Skip to main content
Top

2016 | OriginalPaper | Chapter

15. One-Dimensional Nano-structured Solar Cells

Authors : H. Karaağaç, E. Peksu, E. U. Arici, M. Saif Islam

Published in: Low-Dimensional and Nanostructured Materials and Devices

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The solar light harvesting has long been regarded as promising way to meet the increasing world’s annual energy consumption as well as the solution to prevent the detrimental long-term effect of carbon-monoxide emission released by fossil fuel sources. Due to the high cost of today’s conventional PV technology, however, it is not possible to compete with the energy supplied from fossil fuel sources. The use of one-dimensional nanostructures, including nanowires (NWs), nanorods (NRs), nanopillars (NPs) and nanotubes (NTs) in solar cells with different device architectures (e.g. axial, radial, and nanorod/nanowire array embedded in a thin film) provides peculiar and fascinating advantages over single-crystalline and thin film based solar cells in terms of power conversion efficiency and manufacturing cost due to their large surface/interface area, the ability to grow single-crystalline nanowires on inexpensive substrates without resorting to complex epitaxial routes, single-crystalline structure and light trapping function. In this chapter, we review the recent studies conducted on nanowire/nanorod arrays based solar cells with different device architectures for the realization of high-efficiency solar cells at an economically viable cost.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
3.
go back to reference J.S. Li, H.Y. Yu, Y.L. Li, Aligned Si nanowire-based solar cells. Nanoscale 3(12), 4888–4900 (2011) J.S. Li, H.Y. Yu, Y.L. Li, Aligned Si nanowire-based solar cells. Nanoscale 3(12), 4888–4900 (2011)
4.
go back to reference Y.N. Xia, P.D. Yang, Y.G. Sun, Y.Y. Wu, B. Mayers, B. Gates, Y.D. Yin, F. Kim, Y.Q. Yan, One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15(5), 353–389 (2003) Y.N. Xia, P.D. Yang, Y.G. Sun, Y.Y. Wu, B. Mayers, B. Gates, Y.D. Yin, F. Kim, Y.Q. Yan, One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15(5), 353–389 (2003)
5.
go back to reference Z.Y. Fan, D.J. Ruebusch, A.A. Rathore, R. Kapadia, O. Ergen, P.W. Leu, A. Javey, Challenges and prospects of nanopillar-based solar cells. Nano Res 2(11), 829–843 (2009) Z.Y. Fan, D.J. Ruebusch, A.A. Rathore, R. Kapadia, O. Ergen, P.W. Leu, A. Javey, Challenges and prospects of nanopillar-based solar cells. Nano Res 2(11), 829–843 (2009)
6.
go back to reference P.V. Kamat, Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J. Phys. Chem. C 111(7), 2834–2860 (2007) P.V. Kamat, Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J. Phys. Chem. C 111(7), 2834–2860 (2007)
7.
go back to reference M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P.D. Yang, Nanowire dye-sensitized solar cells. Nat. Mater. 4(6), 455–459 (2005) M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P.D. Yang, Nanowire dye-sensitized solar cells. Nat. Mater. 4(6), 455–459 (2005)
8.
go back to reference J.A. Czaban, D.A. Thompson, R.R. LaPierre, GaAs core-shell nanowires for photovoltaic applications. Nano Lett. 9(1), 148–154 (2009) J.A. Czaban, D.A. Thompson, R.R. LaPierre, GaAs core-shell nanowires for photovoltaic applications. Nano Lett. 9(1), 148–154 (2009)
9.
go back to reference E.C. Garnett, P.D. Yang, Silicon nanowire radial p-n junction solar cells. J. Am. Chem. Soc. 130(29), 9224–9225 (2008) E.C. Garnett, P.D. Yang, Silicon nanowire radial p-n junction solar cells. J. Am. Chem. Soc. 130(29), 9224–9225 (2008)
10.
go back to reference E.C. Garnett, M.L. Brongersma, Y. Cui, M.D. McGehee, Nanowire solar cells. Annu. Rev. Mater. Res. 41, 269–295 (2011) E.C. Garnett, M.L. Brongersma, Y. Cui, M.D. McGehee, Nanowire solar cells. Annu. Rev. Mater. Res. 41, 269–295 (2011)
11.
