Skip to main content
Top

2020 | OriginalPaper | Chapter

Onboard CNN-Based Processing for Target Detection and Autonomous Landing for MAVs

Authors : A. A. Cabrera-Ponce, J. Martinez-Carranza

Published in: Pattern Recognition

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, we address the problem of target detection involved in an autonomous landing task for a Micro Aerial Vehicle (MAV). The challenge is to detect a flag located somewhere in the environment. The flag is posed on a pole, and to its right, a landing platform is located. Thus, the MAV has to detect the flag, fly towards it and once it is close enough, locate the landing platform nearby, aiming at centring over it to perform landing; all of this has to be carried out autonomously. In this context, the main problem is the detection of both the flag and the landing platform, whose shapes are known in advanced. Traditional computer vision algorithms could be used; however, the main challenges in this task are the changes in illumination, rotation and scale, and the fact that the flight controller uses the detection to perform the autonomous flight; hence the detection has to be stable and continuous on every camera frame. Motivated by this, we propose to use a Convolutional Neural Network optimised to be run on a small computer with limited computer processing budget. The MAV carries this computer, and it is used to process everything on board. To validate our system, we tested with rotated images, changes in scale and the presence of low illumination. Our method is compared against two conventional computer vision methods, namely, template and feature matching. In addition, we tested our system performance in a wide corridor, executing everything on board the MAV. We achieved a successful detection of the flag with a confidence metric of 0.9386 and 0.9826 for the Landing platform. In total, all the onboard computations ran at an average of 13.01 fps.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Baomar, H., Bentley, P.J.: Autonomous navigation and landing of airliners using artificial neural networks and learning by imitation. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI) (2017) Baomar, H., Bentley, P.J.: Autonomous navigation and landing of airliners using artificial neural networks and learning by imitation. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI) (2017)
2.
go back to reference Bartak, R., Hraško, A., Obdržálek, D.: A controller for autonomous landing of AR. Drone. In: The 26th Chinese Control and Decision Conference (2014 CCDC), pp. 329–334. IEEE (2014) Bartak, R., Hraško, A., Obdržálek, D.: A controller for autonomous landing of AR. Drone. In: The 26th Chinese Control and Decision Conference (2014 CCDC), pp. 329–334. IEEE (2014)
3.
go back to reference Barták, R., Hrasko, A., Obdrzalek, D.: On autonomous landing of AR. Drone: hands-on experience. In: The Twenty-Seventh International Flairs Conference (2014) Barták, R., Hrasko, A., Obdrzalek, D.: On autonomous landing of AR. Drone: hands-on experience. In: The Twenty-Seventh International Flairs Conference (2014)
4.
go back to reference Bicer, Y., Moghadam, M., Sahin, C., Eroglu, B., Üre, N.K.: Vision-based UAV guidance for autonomous landing with deep neural networks. In: AIAA SciTech 2019 Forum, p. 0140 (2019) Bicer, Y., Moghadam, M., Sahin, C., Eroglu, B., Üre, N.K.: Vision-based UAV guidance for autonomous landing with deep neural networks. In: AIAA SciTech 2019 Forum, p. 0140 (2019)
5.
go back to reference Cabrera-Ponce, A.A., Martinez-Carranza, J.: A vision-based approach for autonomous landing. In: 2017 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS), pp. 126–131. IEEE (2017) Cabrera-Ponce, A.A., Martinez-Carranza, J.: A vision-based approach for autonomous landing. In: 2017 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS), pp. 126–131. IEEE (2017)
7.
go back to reference Homma, Y., Moro, S.: Recognition of landing target of UAV by vision using machine learning. J. Signal Process. 23(4), 193–196 (2019)CrossRef Homma, Y., Moro, S.: Recognition of landing target of UAV by vision using machine learning. J. Signal Process. 23(4), 193–196 (2019)CrossRef
8.
go back to reference Madokoro, H., Kainuma, A., Sato, K.: Non-rectangular RoI extraction and machine learning based multiple object recognition used for time-series areal images obtained using MAV. Procedia Comput. Sci. 126, 462–471 (2018)CrossRef Madokoro, H., Kainuma, A., Sato, K.: Non-rectangular RoI extraction and machine learning based multiple object recognition used for time-series areal images obtained using MAV. Procedia Comput. Sci. 126, 462–471 (2018)CrossRef
9.
go back to reference Nguyen, P.H., Arsalan, M., Koo, J.H., Naqvi, R.A., Truong, N.Q., Park, K.R.: LightDenseYOLO: a fast and accurate marker tracker for autonomous UAV landing by visible light camera sensor on drone. Sensors 18(6), 1703 (2018)CrossRef Nguyen, P.H., Arsalan, M., Koo, J.H., Naqvi, R.A., Truong, N.Q., Park, K.R.: LightDenseYOLO: a fast and accurate marker tracker for autonomous UAV landing by visible light camera sensor on drone. Sensors 18(6), 1703 (2018)CrossRef
10.
11.
