mech. Sci. Technol. 19(1), 40–50 (2005)CrossRef
31.
go back to reference Lee, S.Y., Mote, C.D.: A Generalized treatment of the energetics of translating continua, part I: Strings and second order tensioned pipes. J. Sound Vib. 204(5), 717–734 (1997)CrossRef Lee, S.Y., Mote, C.D.: A Generalized treatment of the energetics of translating continua, part I: Strings and second order tensioned pipes. J. Sound Vib. 204(5), 717–734 (1997)CrossRef
32.
go back to reference McIver, D.B.: Hamilton’s principle for systems of changing mass. J. Eng. Math. 7(3), 249–261 (1973)CrossRefMATH McIver, D.B.: Hamilton’s principle for systems of changing mass. J. Eng. Math. 7(3), 249–261 (1973)CrossRefMATH
33.
go back to reference Kreyszig, E., Kreyszig, H., Norminton, E.J.: Advanced Engineering Mathematics. Wiley, New York (2011)MATH Kreyszig, E., Kreyszig, H., Norminton, E.J.: Advanced Engineering Mathematics. Wiley, New York (2011)MATH
34.
go back to reference Gaiko, N.V., van Horssen, W.T.: On wave reflections and energetics for a semi-infinite traveling string with a nonclassical boundary support. J. Sound Vib. 370, 336–350 (2016)CrossRef Gaiko, N.V., van Horssen, W.T.: On wave reflections and energetics for a semi-infinite traveling string with a nonclassical boundary support. J. Sound Vib. 370, 336–350 (2016)CrossRef
Metadata
Title
On vibration and passive control of axially translating string with damping at both ends using reflected traveling wave superposition method
Authors
Yuanfeng Wu
Enwei Chen
Guangxu Dong
Yuteng He
Yimin Lu
Haozheng Wei
Publication date
09-07-2023
Publisher
Springer Vienna
Published in
Acta Mechanica / Issue 10/2023
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-023-03635-x

Other articles of this Issue 10/2023

Acta Mechanica 10/2023 Go to the issue

Premium Partners