Skip to main content
Top

2016 | OriginalPaper | Chapter

One-Dimensional Carbon Nanostructures: Low-Temperature Chemical Vapor Synthesis and Applications

Authors : Yao Ma, Nianjun Yang, Xin Jiang

Published in: Carbon Nanoparticles and Nanostructures

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Chemical vapor deposition (CVD) is a powerful method to synthesize various carbon nanostructures (e.g., carbon nanotubes). A conventional CVD process has to be carried out at the temperatures over 600 °C. To extend the applications of carbon nanostructures, for example in the semiconductor industry, low-temperature synthesis processes are thus always pursued. In this chapter we review the CVD growth of carbon nanostructures at low temperatures (<450 °C). These growth processes are discussed in detail with respect to the applied catalyst system, carbon source, reaction atmosphere, catalyst faces, morphology control as well as unique structural characteristics of grown products. For the low-temperature CVD growth, catalytic reaction occurring on the low index faces of a metal catalyst is a crucial issue, and the growth is rate-limited by surface diffusion. Instead of the classical Vapor-Liquid-Solid (VLS) growth mechanism, the growth mechanism at low temperatures is interpreted with a novel Vapor-Facet-Solid (VFS) mechanism. Due to their unique features, the synthesized carbon nanostructures are promising to be applied for interconnects in large-scale integrated circuits, field emission, microwave adsorption, and as the anode material of lithium ion secondary battery, etc.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference J. Hone, M.C. Llaguno, N.M. Nemes, A.T. Johnson, J.E. Fischer, D.A. Walters, M.J. Casavant, J. Schmidt, R.E. Smalley, Electrical and thermal transport properties of magnetically aligned single walt carbon nanotube films. Appl. Phys. Lett. 77(5), 666–668 (2000). doi:10.1063/1.127079 CrossRef J. Hone, M.C. Llaguno, N.M. Nemes, A.T. Johnson, J.E. Fischer, D.A. Walters, M.J. Casavant, J. Schmidt, R.E. Smalley, Electrical and thermal transport properties of magnetically aligned single walt carbon nanotube films. Appl. Phys. Lett. 77(5), 666–668 (2000). doi:10.​1063/​1.​127079 CrossRef
5.
go back to reference J.L. Hutchison, N.A. Kiselev, E.P. Krinichnaya, A.V. Krestinin, R.O. Loutfy, A.P. Morawsky, V.E. Muradyan, E.D. Obraztsova, J. Sloan, S.V. Terekhov, D.N. Zakharov, Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method. Carbon 39(5), 761–770 (2001). doi:10.1016/s0008-6223(00)00187-1 CrossRef J.L. Hutchison, N.A. Kiselev, E.P. Krinichnaya, A.V. Krestinin, R.O. Loutfy, A.P. Morawsky, V.E. Muradyan, E.D. Obraztsova, J. Sloan, S.V. Terekhov, D.N. Zakharov, Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method. Carbon 39(5), 761–770 (2001). doi:10.​1016/​s0008-6223(00)00187-1 CrossRef
7.
go back to reference C.D. Scott, S. Arepalli, P. Nikolaev, R.E. Smalley, Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Appl. Phys. A Mater. Sci. Process. 72(5), 573–580 (2001). doi:10.1007/s003390100761 CrossRef C.D. Scott, S. Arepalli, P. Nikolaev, R.E. Smalley, Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Appl. Phys. A Mater. Sci. Process. 72(5), 573–580 (2001). doi:10.​1007/​s003390100761 CrossRef
8.
go back to reference Y. Zhang, S. Iijima, Formation of single-wall carbon nanotubes by laser ablation of fullerenes at low temperature. Appl. Phys. Lett. 75(20), 3087–3089 (1999). doi:10.1063/1.125239 CrossRef Y. Zhang, S. Iijima, Formation of single-wall carbon nanotubes by laser ablation of fullerenes at low temperature. Appl. Phys. Lett. 75(20), 3087–3089 (1999). doi:10.​1063/​1.​125239 CrossRef
10.
11.
go back to reference S. Motojima, Q.Q. Chen, Three-dimensional growth mechanism of cosmo-mimetic carbon microcoils obtained by chemical vapor deposition. J. Appl. Phys. 85(7), 3919–3921 (1999). doi:10.1063/1.369765 CrossRef S. Motojima, Q.Q. Chen, Three-dimensional growth mechanism of cosmo-mimetic carbon microcoils obtained by chemical vapor deposition. J. Appl. Phys. 85(7), 3919–3921 (1999). doi:10.​1063/​1.​369765 CrossRef
13.
go back to reference X.S. Qi, W. Zhong, Y. Deng, C.T. Au, Y.W. Du, Characterization and magnetic properties of helical carbon nanotubes and carbon nanobelts synthesized in acetylene decomposition over Fe–Cu nanoparticles at 450 °C. J. Phys. Chem. C 113(36), 15934–15940 (2009). doi:10.1021/jp905387v CrossRef X.S. Qi, W. Zhong, Y. Deng, C.T. Au, Y.W. Du, Characterization and magnetic properties of helical carbon nanotubes and carbon nanobelts synthesized in acetylene decomposition over Fe–Cu nanoparticles at 450 °C. J. Phys. Chem. C 113(36), 15934–15940 (2009). doi:10.​1021/​jp905387v CrossRef
14.
go back to reference A.M. Cassell, J.A. Raymakers, J. Kong, H.J. Dai, Large scale CVD synthesis of single-walled carbon nanotubes. J. Phys. Chem. B 103(31), 6484–6492 (1999). doi:10.1021/jp990957s CrossRef A.M. Cassell, J.A. Raymakers, J. Kong, H.J. Dai, Large scale CVD synthesis of single-walled carbon nanotubes. J. Phys. Chem. B 103(31), 6484–6492 (1999). doi:10.​1021/​jp990957s CrossRef
15.
go back to reference E. Couteau, K. Hernadi, J.W. Seo, L. Thien-Nga, C. Miko, R. Gaal, L. Forro, CVD synthesis of high-purity multiwalled carbon nanotubes using CaCO3 catalyst support for large-scale production. Chem. Phys. Lett. 378(1–2), 9–17 (2003). doi:10.1016/s0009-2614(03)01218-1 CrossRef E. Couteau, K. Hernadi, J.W. Seo, L. Thien-Nga, C. Miko, R. Gaal, L. Forro, CVD synthesis of high-purity multiwalled carbon nanotubes using CaCO3 catalyst support for large-scale production. Chem. Phys. Lett. 378(1–2), 9–17 (2003). doi:10.​1016/​s0009-2614(03)01218-1 CrossRef
18.