go back to reference R. Kapadia, Z.Y. Fan, K. Takei, A. Javey, Nanopillar photovoltaics: materials, processes, and devices. Nano Energy 1(1), 132–144 (2012) R. Kapadia, Z.Y. Fan, K. Takei, A. Javey, Nanopillar photovoltaics: materials, processes, and devices. Nano Energy 1(1), 132–144 (2012)
13.
go back to reference B.Z. Tian, X.L. Zheng, T.J. Kempa, Y. Fang, N.F. Yu, G.H. Yu, J.L. Huang, C.M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449(7164), 885–890 (2007) B.Z. Tian, X.L. Zheng, T.J. Kempa, Y. Fang, N.F. Yu, G.H. Yu, J.L. Huang, C.M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449(7164), 885–890 (2007)
14.
go back to reference Y. Zhang, L.W. Wang, A. Mascarenhas, Quantum coaxial cables for solar energy harvesting. Nano Lett. 7(5), 1264–1269 (2007) Y. Zhang, L.W. Wang, A. Mascarenhas, Quantum coaxial cables for solar energy harvesting. Nano Lett. 7(5), 1264–1269 (2007)
15.
go back to reference B.M. Kayes, H.A. Atwater, N.S. Lewis, Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. J. Appl. Phys. 97(11), 114302–114313 (2005) B.M. Kayes, H.A. Atwater, N.S. Lewis, Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. J. Appl. Phys. 97(11), 114302–114313 (2005)
16.
go back to reference L. Tsakalakos, J. Balch, J. Fronheiser, B.A. Korevaar, O. Sulima, J. Rand, Silicon nanowire solar cells. Appl Phys Lett 91(23) (2007) L. Tsakalakos, J. Balch, J. Fronheiser, B.A. Korevaar, O. Sulima, J. Rand, Silicon nanowire solar cells. Appl Phys Lett 91(23) (2007)
17.
go back to reference B.D. Yuhas, P.D. Yang, Nanowire-based all-oxide solar cells. J. Am. Chem. Soc. 131(10), 3756–3761 (2009) B.D. Yuhas, P.D. Yang, Nanowire-based all-oxide solar cells. J. Am. Chem. Soc. 131(10), 3756–3761 (2009)
18.
go back to reference Z.Y. Fan, H. Razavi, J.W. Do, A. Moriwaki, O. Ergen, Y.L. Chueh, P.W. Leu, J.C. Ho, T. Takahashi, L.A. Reichertz, S. Neale, K. Yu, M. Wu, J.W. Ager, A. Javey, Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nat. Mater. 8(8), 648–653 (2009) Z.Y. Fan, H. Razavi, J.W. Do, A. Moriwaki, O. Ergen, Y.L. Chueh, P.W. Leu, J.C. Ho, T. Takahashi, L.A. Reichertz, S. Neale, K. Yu, M. Wu, J.W. Ager, A. Javey, Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nat. Mater. 8(8), 648–653 (2009)
19.
go back to reference R.R. LaPierre, Numerical model of current-voltage characteristics and efficiency of GaAs nanowire solar cells. J. Appl. Phys. 109(3), 034311–034316 (2011) R.R. LaPierre, Numerical model of current-voltage characteristics and efficiency of GaAs nanowire solar cells. J. Appl. Phys. 109(3), 034311–034316 (2011)
20.
go back to reference C. Colombo, M. Heiss, M. Gratzel, A.F.I. Morral, Gallium arsenide p-i-n radial structures for photovoltaic applications. Appl. Phys. Lett. 94(17), 173108 (2009) C. Colombo, M. Heiss, M. Gratzel, A.F.I. Morral, Gallium arsenide p-i-n radial structures for photovoltaic applications. Appl. Phys. Lett. 94(17), 173108 (2009)
21.