go back to reference Polvara, R., et al.: Toward end-to-end control for UAV autonomous landing via deep reinforcement learning. In: 2018 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 115–123. IEEE (2018) Polvara, R., et al.: Toward end-to-end control for UAV autonomous landing via deep reinforcement learning. In: 2018 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 115–123. IEEE (2018)
12.
go back to reference Polvara, R., Sharma, S., Wan, J., Manning, A., Sutton, R.: Autonomous vehicular landings on the deck of an unmanned surface vehicle using deep reinforcement learning. Robotica 37(11), 1867–1882 (2019)CrossRef Polvara, R., Sharma, S., Wan, J., Manning, A., Sutton, R.: Autonomous vehicular landings on the deck of an unmanned surface vehicle using deep reinforcement learning. Robotica 37(11), 1867–1882 (2019)CrossRef
13.
go back to reference Price, E.: Deep neural network-based cooperative visual tracking through multiple micro aerial vehicles. IEEE Robot. Autom. Lett. 3(4), 3193–3200 (2018)CrossRef Price, E.: Deep neural network-based cooperative visual tracking through multiple micro aerial vehicles. IEEE Robot. Autom. Lett. 3(4), 3193–3200 (2018)CrossRef
14.
go back to reference Recker, S., Gribble, C., Butkiewicz, M.: Autonomous precision landing for the joint tactical aerial resupply vehicle. In: 2018 IEEE Applied Imagery Pattern Recognition Workshop (AIPR), pp. 1–8. IEEE (2018) Recker, S., Gribble, C., Butkiewicz, M.: Autonomous precision landing for the joint tactical aerial resupply vehicle. In: 2018 IEEE Applied Imagery Pattern Recognition Workshop (AIPR), pp. 1–8. IEEE (2018)
16.
go back to reference Rojas-Perez, L.O., Munguia-Silva, R., Martinez-Carranza, J.: Real-time landing zone detection for UAVs using single aerial images. In: Watkins, S. (ed.) 10th International Micro Air Vehicle Competition and Conference, Melbourne, Australia, pp. 243–248, November 2018 Rojas-Perez, L.O., Munguia-Silva, R., Martinez-Carranza, J.: Real-time landing zone detection for UAVs using single aerial images. In: Watkins, S. (ed.) 10th International Micro Air Vehicle Competition and Conference, Melbourne, Australia, pp. 243–248, November 2018
17.
go back to reference Skoczylas, M.: Vision analysis system for autonomous landing of micro drone. Acta Mechanica et Automatica 8(4), 199–203 (2014)CrossRef Skoczylas, M.: Vision analysis system for autonomous landing of micro drone. Acta Mechanica et Automatica 8(4), 199–203 (2014)CrossRef
18.
go back to reference Truong, N.Q., Nguyen, P.H., Nam, S.H., Park, K.R.: Deep learning-based super-resolution reconstruction and marker detection for drone landing. IEEE Access 7, 61639–61655 (2019)CrossRef Truong, N.Q., Nguyen, P.H., Nam, S.H., Park, K.R.: Deep learning-based super-resolution reconstruction and marker detection for drone landing. IEEE Access 7, 61639–61655 (2019)CrossRef
19.
go back to reference Xu, Y., Liu, Z., Wang, X.: Monocular vision based autonomous landing of quadrotor through deep reinforcement learning. In: 2018 37th Chinese Control Conference (CCC), pp. 10014–10019. IEEE (2018) Xu, Y., Liu, Z., Wang, X.: Monocular vision based autonomous landing of quadrotor through deep reinforcement learning. In: 2018 37th Chinese Control Conference (CCC), pp. 10014–10019. IEEE (2018)
20.
go back to reference Xu, Y., Zhang, Y., Liu, H., Wang, X.: Deep learning for UAV autonomous landing based on self-built image dataset. In: Eleventh International Conference on Machine Vision (ICMV 2018), vol. 11041, p. 110412I. International Society for Optics and Photonics (2019) Xu, Y., Zhang, Y., Liu, H., Wang, X.: Deep learning for UAV autonomous landing based on self-built image dataset. In: Eleventh International Conference on Machine Vision (ICMV 2018), vol. 11041, p. 110412I. International Society for Optics and Photonics (2019)
21.
go back to reference Yang, S., Scherer, S.A., Schauwecker, K., Zell, A.: Onboard monocular vision for landing of an MAV on a landing site specified by a single reference image. In: 2013 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 318–325. IEEE (2013) Yang, S., Scherer, S.A., Schauwecker, K., Zell, A.: Onboard monocular vision for landing of an MAV on a landing site specified by a single reference image. In: 2013 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 318–325. IEEE (2013)
23.
go back to reference Yu, L.: Deep learning for vision-based micro aerial vehicle autonomous landing. Int. J. Micro Air Veh. 10(2), 171–185 (2018)CrossRef Yu, L.: Deep learning for vision-based micro aerial vehicle autonomous landing. Int. J. Micro Air Veh. 10(2), 171–185 (2018)CrossRef
24.
go back to reference Zhao, Y., Pei, H.: An improved vision-based algorithm for unmanned aerial vehicles autonomous landing. Phys. Procedia 33, 935–941 (2012)CrossRef Zhao, Y., Pei, H.: An improved vision-based algorithm for unmanned aerial vehicles autonomous landing. Phys. Procedia 33, 935–941 (2012)CrossRef
Metadata
Title
Onboard CNN-Based Processing for Target Detection and Autonomous Landing for MAVs
Authors
A. A. Cabrera-Ponce
J. Martinez-Carranza
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-49076-8_19

Premium Partner