go back to reference A. de Lucas, P.B. Garcia, A. Garrido, A. Romero, J.L. Valverde, Catalytic synthesis of carbon nanofibers with different graphene plane alignments using Ni deposited on iron pillared clays. Appl. Catal. A Gen. 301(1), 123–132 (2006). doi:10.1016/j.apcata.2005.11.026 CrossRef A. de Lucas, P.B. Garcia, A. Garrido, A. Romero, J.L. Valverde, Catalytic synthesis of carbon nanofibers with different graphene plane alignments using Ni deposited on iron pillared clays. Appl. Catal. A Gen. 301(1), 123–132 (2006). doi:10.​1016/​j.​apcata.​2005.​11.​026 CrossRef
19.
go back to reference H. Cui, O. Zhou, B.R. Stoner, Deposition of aligned bamboo-like carbon nanotubes via microwave plasma enhanced chemical vapor deposition. J. Appl. Phys. 88(10), 6072–6074 (2000). doi:10.1063/1.1320024 CrossRef H. Cui, O. Zhou, B.R. Stoner, Deposition of aligned bamboo-like carbon nanotubes via microwave plasma enhanced chemical vapor deposition. J. Appl. Phys. 88(10), 6072–6074 (2000). doi:10.​1063/​1.​1320024 CrossRef
20.
22.
go back to reference M. Lin, J.P.Y. Tan, C. Boothroyd, K.P. Loh, E.S. Tok, Y.L. Foo, Dynamical observation of bamboo-like carbon nanotube growth. Nano Lett. 7(8), 2234–2238 (2007). doi:10.1021/nl070681x CrossRef M. Lin, J.P.Y. Tan, C. Boothroyd, K.P. Loh, E.S. Tok, Y.L. Foo, Dynamical observation of bamboo-like carbon nanotube growth. Nano Lett. 7(8), 2234–2238 (2007). doi:10.​1021/​nl070681x CrossRef
25.
go back to reference M.J. de Andrede, M.D. Lima, C.P. Bergmann, G.D. Ramminger, N.M. Balzaretti, T.M.H. Costa, M.R. Gallas, Carbon nanotube/silica composites obtained by sol-gel and high-pressure techniques. Nanotechnology 19(26), 265607 (2008). doi:10.1088/0957-4484/19/26/265607 CrossRef M.J. de Andrede, M.D. Lima, C.P. Bergmann, G.D. Ramminger, N.M. Balzaretti, T.M.H. Costa, M.R. Gallas, Carbon nanotube/silica composites obtained by sol-gel and high-pressure techniques. Nanotechnology 19(26), 265607 (2008). doi:10.​1088/​0957-4484/​19/​26/​265607 CrossRef
26.
go back to reference R.R. Bacsa, C. Laurent, A. Peigney, W.S. Bacsa, T. Vaugien, A. Rousset, High specific surface area carbon nanotubes from catalytic chemical vapor deposition process. Chem. Phys. Lett. 323(5–6), 566–571 (2000). doi:10.1016/s0009-2614(00)00558-3 CrossRef R.R. Bacsa, C. Laurent, A. Peigney, W.S. Bacsa, T. Vaugien, A. Rousset, High specific surface area carbon nanotubes from catalytic chemical vapor deposition process. Chem. Phys. Lett. 323(5–6), 566–571 (2000). doi:10.​1016/​s0009-2614(00)00558-3 CrossRef
27.
go back to reference J.P. Pinheiro, M.C. Schouler, P. Gadelle, Nanotubes and nanofilaments from carbon monoxide disproportionation over Co/MgO catalysts I. Growth versus catalyst state. Carbon 41(15), 2949–2959 (2003). doi:10.1016/s0008-6223(03)00410-x CrossRef J.P. Pinheiro, M.C. Schouler, P. Gadelle, Nanotubes and nanofilaments from carbon monoxide disproportionation over Co/MgO catalysts I. Growth versus catalyst state. Carbon 41(15), 2949–2959 (2003). doi:10.​1016/​s0008-6223(03)00410-x CrossRef
28.
go back to reference Y.M. Li, W. Kim, Y.G. Zhang, M. Rolandi, D.W. Wang, H.J. Dai, Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes. J. Phys. Chem. B 105(46), 11424–11431 (2001). doi:10.1021/jp012085b CrossRef Y.M. Li, W. Kim, Y.G. Zhang, M. Rolandi, D.W. Wang, H.J. Dai, Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes. J. Phys. Chem. B 105(46), 11424–11431 (2001). doi:10.​1021/​jp012085b CrossRef
29.
go back to reference D. Venegoni, P. Serp, R. Feurer, Y. Kihn, C. Vahlas, P. Kalck, Parametric study for the growth of carbon nanotubes by catalytic chemical vapor deposition in a fluidized bed reactor. Carbon 40(10), 1799–1807 (2002). doi:10.1016/s0008-6223(02)00057-x CrossRef D. Venegoni, P. Serp, R. Feurer, Y. Kihn, C. Vahlas, P. Kalck, Parametric study for the growth of carbon nanotubes by catalytic chemical vapor deposition in a fluidized bed reactor. Carbon 40(10), 1799–1807 (2002). doi:10.​1016/​s0008-6223(02)00057-x CrossRef
31.
go back to reference H. Ago, T. Komatsu, S. Ohshima, Y. Kuriki, M. Yumura, Dispersion of metal nanoparticles for aligned carbon nanotube arrays. Appl. Phys. Lett. 77(1), 79–81 (2000). doi:10.1063/1.126883 CrossRef H. Ago, T. Komatsu, S. Ohshima, Y. Kuriki, M. Yumura, Dispersion of metal nanoparticles for aligned carbon nanotube arrays. Appl. Phys. Lett. 77(1), 79–81 (2000). doi:10.​1063/​1.​126883 CrossRef
32.
go back to reference Y. Li, J. Liu, Y.Q. Wang, Z.L. Wang, Preparation of monodispersed Fe–Mo nanoparticles as the catalyst for CVD synthesis of carbon nanotubes. Chem. Mater. 13(3), 1008–1014 (2001). doi:10.1021/cm000787s CrossRef Y. Li, J. Liu, Y.Q. Wang, Z.L. Wang, Preparation of monodispersed Fe–Mo nanoparticles as the catalyst for CVD synthesis of carbon nanotubes. Chem. Mater. 13(3), 1008–1014 (2001). doi:10.​1021/​cm000787s CrossRef
33.