go back to reference Y.B. Tang, Z.H. Chen, H.S. Song, C.S. Lee, H.T. Cong, H.M. Cheng, W.J. Zhang, I. Bello, S.T. Lee, Vertically aligned p-type single-crystalline gan nanorod arrays on n-type si for heterojunction photovoltaic cells. Nano Lett. 8(12), 4191–4195 (2008) Y.B. Tang, Z.H. Chen, H.S. Song, C.S. Lee, H.T. Cong, H.M. Cheng, W.J. Zhang, I. Bello, S.T. Lee, Vertically aligned p-type single-crystalline gan nanorod arrays on n-type si for heterojunction photovoltaic cells. Nano Lett. 8(12), 4191–4195 (2008)
22.
go back to reference V. Sivakov, G. Andra, A. Gawlik, A. Berger, J. Plentz, F. Falk, S.H. Christiansen, Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters. Nano Lett. 9(4), 1549–1554 (2009) V. Sivakov, G. Andra, A. Gawlik, A. Berger, J. Plentz, F. Falk, S.H. Christiansen, Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters. Nano Lett. 9(4), 1549–1554 (2009)
23.
go back to reference M.Q. Yao, N.F. Huang, S. Cong, C.Y. Chi, M.A. Seyedi, Y.T. Lin, Y. Cao, M.L. Povinelli, P.D. Dapkus, C.W. Zhou, GaAs nanowire array solar cells with axial p-i-n junctions. Nano Lett. 14(6), 3293–3303 (2014) M.Q. Yao, N.F. Huang, S. Cong, C.Y. Chi, M.A. Seyedi, Y.T. Lin, Y. Cao, M.L. Povinelli, P.D. Dapkus, C.W. Zhou, GaAs nanowire array solar cells with axial p-i-n junctions. Nano Lett. 14(6), 3293–3303 (2014)
25.
26.
go back to reference H.-E. Wang, Z. Chen, Y.H. Leung, C. Luan, C. Liu, Y. Tang, C. Yan, W. Zhang, J.A. Zapien, I. Bello, S.-T. Lee, Hydrothermal synthesis of ordered single-crystalline rutile TiO2 nanorod arrays on different substrates. Appl. Phys. Lett. 96(26), 263104 (2010). doi:10.1063/1.3442913CrossRef H.-E. Wang, Z. Chen, Y.H. Leung, C. Luan, C. Liu, Y. Tang, C. Yan, W. Zhang, J.A. Zapien, I. Bello, S.-T. Lee, Hydrothermal synthesis of ordered single-crystalline rutile TiO2 nanorod arrays on different substrates. Appl. Phys. Lett. 96(26), 263104 (2010). doi:10.​1063/​1.​3442913CrossRef
27.
28.
go back to reference H. Zhitao, L. Sisi, C. Jinkui, C. Yong, Controlled growth of well-aligned ZnO nanowire arrays using the improved hydrothermal method. J. Semiconduct. 34(6), 063002 (2013) H. Zhitao, L. Sisi, C. Jinkui, C. Yong, Controlled growth of well-aligned ZnO nanowire arrays using the improved hydrothermal method. J. Semiconduct. 34(6), 063002 (2013)
29.
go back to reference M. Ahmad, M.A. Iqbal, J. Kiely, R. Luxton, M. Jabeen, Low temperature hydrothermal synthesis of ZnO nanowires for nanogenerator: effect of gold electrode on the output voltage of nanogenerator. Indian J. Eng. Mater. S 21(6), 672–676 (2014) M. Ahmad, M.A. Iqbal, J. Kiely, R. Luxton, M. Jabeen, Low temperature hydrothermal synthesis of ZnO nanowires for nanogenerator: effect of gold electrode on the output voltage of nanogenerator. Indian J. Eng. Mater. S 21(6), 672–676 (2014)
30.
go back to reference S.N. Bai, S.C. Wu, Synthesis of ZnO nanowires by the hydrothermal method, using sol-gel prepared ZnO seed films. J. Mater. Sci-Mater El 22(4), 339–344 (2011) S.N. Bai, S.C. Wu, Synthesis of ZnO nanowires by the hydrothermal method, using sol-gel prepared ZnO seed films. J. Mater. Sci-Mater El 22(4), 339–344 (2011)
31.
