Skip to main content
Top
Published in: Journal of Elasticity 1/2019

11-07-2018

On Weingarten-Volterra Defects

Author: Amit Acharya

Published in: Journal of Elasticity | Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The kinematic theory of Weingarten-Volterra line defects is revisited, both at small and finite deformations. Existing results are clarified and corrected as needed, and new results are obtained. The primary focus is to understand the relationship between the disclination strength and Burgers vector of deformations containing a Weingarten-Volterra defect corresponding to different cut-surfaces.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
As an aside, Zubov’s notation is non-standard, e.g., the action of a tensor \({\boldsymbol{A}}\) on a vector \({\boldsymbol{b}}\) is written as \({\boldsymbol{b}}\cdot {\boldsymbol{A}}\); for \(Q^{M}\) (curvilinear) coordinates on the current configuration with position vectors represented as \({\boldsymbol{R}}\) and \(q_{s}\) as coordinates on the reference configuration with position vectors represented as \({\boldsymbol{r}}\), the deformation gradient is written as \(( \frac{\partial Q^{M}}{\partial q^{s}} ) {\boldsymbol{r}} ^{s} \otimes {\boldsymbol{R}}_{M}\), where \({\boldsymbol{r}}^{s}\) represents (an element of) the dual basis in the reference configuration corresponding to coordinates \(q_{s}\), and \({\boldsymbol{R}}_{M}\) is the natural basis in the current configuration (instead of the more standard notation that would be \(( \frac{\partial Q^{M}}{\partial q^{s}} ) {\boldsymbol{R}}_{M} \otimes {\boldsymbol{r}}^{s}\); the correspondence of upper and lower case letters with objects on the current and reference configuration in this footnote also follows Zubov’s notation).
 
Literature
1.
go back to reference Acharya, A., Fressengeas, C.: Continuum mechanics of the interaction of phase boundaries and dislocations in solids. In: Chen, G.-Q.G., et al. (eds.) Differential Geometry and Continuum Mechanics. Springer Proceedings in Mathematics and Statistics, pp. 125–168 (2015) Acharya, A., Fressengeas, C.: Continuum mechanics of the interaction of phase boundaries and dislocations in solids. In: Chen, G.-Q.G., et al. (eds.) Differential Geometry and Continuum Mechanics. Springer Proceedings in Mathematics and Statistics, pp. 125–168 (2015)
5.
go back to reference Dollard, J.D., Friedman, C.N.: Product Integration with Application to Differential Equations. Encyclopaedia of Mathematics and Its Applications, vol. 10. Cambridge University Press, Cambridge (1984) CrossRef Dollard, J.D., Friedman, C.N.: Product Integration with Application to Differential Equations. Encyclopaedia of Mathematics and Its Applications, vol. 10. Cambridge University Press, Cambridge (1984) CrossRef
6.
go back to reference Gurtin, M.E.: The linear theory of elasticity. In: Linear Theories of Elasticity and Thermoelasticity. Handbuch Der Physik, vol. VI, pp. 1–295. Springer, Berlin (1973) Gurtin, M.E.: The linear theory of elasticity. In: Linear Theories of Elasticity and Thermoelasticity. Handbuch Der Physik, vol. VI, pp. 1–295. Springer, Berlin (1973)
7.
go back to reference Dimon Kellogg, O.: Foundations of Potential Theory. Dover, New York (1954) Dimon Kellogg, O.: Foundations of Potential Theory. Dover, New York (1954)
8.
go back to reference Kupferman, R., Moshe, M., Solomon, J.P.: Metric description of singular defects in isotropic materials. Arch. Ration. Mech. Anal. 216(3), 1009–1047 (2015) MathSciNetCrossRefMATH Kupferman, R., Moshe, M., Solomon, J.P.: Metric description of singular defects in isotropic materials. Arch. Ration. Mech. Anal. 216(3), 1009–1047 (2015) MathSciNetCrossRefMATH
9.
go back to reference Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Dover, New York (1944) MATH Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Dover, New York (1944) MATH
10.
go back to reference Nabarro, F.R.N.: Theory of Crystal Dislocations. Dover, New York (1987) Nabarro, F.R.N.: Theory of Crystal Dislocations. Dover, New York (1987)
11.
go back to reference Shield, R.T.: The rotation associated with large strains. SIAM J. Appl. Math. 25(3), 483–491 (1973) CrossRefMATH Shield, R.T.: The rotation associated with large strains. SIAM J. Appl. Math. 25(3), 483–491 (1973) CrossRefMATH
12.
go back to reference Sokolnikoff, I.S.: Tensor Analysis: Theory and Applications, 3rd edn. Wiley, New York (1958) MATH Sokolnikoff, I.S.: Tensor Analysis: Theory and Applications, 3rd edn. Wiley, New York (1958) MATH
13.
14.
go back to reference Volterra, V.: Sur l’équilibre des corps élastiques multiplement connexes. Ann. Sci. Ec. Norm. Super. 24, 401–517 (1907) CrossRefMATH Volterra, V.: Sur l’équilibre des corps élastiques multiplement connexes. Ann. Sci. Ec. Norm. Super. 24, 401–517 (1907) CrossRefMATH
15.
go back to reference Weingarten, G.: Sulle superficie di discontinuità nella teoria della elasticità dei corpi solidi. Rend. R. Accad. Lincei, Cl. Sci., Fis., Mat., Nat. 10(1), 57–60 (1901) MathSciNetMATH Weingarten, G.: Sulle superficie di discontinuità nella teoria della elasticità dei corpi solidi. Rend. R. Accad. Lincei, Cl. Sci., Fis., Mat., Nat. 10(1), 57–60 (1901) MathSciNetMATH
16.
go back to reference Yavari, A.: Compatibility equations of nonlinear elasticity for non-simply-connected bodies. Arch. Ration. Mech. Anal. 209(1), 237–253 (2013) MathSciNetCrossRefMATH Yavari, A.: Compatibility equations of nonlinear elasticity for non-simply-connected bodies. Arch. Ration. Mech. Anal. 209(1), 237–253 (2013) MathSciNetCrossRefMATH
17.
go back to reference Zubov, L.M.: Nonlinear Theory of Dislocations and Disclinations in Elastic Bodies. Lecture Notes in Physics, New Series: Monographs, vol. 47. Springer, Berlin (1997) MATH Zubov, L.M.: Nonlinear Theory of Dislocations and Disclinations in Elastic Bodies. Lecture Notes in Physics, New Series: Monographs, vol. 47. Springer, Berlin (1997) MATH
Metadata
Title
On Weingarten-Volterra Defects
Author
Amit Acharya
Publication date
11-07-2018
Publisher
Springer Netherlands
Published in
Journal of Elasticity / Issue 1/2019
Print ISSN: 0374-3535
Electronic ISSN: 1573-2681
DOI
https://doi.org/10.1007/s10659-018-9681-6

Other articles of this Issue 1/2019

Journal of Elasticity 1/2019 Go to the issue

Premium Partners