36.
go back to reference N.G. Shang, W.I. Milne, X. Jiang, Tubular graphite cones with single-crystal nanotips and their antioxygenic properties. J. Am. Chem. Soc. 129(28), 8907–8911 (2007). doi:10.1021/ja071830g CrossRef N.G. Shang, W.I. Milne, X. Jiang, Tubular graphite cones with single-crystal nanotips and their antioxygenic properties. J. Am. Chem. Soc. 129(28), 8907–8911 (2007). doi:10.​1021/​ja071830g CrossRef
38.
go back to reference Y.G. Zhang, A.L. Chang, J. Cao, Q. Wang, W. Kim, Y.M. Li, N. Morris, E. Yenilmez, J. Kong, H.J. Dai, Electric-field-directed growth of aligned single-walled carbon nanotubes. Appl. Phys. Lett. 79(19), 3155–3157 (2001). doi:10.1063/1.1415412 CrossRef Y.G. Zhang, A.L. Chang, J. Cao, Q. Wang, W. Kim, Y.M. Li, N. Morris, E. Yenilmez, J. Kong, H.J. Dai, Electric-field-directed growth of aligned single-walled carbon nanotubes. Appl. Phys. Lett. 79(19), 3155–3157 (2001). doi:10.​1063/​1.​1415412 CrossRef
39.
40.
go back to reference R.S. Wagner, W.C. Ellis, Vapor-liquid-solid mechanism of single crystal growth (New method growth catalysis from impurity whisker epitaxial + large crystals Si E). Appl. Phys. Lett. 4(5), 89 (1964). doi:10.1063/1.1753975 CrossRef R.S. Wagner, W.C. Ellis, Vapor-liquid-solid mechanism of single crystal growth (New method growth catalysis from impurity whisker epitaxial + large crystals Si E). Appl. Phys. Lett. 4(5), 89 (1964). doi:10.​1063/​1.​1753975 CrossRef
42.
go back to reference M.A. Ermakova, D.Y. Ermakov, A.L. Chuvilin, G.G. Kuvshinov, Decomposition of methane over iron catalysts at the range of moderate temperatures: the influence of structure of the catalytic systems and the reaction conditions on the yield of carbon and morphology of carbon filaments. J. Catal. 201(2), 183–197 (2001). doi:10.1006/jcat.2001.3243 CrossRef M.A. Ermakova, D.Y. Ermakov, A.L. Chuvilin, G.G. Kuvshinov, Decomposition of methane over iron catalysts at the range of moderate temperatures: the influence of structure of the catalytic systems and the reaction conditions on the yield of carbon and morphology of carbon filaments. J. Catal. 201(2), 183–197 (2001). doi:10.​1006/​jcat.​2001.​3243 CrossRef
44.
go back to reference S. Tsunekawa, S. Ito, Y. Kawazoe, J.T. Wang, Critical size of the phase transition from cubic to tetragonal in pure zirconia nanoparticles. Nano Lett. 3(7), 871–875 (2003). doi:10.1021/ni034129t CrossRef S. Tsunekawa, S. Ito, Y. Kawazoe, J.T. Wang, Critical size of the phase transition from cubic to tetragonal in pure zirconia nanoparticles. Nano Lett. 3(7), 871–875 (2003). doi:10.​1021/​ni034129t CrossRef
45.
50.
go back to reference J.A. Lobo, G.H. Geiger, Thermodynamics and solubility of carbon in ferrite and ferritic Fe–Mo alloys. Metall. Trans. A Phys. Metall. Mater. Sci. 7(9), 1347–1357 (1976). doi:10.1007/bf02658820 CrossRef J.A. Lobo, G.H. Geiger, Thermodynamics and solubility of carbon in ferrite and ferritic Fe–Mo alloys. Metall. Trans. A Phys. Metall. Mater. Sci. 7(9), 1347–1357 (1976). doi:10.​1007/​bf02658820 CrossRef
52.
go back to reference T. Maruyama, K. Sato, Y. Mizutani, K. Tanioku, T. Shiraiwa, S. Naritsuka, Low-temperature synthesis of single-walled carbon nanotubes by alcohol gas source growth in high vacuum. J. Nanosci. Nanotechnol. 10(6), 4095–4101 (2010). doi:10.1166/jnn.2010.2000 CrossRef T. Maruyama, K. Sato, Y. Mizutani, K. Tanioku, T. Shiraiwa, S. Naritsuka, Low-temperature synthesis of single-walled carbon nanotubes by alcohol gas source growth in high vacuum. J. Nanosci. Nanotechnol. 10(6), 4095–4101 (2010). doi:10.​1166/​jnn.​2010.​2000 CrossRef
53.
go back to reference J. Highfield, Y.S. Loo, Z. Zhong, B. Grushko, Thermogravimetric studies of carbon nanofiber formation from methane at low temperature over Ni-based skeletal catalysts and the effect of substrate pre-carburization. Carbon 45(13), 2597–2607 (2007). doi:10.1016/j.carbon.2007.08.012 CrossRef J. Highfield, Y.S. Loo, Z. Zhong, B. Grushko, Thermogravimetric studies of carbon nanofiber formation from methane at low temperature over Ni-based skeletal catalysts and the effect of substrate pre-carburization. Carbon 45(13), 2597–2607 (2007). doi:10.​1016/​j.​carbon.​2007.​08.​012 CrossRef
54.
55.
go back to reference A. Magrez, J.W. Seo, R. Smajda, B. Korbely, J.C. Andresen, M. Mionic, S. Casimirius, L. Forro, Low-temperature, highly efficient growth of carbon nanotubes on functional materials by an oxidative dehydrogenation reaction. ACS Nano 4(7), 3702–3708 (2010). doi:10.1021/nn100279j CrossRef A. Magrez, J.W. Seo, R. Smajda, B. Korbely, J.C. Andresen, M. Mionic, S. Casimirius, L. Forro, Low-temperature, highly efficient growth of carbon nanotubes on functional materials by an oxidative dehydrogenation reaction. ACS Nano 4(7), 3702–3708 (2010). doi:10.​1021/​nn100279j CrossRef
56.
go back to reference N. Halonen, A. Sapi, L. Nagy, R. Puskas, A.-R. Leino, J. Maklin, J. Kukkola, G. Toth, M.-C. Wu, H.-C. Liao, W.-F. Su, A. Shchukarev, J.-P. Mikkola, A. Kukovecz, Z. Konya, K. Kordas, Low-temperature growth of multi-walled carbon nanotubes by thermal CVD. Physica Status Solidi B Basic Solid State Phys. 248(11), 2500–2503 (2011). doi:10.1002/pssb.201100137 CrossRef N. Halonen, A. Sapi, L. Nagy, R. Puskas, A.-R. Leino, J. Maklin, J. Kukkola, G. Toth, M.-C. Wu, H.-C. Liao, W.-F. Su, A. Shchukarev, J.-P. Mikkola, A. Kukovecz, Z. Konya, K. Kordas, Low-temperature growth of multi-walled carbon nanotubes by thermal CVD. Physica Status Solidi B Basic Solid State Phys. 248(11), 2500–2503 (2011). doi:10.​1002/​pssb.​201100137 CrossRef
57.