go back to reference R. Hao, X. Deng, Y.B. Yang, D.Y. Chen, Research progress in preparation and applications of ZnO nanowire/rod arrays by hydrothermal method. Acta Chim. Sinica 72(12), 1199–1208 (2014) R. Hao, X. Deng, Y.B. Yang, D.Y. Chen, Research progress in preparation and applications of ZnO nanowire/rod arrays by hydrothermal method. Acta Chim. Sinica 72(12), 1199–1208 (2014)
32.
go back to reference H.S. Jang, B. Son, H. Song, G.Y. Jung, H.C. Ko, Controlled hydrothermal growth of multi-length-scale ZnO nanowires using liquid masking layers. J. Mater. Sci. 49(23), 8000–8009 (2014) H.S. Jang, B. Son, H. Song, G.Y. Jung, H.C. Ko, Controlled hydrothermal growth of multi-length-scale ZnO nanowires using liquid masking layers. J. Mater. Sci. 49(23), 8000–8009 (2014)
33.
go back to reference H. Karaagac, M. Parlak, E. Yengel, M.S. Islam, Heterojunction solar cells with integrated Si and ZnO nanowires and a chalcopyrite thin film. Mater. Chem. Phys. 140(1), 382–390 (2013) H. Karaagac, M. Parlak, E. Yengel, M.S. Islam, Heterojunction solar cells with integrated Si and ZnO nanowires and a chalcopyrite thin film. Mater. Chem. Phys. 140(1), 382–390 (2013)
34.
go back to reference D.P. Neveling, T.S. van den Heever, R. Bucher, W.J. Perold, L.M.T. Dicks, Effect of seed layer deposition, au film layer thickness and crystal orientation on the synthesis of hydrothermally grown ZnO nanowires. Curr. Nanosci. 10(6), 827–836 (2014) D.P. Neveling, T.S. van den Heever, R. Bucher, W.J. Perold, L.M.T. Dicks, Effect of seed layer deposition, au film layer thickness and crystal orientation on the synthesis of hydrothermally grown ZnO nanowires. Curr. Nanosci. 10(6), 827–836 (2014)
35.
go back to reference I.J. No, S. Lee, S.H. Kim, J.W. Cho, P.K. Shin, Morphology control of ZnO nanowires grown by hydrothermal methods using Au nanodots on Al doped ZnO seed layer. Jpn. J. Appl. Phys. 52(2), 025003 (2013) I.J. No, S. Lee, S.H. Kim, J.W. Cho, P.K. Shin, Morphology control of ZnO nanowires grown by hydrothermal methods using Au nanodots on Al doped ZnO seed layer. Jpn. J. Appl. Phys. 52(2), 025003 (2013)
36.
go back to reference Y.K. Tseng, M.C. Hung, S.L. Su, S.K. Li, Using the hydrothermal method to grow p-type ZnO nanowires on Al-doped ZnO thin film to fabricate a homojunction diode. J. Nanosci. Nanotechnol. 14(10), 7907–7910 (2014) Y.K. Tseng, M.C. Hung, S.L. Su, S.K. Li, Using the hydrothermal method to grow p-type ZnO nanowires on Al-doped ZnO thin film to fabricate a homojunction diode. J. Nanosci. Nanotechnol. 14(10), 7907–7910 (2014)
37.
go back to reference H. Karaagac, V.J. Logeeswaran, M.S. Islam, Fabrication of 3D-silicon micropillars/walls decorated with aluminum-ZnO/ZnO nanowires for optoelectric devices. Phys. Status Solidi A 210(7), 1377–1380 (2013) H. Karaagac, V.J. Logeeswaran, M.S. Islam, Fabrication of 3D-silicon micropillars/walls decorated with aluminum-ZnO/ZnO nanowires for optoelectric devices. Phys. Status Solidi A 210(7), 1377–1380 (2013)
39.
go back to reference K.J. Morton, G. Nieberg, S.F. Bai, S.Y. Chou, Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching. Nanotechnology 19(34), 345301 (2008) K.J. Morton, G. Nieberg, S.F. Bai, S.Y. Chou, Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching. Nanotechnology 19(34), 345301 (2008)
41.
go back to reference H. Karaagac, M.S. Islam, Enhanced field ionization enabled by metal induced surface states on semiconductor nanotips. Adv. Funct. Mater. 24(15), 2224–2232 (2014) H. Karaagac, M.S. Islam, Enhanced field ionization enabled by metal induced surface states on semiconductor nanotips. Adv. Funct. Mater. 24(15), 2224–2232 (2014)
42.
go back to reference M. Meyyappan MS, Inorganic Nanowires: Applications, Properties and Characterization. (CRC Press, 2010) M. Meyyappan MS, Inorganic Nanowires: Applications, Properties and Characterization. (CRC Press, 2010)
43.
go back to reference B. Gates, B. Mayers, A. Grossman, Y. Xia, A sonochemical approach to the synthesis of crystalline selenium nanowires in solutions and on solid supports. Adv. Mater. 14(23), 1749–1752 (2002) B. Gates, B. Mayers, A. Grossman, Y. Xia, A sonochemical approach to the synthesis of crystalline selenium nanowires in solutions and on solid supports. Adv. Mater. 14(23), 1749–1752 (2002)
44.
go back to reference R.V. Kumar, Y. Koltypin, X.N. Xu, Y. Yeshurun, A. Gedanken, I. Felner, Fabrication of magnetite nanorods by ultrasound irradiation. J. Appl. Phys. 89(11), 6324–6328 (2001) R.V. Kumar, Y. Koltypin, X.N. Xu, Y. Yeshurun, A. Gedanken, I. Felner, Fabrication of magnetite nanorods by ultrasound irradiation. J. Appl. Phys. 89(11), 6324–6328 (2001)
45.
go back to reference A.P. Nayak, A.M. Katzenmeyer, J.-Y. Kim, M.K. Kwon, Y. Gosho, M. Saif Islam, Purely sonochemical route for oriented zinc oxide nanowire growth on arbitrary substrate. Proc. SPIE 7683, 738312. doi:10.1117/12.851755 A.P. Nayak, A.M. Katzenmeyer, J.-Y. Kim, M.K. Kwon, Y. Gosho, M. Saif Islam, Purely sonochemical route for oriented zinc oxide nanowire growth on arbitrary substrate. Proc. SPIE 7683, 738312. doi:​10.​1117/​12.​851755  
46.
go back to reference Y.Y. Wu, P.D. Yang, Direct observation of vapor-liquid-solid nanowire growth. J. Am. Chem. Soc. 123(13), 3165–3166 (2001) Y.Y. Wu, P.D. Yang, Direct observation of vapor-liquid-solid nanowire growth. J. Am. Chem. Soc. 123(13), 3165–3166 (2001)
47.
go back to reference M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, E. Weber, R. Russo, P.D. Yang, Room-temperature ultraviolet nanowire nanolasers. Science 292(5523), 1897–1899 (2001) M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, E. Weber, R. Russo, P.D. Yang, Room-temperature ultraviolet nanowire nanolasers. Science 292(5523), 1897–1899 (2001)
48.
go back to reference W. Lu, C.M. Lieber, Semiconductor nanowires. J. Phys. D Appl. Phys. 39(21), R387–R406 (2006) W. Lu, C.M. Lieber, Semiconductor nanowires. J. Phys. D Appl. Phys. 39(21), R387–R406 (2006)
49.
go back to reference S. Han, R.S. Wagner, Grain boundary effects on carrier transport in undoped polycrystalline chemical-vapor-deposited diamond. Appl. Phys. Lett. 68(21), 3016–3018 (1996) S. Han, R.S. Wagner, Grain boundary effects on carrier transport in undoped polycrystalline chemical-vapor-deposited diamond. Appl. Phys. Lett. 68(21), 3016–3018 (1996)
50.
go back to reference C.C. Chen, C.C. Yeh, Large-scale catalytic synthesis of crystalline gallium nitride nanowires. Adv. Mater. 12(10), 738 (2000) C.C. Chen, C.C. Yeh, Large-scale catalytic synthesis of crystalline gallium nitride nanowires. Adv. Mater. 12(10), 738 (2000)
51.