go back to reference O. Pitkanen, N. Halonen, A.R. Leino, J. Maklin, A. Dombovari, J.H. Lin, G. Toth, K. Kordas, Low-temperature growth of carbon nanotubes on bi- and tri-metallic catalyst templates. Top. Catal. 56(9–10), 522–526 (2013). doi:10.1007/s11244-013-0047-9 CrossRef O. Pitkanen, N. Halonen, A.R. Leino, J. Maklin, A. Dombovari, J.H. Lin, G. Toth, K. Kordas, Low-temperature growth of carbon nanotubes on bi- and tri-metallic catalyst templates. Top. Catal. 56(9–10), 522–526 (2013). doi:10.​1007/​s11244-013-0047-9 CrossRef
60.
go back to reference K. Aoki, T. Yamamoto, H. Furuta, T. Ikuno, S. Honda, M. Furuta, K. Oura, T. Hirao, Low-temperature growth of carbon nanofiber by thermal chemical vapor deposition using CuNi catalyst. Jpn. J. Appl. Phys. Part 1 Regular Pap. Brief Commun. Rev. Pap. 45(6A), 5329–5331 (2006). doi:10.1143/jjap.45.5329 CrossRef K. Aoki, T. Yamamoto, H. Furuta, T. Ikuno, S. Honda, M. Furuta, K. Oura, T. Hirao, Low-temperature growth of carbon nanofiber by thermal chemical vapor deposition using CuNi catalyst. Jpn. J. Appl. Phys. Part 1 Regular Pap. Brief Commun. Rev. Pap. 45(6A), 5329–5331 (2006). doi:10.​1143/​jjap.​45.​5329 CrossRef
61.
go back to reference N. Na, D.Y. Kim, Y.-G. So, Y. Ikuhara, S. Noda, Simple and engineered process yielding carbon nanotube arrays with 1.2 × 1013 cm−2 wall density on conductive underlayer at 400 °C. Carbon 81, 773–781 (2015). doi:10.1016/j.carbon.2014.10.023 CrossRef N. Na, D.Y. Kim, Y.-G. So, Y. Ikuhara, S. Noda, Simple and engineered process yielding carbon nanotube arrays with 1.2 × 1013 cm−2 wall density on conductive underlayer at 400 °C. Carbon 81, 773–781 (2015). doi:10.​1016/​j.​carbon.​2014.​10.​023 CrossRef
68.
71.
go back to reference Y. Qin, X. Jiang, Z.L. Cui, Low-temperature synthesis of amorphous carbon nanocoils via acetylene coupling on copper nanocrystal surfaces at 468 K: a reaction mechanism analysis. J. Phys. Chem. B 109(46), 21749–21754 (2005). doi:10.1021/jp054412b CrossRef Y. Qin, X. Jiang, Z.L. Cui, Low-temperature synthesis of amorphous carbon nanocoils via acetylene coupling on copper nanocrystal surfaces at 468 K: a reaction mechanism analysis. J. Phys. Chem. B 109(46), 21749–21754 (2005). doi:10.​1021/​jp054412b CrossRef
73.
go back to reference J.H. Xia, Growth of carbon nanofibers studied by using transmission electron microscopy. Shaker Verlag, D-52018 Aachen (2010) J.H. Xia, Growth of carbon nanofibers studied by using transmission electron microscopy. Shaker Verlag, D-52018 Aachen (2010)
75.
go back to reference Y.J. Tian, Z. Hu, Y. Yang, X.Z. Wang, X. Chen, H. Xu, Q. Wu, W.J. Ji, Y. Chen, In situ TA-MS study of the six-membered-ring-based growth of carbon nanotubes with benzene precursor. J. Am. Chem. Soc. 126(4), 1180–1183 (2004). doi:10.1021/ja037561i CrossRef Y.J. Tian, Z. Hu, Y. Yang, X.Z. Wang, X. Chen, H. Xu, Q. Wu, W.J. Ji, Y. Chen, In situ TA-MS study of the six-membered-ring-based growth of carbon nanotubes with benzene precursor. J. Am. Chem. Soc. 126(4), 1180–1183 (2004). doi:10.​1021/​ja037561i CrossRef
76.
go back to reference B. Zheng, C.G. Lu, G. Gu, A. Makarovski, G. Finkelstein, J. Liu, Efficient CVD growth of single-walled carbon nanotubes on surfaces using carbon monoxide precursor. Nano Lett. 2(8), 895–898 (2002). doi:10.1021/nl025634d CrossRef B. Zheng, C.G. Lu, G. Gu, A. Makarovski, G. Finkelstein, J. Liu, Efficient CVD growth of single-walled carbon nanotubes on surfaces using carbon monoxide precursor. Nano Lett. 2(8), 895–898 (2002). doi:10.​1021/​nl025634d CrossRef
77.
go back to reference A.J. Hart, A.H. Slocum, Rapid growth and flow-mediated nucleation of millimeter-scale aligned carbon nanotube structures from a thin-film catalyst. J. Phys. Chem. B. 110(16), 8250–8257 (2006). doi:10.1021/jp055498b CrossRef A.J. Hart, A.H. Slocum, Rapid growth and flow-mediated nucleation of millimeter-scale aligned carbon nanotube structures from a thin-film catalyst. J. Phys. Chem. B. 110(16), 8250–8257 (2006). doi:10.​1021/​jp055498b CrossRef
79.
go back to reference A.V. Vasenkov, D. Sengupta, M. Frenklach, Multiscale modeling catalytic decomposition of hydrocarbons during carbon nanotube growth. J. Phys. Chem. B. 113(7), 1877–1882 (2009). doi:10.1021/jp808346h CrossRef A.V. Vasenkov, D. Sengupta, M. Frenklach, Multiscale modeling catalytic decomposition of hydrocarbons during carbon nanotube growth. J. Phys. Chem. B. 113(7), 1877–1882 (2009). doi:10.​1021/​jp808346h CrossRef
80.
go back to reference G.D. Nessim, A. Al-Obeidi, H. Grisaru, E.S. Polsen, C.R. Oliver, T. Zimrin, A.J. Hart, D. Aurbach, C.V. Thompson, Synthesis of tall carpets of vertically aligned carbon nanotubes by in situ generation of water vapor through preheating of added oxygen. Carbon 50(11), 4002–4009 (2012). doi:10.1016/j.carbon.2012.04.043 CrossRef G.D. Nessim, A. Al-Obeidi, H. Grisaru, E.S. Polsen, C.R. Oliver, T. Zimrin, A.J. Hart, D. Aurbach, C.V. Thompson, Synthesis of tall carpets of vertically aligned carbon nanotubes by in situ generation of water vapor through preheating of added oxygen. Carbon 50(11), 4002–4009 (2012). doi:10.​1016/​j.​carbon.​2012.​04.​043 CrossRef
81.
83.
go back to reference M. Bansal, C. Lal, R. Srivastava, M.N. Kamalasanan, L.S. Tanwar, Comparison of structure and yield of multiwall carbon nanotubes produced by the CVD technique and a water assisted method. Physica B Condens. Matter 405(7), 1745–1749 (2010). doi:10.1016/j.physb.2010.01.031 CrossRef M. Bansal, C. Lal, R. Srivastava, M.N. Kamalasanan, L.S. Tanwar, Comparison of structure and yield of multiwall carbon nanotubes produced by the CVD technique and a water assisted method. Physica B Condens. Matter 405(7), 1745–1749 (2010). doi:10.​1016/​j.​physb.​2010.​01.​031 CrossRef
84.
go back to reference C.-S. Chen, C.-K. Hsieh, Oxygen-assisted low-pressure chemical vapor deposition for the low-temperature direct growth of graphitic nanofibers on fluorine-doped tin oxide glass as a counter electrode for dye-sensitized solar cell. Jpn. J. Appl. Phys. 53(11), 11RE02 (2014). doi:10.7567/jjap.53.11re02 C.-S. Chen, C.-K. Hsieh, Oxygen-assisted low-pressure chemical vapor deposition for the low-temperature direct growth of graphitic nanofibers on fluorine-doped tin oxide glass as a counter electrode for dye-sensitized solar cell. Jpn. J. Appl. Phys. 53(11), 11RE02 (2014). doi:10.​7567/​jjap.​53.​11re02
85.
go back to reference I.H. Son, H.J. Song, S. Kwon, A. Bachmatiuk, S.J. Lee, A. Benayad, J.H. Park, J.-Y. Choi, H. Chang, M.H. Ruemmeli, CO2 enhanced chemical vapor deposition growth of few-layer graphene over NiOx. ACS Nano 8(9), 9224–9232 (2014). doi:10.1021/nn504342e CrossRef I.H. Son, H.J. Song, S. Kwon, A. Bachmatiuk, S.J. Lee, A. Benayad, J.H. Park, J.-Y. Choi, H. Chang, M.H. Ruemmeli, CO2 enhanced chemical vapor deposition growth of few-layer graphene over NiOx. ACS Nano 8(9), 9224–9232 (2014). doi:10.​1021/​nn504342e CrossRef
86.
go back to reference J.Q. Huang, Q. Zhang, M.Q. Zhao, F. Wei, Process intensification by CO2 for high quality carbon nanotube forest growth: double-walled carbon nanotube convexity or single-walled carbon nanotube bowls? Nano Res. 2(11), 872–881 (2009). doi:10.1007/s12274-009-9088-6 CrossRef J.Q. Huang, Q. Zhang, M.Q. Zhao, F. Wei, Process intensification by CO2 for high quality carbon nanotube forest growth: double-walled carbon nanotube convexity or single-walled carbon nanotube bowls? Nano Res. 2(11), 872–881 (2009). doi:10.​1007/​s12274-009-9088-6 CrossRef
87.
go back to reference Z. Zhu, H. Jiang, T. Susi, A.G. Nasibulin, E.I. Kauppinen, The use of NH3 to promote the production of large-diameter single-walled carbon nanotubes with a narrow (n, m) distribution. J. Am. Chem. Soc. 133(5), 1224–1227 (2011). doi:10.1021/ja1087634 CrossRef Z. Zhu, H. Jiang, T. Susi, A.G. Nasibulin, E.I. Kauppinen, The use of NH3 to promote the production of large-diameter single-walled carbon nanotubes with a narrow (n, m) distribution. J. Am. Chem. Soc. 133(5), 1224–1227 (2011). doi:10.​1021/​ja1087634 CrossRef
88.
go back to reference T. Susi, A.G. Nasibulin, P. Ayala, Y. Tian, Z. Zhu, H. Jiang, C. Roquelet, D. Garrot, J.-S. Lauret, E.I. Kauppinen, High quality SWCNT synthesis in the presence of NH3 using a vertical flow aerosol reactor. Physica Status Solidi B Basic Solid State Phys. 246(11–12), 2507–2510 (2009). doi:10.1002/pssb.200982338 CrossRef T. Susi, A.G. Nasibulin, P. Ayala, Y. Tian, Z. Zhu, H. Jiang, C. Roquelet, D. Garrot, J.-S. Lauret, E.I. Kauppinen, High quality SWCNT synthesis in the presence of NH3 using a vertical flow aerosol reactor. Physica Status Solidi B Basic Solid State Phys. 246(11–12), 2507–2510 (2009). doi:10.​1002/​pssb.​200982338 CrossRef
90.
go back to reference P.R. Davies, D. Edwards, D. Richards, Possible role for Cu(II) compounds in the oxidation of malonyl dichloride and HCl at Cu (110) surfaces. J. Phys. Chem. C 113(24), 10333–10336 (2009). doi:10.1021/jp903042f CrossRef P.R. Davies, D. Edwards, D. Richards, Possible role for Cu(II) compounds in the oxidation of malonyl dichloride and HCl at Cu (110) surfaces. J. Phys. Chem. C 113(24), 10333–10336 (2009). doi:10.​1021/​jp903042f CrossRef
91.
go back to reference Y. Ma, Vapor-facet-solid (VFS) mechanism: a new route for catalytic CVD growth of one-dimensional nanostructures at low temperature. Schriftenreihe der Arbeitsgruppe des Lehrstuhls für Oberfächen- und Werkstofftechnologie im Institut für Werkstofftechnik. 4 (2015) Y. Ma, Vapor-facet-solid (VFS) mechanism: a new route for catalytic CVD growth of one-dimensional nanostructures at low temperature. Schriftenreihe der Arbeitsgruppe des Lehrstuhls für Oberfächen- und Werkstofftechnologie im Institut für Werkstofftechnik. 4 (2015)
92.