go back to reference Y.J. Chen, J.B. Li, Y.S. Han, X.Z. Yang, J.H. Dai, The effect of Mg vapor source on the formation of MgO whiskers and sheets. J. Cryst. Growth 245(1–2), 163–170 (2002) Y.J. Chen, J.B. Li, Y.S. Han, X.Z. Yang, J.H. Dai, The effect of Mg vapor source on the formation of MgO whiskers and sheets. J. Cryst. Growth 245(1–2), 163–170 (2002)
52.
go back to reference X.F. Duan, C.M. Lieber, General synthesis of compound semiconductor nanowires. Adv. Mater. 12(4), 298–302 (2000) X.F. Duan, C.M. Lieber, General synthesis of compound semiconductor nanowires. Adv. Mater. 12(4), 298–302 (2000)
53.
go back to reference Y.W. Wang, L.D. Zhang, C.H. Liang, G.Z. Wang, X.S. Peng, Catalytic growth and photoluminescence properties of semiconductor single-crystal ZnS nanowires. Chem. Phys. Lett. 357(3–4), 314–318 (2002) Y.W. Wang, L.D. Zhang, C.H. Liang, G.Z. Wang, X.S. Peng, Catalytic growth and photoluminescence properties of semiconductor single-crystal ZnS nanowires. Chem. Phys. Lett. 357(3–4), 314–318 (2002)
54.
55.
go back to reference M. Triplett, H. Nishimura, M. Ombaba, V.J. Logeeswarren, M. Yee, K.G. Polat, J.Y. Oh, T. Fuyuki, F. Leonard, M.S. Islam, High-precision transfer-printing and integration of vertically oriented semiconductor arrays for flexible device fabrication. Nano Res. 7(7), 998–1006 (2014) M. Triplett, H. Nishimura, M. Ombaba, V.J. Logeeswarren, M. Yee, K.G. Polat, J.Y. Oh, T. Fuyuki, F. Leonard, M.S. Islam, High-precision transfer-printing and integration of vertically oriented semiconductor arrays for flexible device fabrication. Nano Res. 7(7), 998–1006 (2014)
56.
go back to reference C.N.R. Rao, F.L. Deepak, G. Gundiah, A. Govindaraj, Inorganic nanowires. Prog. Solid State Ch 31(1–2), 5–147 (2003) C.N.R. Rao, F.L. Deepak, G. Gundiah, A. Govindaraj, Inorganic nanowires. Prog. Solid State Ch 31(1–2), 5–147 (2003)
57.
go back to reference P.L. Dong, X.D. Wang, M. Zhang, M. Guo, S. Seetharaman, The preparation and characterization of beta-SiAlON nanostructure whiskers. J. Nanomater. 2008, 282187–282192 (2008) P.L. Dong, X.D. Wang, M. Zhang, M. Guo, S. Seetharaman, The preparation and characterization of beta-SiAlON nanostructure whiskers. J. Nanomater. 2008, 282187–282192 (2008)
58.
go back to reference Y.J. Hsu, S.Y. Lu, Vapor-solid growth of Sn nanowires: growth mechanism and superconductivity. J. Phys. Chem. B 109(10), 4398–4403 (2005) Y.J. Hsu, S.Y. Lu, Vapor-solid growth of Sn nanowires: growth mechanism and superconductivity. J. Phys. Chem. B 109(10), 4398–4403 (2005)
59.
go back to reference Z.W. Pan, Z.R. Dai, Z.L. Wang, Nanobelts of semiconducting oxides. Science 291(5510), 1947–1949 (2001) Z.W. Pan, Z.R. Dai, Z.L. Wang, Nanobelts of semiconducting oxides. Science 291(5510), 1947–1949 (2001)
60.
go back to reference Y.J. Zhang, N.L. Wang, S.P. Gao, R.R. He, S. Miao, J. Liu, J. Zhu, X. Zhang, A simple method to synthesize nanowires. Chem. Mater. 14(8), 3564–3568 (2002) Y.J. Zhang, N.L. Wang, S.P. Gao, R.R. He, S. Miao, J. Liu, J. Zhu, X. Zhang, A simple method to synthesize nanowires. Chem. Mater. 14(8), 3564–3568 (2002)
61.