93.
go back to reference A.X. Yin, X.Q. Min, Y.W. Zhang, C.H. Yan, Shape-selective synthesis and facet-dependent enhanced electrocatalytic activity and durability of monodisperse sub-10 nm Pt-Pd tetrahedrons and cubes. J. Am. Chem. Soc. 133(11), 3816–3819 (2011). doi:10.1021/ja200329p CrossRef A.X. Yin, X.Q. Min, Y.W. Zhang, C.H. Yan, Shape-selective synthesis and facet-dependent enhanced electrocatalytic activity and durability of monodisperse sub-10 nm Pt-Pd tetrahedrons and cubes. J. Am. Chem. Soc. 133(11), 3816–3819 (2011). doi:10.​1021/​ja200329p CrossRef
94.
go back to reference S. Mostafa, F. Behafarid, J.R. Croy, L.K. Ono, L. Li, J.C. Yang, A.I. Frenkel, B.R. Cuenya, Shape-dependent catalytic properties of Pt nanoparticles. J. Am. Chem. Soc. 132(44), 15714–15719 (2010). doi:10.1021/ja106679z CrossRef S. Mostafa, F. Behafarid, J.R. Croy, L.K. Ono, L. Li, J.C. Yang, A.I. Frenkel, B.R. Cuenya, Shape-dependent catalytic properties of Pt nanoparticles. J. Am. Chem. Soc. 132(44), 15714–15719 (2010). doi:10.​1021/​ja106679z CrossRef
95.
go back to reference H. Zhang, M.S. Jin, Y.J. Xiong, B. Lim, Y.N. Xia, Shape-controlled synthesis of Pd nanocrystals and their catalytic applications. Acc. Chem. Res. 46(8), 1783–1794 (2013). doi:10.1021/ar300209w CrossRef H. Zhang, M.S. Jin, Y.J. Xiong, B. Lim, Y.N. Xia, Shape-controlled synthesis of Pd nanocrystals and their catalytic applications. Acc. Chem. Res. 46(8), 1783–1794 (2013). doi:10.​1021/​ar300209w CrossRef
96.
go back to reference R. Narayanan, M.A. El-Sayed, Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability. J. Phys. Chem. B. 109(26), 12663–12676 (2005). doi:10.1021/jp051066p CrossRef R. Narayanan, M.A. El-Sayed, Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability. J. Phys. Chem. B. 109(26), 12663–12676 (2005). doi:10.​1021/​jp051066p CrossRef
97.
98.
go back to reference Y.W. Jun, J.S. Choi, J. Cheon, Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angewandte Chemie International Edition 45(21), 3414–3439 (2006). doi:10.1002/anie.200503821 CrossRef Y.W. Jun, J.S. Choi, J. Cheon, Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angewandte Chemie International Edition 45(21), 3414–3439 (2006). doi:10.​1002/​anie.​200503821 CrossRef
99.
go back to reference Y.N. Xia, Y.J. Xiong, B. Lim, S.E. Skrabalak, Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angewandte Chemie International Edition 48(1), 60–103 (2009). doi:10.1002/anie.200802248 CrossRef Y.N. Xia, Y.J. Xiong, B. Lim, S.E. Skrabalak, Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angewandte Chemie International Edition 48(1), 60–103 (2009). doi:10.​1002/​anie.​200802248 CrossRef
103.
go back to reference J. Li, C. Papadopoulos, J. Xu, Nanoelectronics—growing Y-junction carbon nanotubes. Nature 402(6759), 253–254 (1999). doi:10.1038/46214 J. Li, C. Papadopoulos, J. Xu, Nanoelectronics—growing Y-junction carbon nanotubes. Nature 402(6759), 253–254 (1999). doi:10.​1038/​46214
104.
go back to reference H. Takikawa, M. Yatsuki, R. Miyano, M. Nagayama, T. Sakakibara, S. Itoh, Y. Ando, Amorphous carbon fibrilliform nanomaterials prepared by chemical vapor deposition. Jpn. J. Appl. Phys. Part 1 Regular Pap. Short Notes Rev. Pap. 39(9A), 5177–5179 (2000). doi:10.1143/jjap.39.5177 H. Takikawa, M. Yatsuki, R. Miyano, M. Nagayama, T. Sakakibara, S. Itoh, Y. Ando, Amorphous carbon fibrilliform nanomaterials prepared by chemical vapor deposition. Jpn. J. Appl. Phys. Part 1 Regular Pap. Short Notes Rev. Pap. 39(9A), 5177–5179 (2000). doi:10.​1143/​jjap.​39.​5177
105.
go back to reference K. Inomata, N. Aoki, H. Koinuma, Production of fullerenes by low-temperature plasma chemical-vapor-deposition under atmospheric-pressure. Jpn. J. Appl. Phys. Part 2 Lett. 33(2A), L197–L199 (1994). doi:10.1143/jjap.33.l197 K. Inomata, N. Aoki, H. Koinuma, Production of fullerenes by low-temperature plasma chemical-vapor-deposition under atmospheric-pressure. Jpn. J. Appl. Phys. Part 2 Lett. 33(2A), L197–L199 (1994). doi:10.​1143/​jjap.​33.​l197
106.
go back to reference Y. Suda, Y. Shimizu, M. Ozaki, H. Tanoue, H. Takikawa, H. Ue, K. Shimizu, Y. Umeda, Electrochemical properties of fuel cell catalysts loaded on carbon nanomaterials with different geometries. Mater. Today Commun. 3, 96–103 (2015). doi:10.1016/j.mtcomm.2015.02.003 CrossRef Y. Suda, Y. Shimizu, M. Ozaki, H. Tanoue, H. Takikawa, H. Ue, K. Shimizu, Y. Umeda, Electrochemical properties of fuel cell catalysts loaded on carbon nanomaterials with different geometries. Mater. Today Commun. 3, 96–103 (2015). doi:10.​1016/​j.​mtcomm.​2015.​02.​003 CrossRef
107.
go back to reference G. Wang, G. Ran, G. Wan, P. Yang, Z. Gao, S. Lin, C. Fu, Y. Qin, Size-selective catalytic growth of nearly 100 % pure carbon nanocoils with copper nanoparticles produced by atomic layer deposition. ACS Nano 8(5), 5330–5338 (2014). doi:10.1021/nn501709h CrossRef G. Wang, G. Ran, G. Wan, P. Yang, Z. Gao, S. Lin, C. Fu, Y. Qin, Size-selective catalytic growth of nearly 100 % pure carbon nanocoils with copper nanoparticles produced by atomic layer deposition. ACS Nano 8(5), 5330–5338 (2014). doi:10.​1021/​nn501709h CrossRef
108.
go back to reference G. Wang, Z. Gao, S. Tang, C. Chen, F. Duan, S. Zhao, S. Lin, Y. Feng, L. Zhou, Y. Qin, Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 6(12), 11009–11017 (2012). doi:10.1021/nn304630h CrossRef G. Wang, Z. Gao, S. Tang, C. Chen, F. Duan, S. Zhao, S. Lin, Y. Feng, L. Zhou, Y. Qin, Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 6(12), 11009–11017 (2012). doi:10.​1021/​nn304630h CrossRef
110.