go back to reference S.S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H.J. Dai, Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283(5401), 512–514 (1999) S.S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H.J. Dai, Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283(5401), 512–514 (1999)
62.
go back to reference S. Sakurai, M. Inaguma, D.N. Futaba, M. Yumura, K. Hata, A fundamental limitation of small diameter single-walled carbon nanotube synthesis-a scaling rule of the carbon nanotube yield with catalyst volume. Materials 6(7), 2633–2641 (2013) S. Sakurai, M. Inaguma, D.N. Futaba, M. Yumura, K. Hata, A fundamental limitation of small diameter single-walled carbon nanotube synthesis-a scaling rule of the carbon nanotube yield with catalyst volume. Materials 6(7), 2633–2641 (2013)
63.
go back to reference M. Xu, D.N. Futaba, M. Yumura, K. Hata, Alignment control of carbon nanotube forest from random to nearly perfectly aligned by utilizing the crowding effect. ACS Nano 6(7), 5837–5844 (2012) M. Xu, D.N. Futaba, M. Yumura, K. Hata, Alignment control of carbon nanotube forest from random to nearly perfectly aligned by utilizing the crowding effect. ACS Nano 6(7), 5837–5844 (2012)
65.
go back to reference I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, B. To, R. Noufi, 19.9 %-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2 % fill factor. Prog. Photovolt. 16(3), 235–239 (2008). doi:10.1002/Pip.822CrossRef I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, B. To, R. Noufi, 19.9 %-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2 % fill factor. Prog. Photovolt. 16(3), 235–239 (2008). doi:10.​1002/​Pip.​822CrossRef
67.
go back to reference P.P. Ramesh, O.M. Hussain, S. Uthanna, B.S. Naidu, P.J. Reddy, Photovoltaic performance of p-AgInSe2/n-CdS thin film heterojunctions. Mater. Lett. 34(3–6), 217–221 (1998) P.P. Ramesh, O.M. Hussain, S. Uthanna, B.S. Naidu, P.J. Reddy, Photovoltaic performance of p-AgInSe2/n-CdS thin film heterojunctions. Mater. Lett. 34(3–6), 217–221 (1998)
68.
go back to reference Y.S. Murthy, O.M. Hussain, B.S. Naidu, P.J. Reddy, Characterization of P-Aggase2/N-Cds thin-film heterojunction. Mater. Lett. 10(11–12), 504–508 (1991) Y.S. Murthy, O.M. Hussain, B.S. Naidu, P.J. Reddy, Characterization of P-Aggase2/N-Cds thin-film heterojunction. Mater. Lett. 10(11–12), 504–508 (1991)
69.
go back to reference G.H. Chandra, O.M. Hussain, S. Uthanna, B.S. Naidu, Characterization of p-AgGa0.25In0.75Se2/n-Zn0.35Cd0.65S polycrystalline thin film heterojunctions. Mat. Sci. Eng. B-Solid 86(1), 60–63 (2001) G.H. Chandra, O.M. Hussain, S. Uthanna, B.S. Naidu, Characterization of p-AgGa0.25In0.75Se2/n-Zn0.35Cd0.65S polycrystalline thin film heterojunctions. Mat. Sci. Eng. B-Solid 86(1), 60–63 (2001)
70.
go back to reference B. Ozdemir, M. Kulakci, R. Turan, H.E. Unalan, Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires. Nanotechnology 22(15), 155606 (2011). doi:Artn 155606; doi:10.1088/0957-4484/22/15/155606 B. Ozdemir, M. Kulakci, R. Turan, H.E. Unalan, Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires. Nanotechnology 22(15), 155606 (2011). doi:Artn 155606; doi:10.​1088/​0957-4484/​22/​15/​155606
71.