go back to reference D. Chen, K.O. Christensen, E. Ochoa-Fernandez, Z.X. Yu, B. Totdal, N. Latorre, A. Monzon, A. Holmen, Synthesis of carbon nanofibers: effects of Ni crystal size during methane decomposition. J. Catal. 229(1), 82–96 (2005). doi:10.1016/j.jcat.2004.10.017 CrossRef D. Chen, K.O. Christensen, E. Ochoa-Fernandez, Z.X. Yu, B. Totdal, N. Latorre, A. Monzon, A. Holmen, Synthesis of carbon nanofibers: effects of Ni crystal size during methane decomposition. J. Catal. 229(1), 82–96 (2005). doi:10.​1016/​j.​jcat.​2004.​10.​017 CrossRef
111.
go back to reference P.L. Hansen, J.B. Wagner, S. Helveg, J.R. Rostrup-Nielsen, B.S. Clausen, H. Topsoe, Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295(5562), 2053–2055 (2002). doi:10.1126/science.1069325 CrossRef P.L. Hansen, J.B. Wagner, S. Helveg, J.R. Rostrup-Nielsen, B.S. Clausen, H. Topsoe, Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295(5562), 2053–2055 (2002). doi:10.​1126/​science.​1069325 CrossRef
113.
go back to reference J.J. Lander, H.E. Kern, A.L. Beach, Solubility and diffusion coefficient of carbon in nickel-reaction rates of nickel-carbon alloys with barium oxide. J. Appl. Phys. 23(12), 1305–1309 (1952). doi:10.1063/1.1702064 CrossRef J.J. Lander, H.E. Kern, A.L. Beach, Solubility and diffusion coefficient of carbon in nickel-reaction rates of nickel-carbon alloys with barium oxide. J. Appl. Phys. 23(12), 1305–1309 (1952). doi:10.​1063/​1.​1702064 CrossRef
116.
117.
go back to reference S. Helveg, C. Lopez-Cartes, J. Sehested, P.L. Hansen, B.S. Clausen, J.R. Rostrup-Nielsen, F. Abild-Pedersen, J.K. Norskov, Atomic-scale imaging of carbon nanofibre growth. Nature 427(6973), 426–429 (2004). doi:10.1038/nature02278 CrossRef S. Helveg, C. Lopez-Cartes, J. Sehested, P.L. Hansen, B.S. Clausen, J.R. Rostrup-Nielsen, F. Abild-Pedersen, J.K. Norskov, Atomic-scale imaging of carbon nanofibre growth. Nature 427(6973), 426–429 (2004). doi:10.​1038/​nature02278 CrossRef
119.
go back to reference J. Dvorak, J. Hrbek, Adsorbate ordering effects in the trimerization reaction of acetylene on Cu (100). J. Phys. Chem. B. 102(47), 9443–9450 (1998). doi:10.1021/jp981956n CrossRef J. Dvorak, J. Hrbek, Adsorbate ordering effects in the trimerization reaction of acetylene on Cu (100). J. Phys. Chem. B. 102(47), 9443–9450 (1998). doi:10.​1021/​jp981956n CrossRef
121.
go back to reference G. Kyriakou, J. Kim, M.S. Tikhov, N. Macleod, R.M. Lambert, Acetylene coupling on Cu (111): formation of butadiene, benzene, and cyclooctatetraene. J. Phys. Chem. B. 109(21), 10952–10956 (2005). doi:10.1021/jp044213c CrossRef G. Kyriakou, J. Kim, M.S. Tikhov, N. Macleod, R.M. Lambert, Acetylene coupling on Cu (111): formation of butadiene, benzene, and cyclooctatetraene. J. Phys. Chem. B. 109(21), 10952–10956 (2005). doi:10.​1021/​jp044213c CrossRef
122.
go back to reference W. Alter, D. Borgmann, M. Stadelmann, M. Worn, G. Wedler, Interaction of acetylene with films of the transition-metals iron, nickel, and palladium. J. Am. Chem. Soc. 116(22), 10041–10049 (1994). doi:10.1021/ja00101a024 CrossRef W. Alter, D. Borgmann, M. Stadelmann, M. Worn, G. Wedler, Interaction of acetylene with films of the transition-metals iron, nickel, and palladium. J. Am. Chem. Soc. 116(22), 10041–10049 (1994). doi:10.​1021/​ja00101a024 CrossRef
123.
go back to reference F. Zaera, R.B. Hall, High-resolution electron energy loss spectroscopy and thermal programmed desorption studies of the chemisorption and thermal decomposition of ethylene and acetylene on Ni (100) single-crystal surfaces. J. Phys. Chem. 91(16), 4318–4323 (1987). doi:10.1021/j100300a023 CrossRef F. Zaera, R.B. Hall, High-resolution electron energy loss spectroscopy and thermal programmed desorption studies of the chemisorption and thermal decomposition of ethylene and acetylene on Ni (100) single-crystal surfaces. J. Phys. Chem. 91(16), 4318–4323 (1987). doi:10.​1021/​j100300a023 CrossRef
124.
go back to reference J.C. Bertolini, J. Massardier, G. Dalmaiimelik, Evolution of adsorbed species during C2H2 adsorption on Ni (111) in relation to their vibrational spectra. J. Chem. Soc. Faraday Trans. I. 74, 1720–1725 (1978). doi:10.1039/f19787401720 CrossRef J.C. Bertolini, J. Massardier, G. Dalmaiimelik, Evolution of adsorbed species during C2H2 adsorption on Ni (111) in relation to their vibrational spectra. J. Chem. Soc. Faraday Trans. I. 74, 1720–1725 (1978). doi:10.​1039/​f19787401720 CrossRef
126.
go back to reference A. Benninghoven, P. Beckmann, D. Greifendorf, M. Schemmer, Investigation of surface-reactions by SIMS and TDMS—interaction of ethylene and acetylene with hydrogen on polycrystalline nickel. Appl. Surf. Sci. 6(3–4), 288–296 (1980). doi:10.1016/0378-5963(80)90018-5 CrossRef A. Benninghoven, P. Beckmann, D. Greifendorf, M. Schemmer, Investigation of surface-reactions by SIMS and TDMS—interaction of ethylene and acetylene with hydrogen on polycrystalline nickel. Appl. Surf. Sci. 6(3–4), 288–296 (1980). doi:10.​1016/​0378-5963(80)90018-5 CrossRef
127.
129.
go back to reference B. Lesiak, A. Jablonski, W. Palczewska, I. Kulszewiczbajer, M. Zagorska, Identification of the carbonaceous residues at nickel and platinum surfaces on the basis of the carbon Kll spectra. Surf. Interf. Anal. 18(6), 430–438 (1992). doi:10.1002/sia.740180610 CrossRef B. Lesiak, A. Jablonski, W. Palczewska, I. Kulszewiczbajer, M. Zagorska, Identification of the carbonaceous residues at nickel and platinum surfaces on the basis of the carbon Kll spectra. Surf. Interf. Anal. 18(6), 430–438 (1992). doi:10.​1002/​sia.​740180610 CrossRef
132.
134.
go back to reference O.A. Louchev, Y. Sato, H. Kanda, Multiwall carbon nanotubes: self-organization and inhibition of step-flow growth kinetics. J. Appl. Phys. 89(6), 3438–3446 (2001). doi:10.1063/1.1347407 CrossRef O.A. Louchev, Y. Sato, H. Kanda, Multiwall carbon nanotubes: self-organization and inhibition of step-flow growth kinetics. J. Appl. Phys. 89(6), 3438–3446 (2001). doi:10.​1063/​1.​1347407 CrossRef
136.
go back to reference O.A. Louchev, T. Laude, Y. Sato, H. Kanda, Diffusion-controlled kinetics of carbon nanotube forest growth by chemical vapor deposition. J. Chem. Phys. 118(16), 7622–7634 (2003). doi:10.1063/1.1562195 CrossRef O.A. Louchev, T. Laude, Y. Sato, H. Kanda, Diffusion-controlled kinetics of carbon nanotube forest growth by chemical vapor deposition. J. Chem. Phys. 118(16), 7622–7634 (2003). doi:10.​1063/​1.​1562195 CrossRef
138.
140.
141.
go back to reference P.B. Amama, O. Ogebule, M.R. Maschmann, T.D. Sands, T.S. Fisher, Dendrimer-assisted low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition. Chem. Commun. 27, 2899–2901 (2006). doi:10.1039/b602623k CrossRef P.B. Amama, O. Ogebule, M.R. Maschmann, T.D. Sands, T.S. Fisher, Dendrimer-assisted low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition. Chem. Commun. 27, 2899–2901 (2006). doi:10.​1039/​b602623k CrossRef
142.
143.
go back to reference S. Hofmann, C. Ducati, J. Robertson, B. Kleinsorge, Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 83(1), 135–137 (2003). doi:10.1063/1.1589187 CrossRef S. Hofmann, C. Ducati, J. Robertson, B. Kleinsorge, Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 83(1), 135–137 (2003). doi:10.​1063/​1.​1589187 CrossRef
144.
go back to reference T.M. Minea, S. Point, A. Granier, M. Touzeau, Room temperature synthesis of carbon nanofibers containing nitrogen by plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 85(7), 1244–1246 (2004). doi:10.1063/1.1781352 CrossRef T.M. Minea, S. Point, A. Granier, M. Touzeau, Room temperature synthesis of carbon nanofibers containing nitrogen by plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 85(7), 1244–1246 (2004). doi:10.​1063/​1.​1781352 CrossRef
146.
go back to reference Y. Ishikawa, K. Ishizuka, Growth of single-walled carbon nanotubes by hot-filament assisted chemical vapor deposition below 500 °C. Appl. Phys. Express 2(4), 3 (2009). doi:10.1143/apex.2.045001 Y. Ishikawa, K. Ishizuka, Growth of single-walled carbon nanotubes by hot-filament assisted chemical vapor deposition below 500 °C. Appl. Phys. Express 2(4), 3 (2009). doi:10.​1143/​apex.​2.​045001
148.
go back to reference Y. Ishikawa, H. Jinbo, Synthesis of multiwalled carbon nanotubes at temperatures below 300 °C by hot-filament assisted chemical vapor deposition. Jpn. J. Appl. Phys. Part 2 Lett. Express Lett. 44(12–15), L394–L397 (2005). doi:10.1143/jjap.44.l394 Y. Ishikawa, H. Jinbo, Synthesis of multiwalled carbon nanotubes at temperatures below 300 °C by hot-filament assisted chemical vapor deposition. Jpn. J. Appl. Phys. Part 2 Lett. Express Lett. 44(12–15), L394–L397 (2005). doi:10.​1143/​jjap.​44.​l394
150.
go back to reference C.L. Long, D.P. Qi, T. Wei, J. Yan, L.L. Jiang, Z.J. Fan, Nitrogen-doped carbon networks for high energy density supercapacitors derived from polyaniline coated bacterial cellulose. Adv. Funct. Mater. 24(25), 3953–3961 (2014). doi:10.1002/adfm.201304269 CrossRef C.L. Long, D.P. Qi, T. Wei, J. Yan, L.L. Jiang, Z.J. Fan, Nitrogen-doped carbon networks for high energy density supercapacitors derived from polyaniline coated bacterial cellulose. Adv. Funct. Mater. 24(25), 3953–3961 (2014). doi:10.​1002/​adfm.​201304269 CrossRef
151.
go back to reference N.P. Wickramaratne, J.T. Xu, M. Wang, L. Zhu, L.M. Dai, M. Jaroniec, Nitrogen enriched porous carbon spheres: attractive materials for supercapacitor electrodes and CO2 adsorption. Chem. Mater. 26(9), 2820–2828 (2014). doi:10.1021/cm5001895 CrossRef N.P. Wickramaratne, J.T. Xu, M. Wang, L. Zhu, L.M. Dai, M. Jaroniec, Nitrogen enriched porous carbon spheres: attractive materials for supercapacitor electrodes and CO2 adsorption. Chem. Mater. 26(9), 2820–2828 (2014). doi:10.​1021/​cm5001895 CrossRef
152.
go back to reference W. Wei, H.W. Liang, K. Parvez, X.D. Zhuang, X.L. Feng, K. Mullen, Nitrogen-doped carbon nanosheets with size-defined mesopores as highly efficient metal-free catalyst for the oxygen reduction reaction. Angewandte Chemie-International Edition 53(6), 1570–1574 (2014). doi:10.1002/anie.201307319 CrossRef W. Wei, H.W. Liang, K. Parvez, X.D. Zhuang, X.L. Feng, K. Mullen, Nitrogen-doped carbon nanosheets with size-defined mesopores as highly efficient metal-free catalyst for the oxygen reduction reaction. Angewandte Chemie-International Edition 53(6), 1570–1574 (2014). doi:10.​1002/​anie.​201307319 CrossRef
Metadata
Title
One-Dimensional Carbon Nanostructures: Low-Temperature Chemical Vapor Synthesis and Applications
Authors
Yao Ma
Nianjun Yang
Xin Jiang
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-28782-9_2

Premium Partners