go back to reference K.Q. Peng, J.J. Hu, Y.J. Yan, Y. Wu, H. Fang, Y. Xu, S.T. Lee, J. Zhu, Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles. Adv. Funct. Mater. 16(3), 387–394 (2006). doi:10.1002/adfm.200500392CrossRef K.Q. Peng, J.J. Hu, Y.J. Yan, Y. Wu, H. Fang, Y. Xu, S.T. Lee, J. Zhu, Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles. Adv. Funct. Mater. 16(3), 387–394 (2006). doi:10.​1002/​adfm.​200500392CrossRef
73.
go back to reference D.R. Kim, C.H. Lee, P.M. Rao, I.S. Cho, X.L. Zheng, Hybrid Si microwire and planar solar cells: passivation and characterization. Nano Lett. 11(7), 2704–2708 (2011). doi:10.1021/Nl2009636CrossRef D.R. Kim, C.H. Lee, P.M. Rao, I.S. Cho, X.L. Zheng, Hybrid Si microwire and planar solar cells: passivation and characterization. Nano Lett. 11(7), 2704–2708 (2011). doi:10.​1021/​Nl2009636CrossRef
74.
go back to reference V.J. Logeeswaran, A.M. Katzenmeyer, M.S. Islam, Harvesting and transferring vertical pillar arrays of single-crystal semiconductor devices to arbitrary substrates. IEEE T Electron. Dev. 57(8), 1856–1864 (2010). doi:10.1109/Ted.2010.2051195CrossRef V.J. Logeeswaran, A.M. Katzenmeyer, M.S. Islam, Harvesting and transferring vertical pillar arrays of single-crystal semiconductor devices to arbitrary substrates. IEEE T Electron. Dev. 57(8), 1856–1864 (2010). doi:10.​1109/​Ted.​2010.​2051195CrossRef
75.
go back to reference M.M. Ombaba, L.V. Jayaraman, M.S. Islam, Precision stress localization during mechanical harvesting of vertically oriented semiconductor micro- and nanostructure arrays. Appl. Phys. Lett. 104(24), 243109 (2014) M.M. Ombaba, L.V. Jayaraman, M.S. Islam, Precision stress localization during mechanical harvesting of vertically oriented semiconductor micro- and nanostructure arrays. Appl. Phys. Lett. 104(24), 243109 (2014)
78.
go back to reference B. Eisenhawer, S. Sensfuss, V. Sivakov, M. Pietsch, G. Andra, F. Falk, Increasing the efficiency of polymer solar cells by silicon nanowires. Nanotechnology 22(31), 315401 (2011). doi:Artn 315401; doi:10.1088/0957-4484/22/31/315401 B. Eisenhawer, S. Sensfuss, V. Sivakov, M. Pietsch, G. Andra, F. Falk, Increasing the efficiency of polymer solar cells by silicon nanowires. Nanotechnology 22(31), 315401 (2011). doi:Artn 315401; doi:10.​1088/​0957-4484/​22/​31/​315401
79.
go back to reference L.N. He, C.Y. Jiang, H. Wang, D. Lai, Rusli, Si nanowires organic semiconductor hybrid heterojunction solar cells toward 10 % efficiency. ACS Appl. Mater. Inter. 4(3), 1704–1708 (2012). doi:10.1021/Am201838yCrossRef L.N. He, C.Y. Jiang, H. Wang, D. Lai, Rusli, Si nanowires organic semiconductor hybrid heterojunction solar cells toward 10 % efficiency. ACS Appl. Mater. Inter. 4(3), 1704–1708 (2012). doi:10.​1021/​Am201838yCrossRef
83.
go back to reference G.J. Matt, T. Fromherz, M. Bednorz, S. Zamiri, G. Goncalves, C. Lungenschmied, D. Meissner, H. Sitter, N.S. Sariciftci, C.J. Brabec, G. Bauer, Fullerene sensitized silicon for near-to mid-infrared light detection. Adv. Mater. 22(5), 647 (2010). doi:10.1002/adma.200901383CrossRef G.J. Matt, T. Fromherz, M. Bednorz, S. Zamiri, G. Goncalves, C. Lungenschmied, D. Meissner, H. Sitter, N.S. Sariciftci, C.J. Brabec, G. Bauer, Fullerene sensitized silicon for near-to mid-infrared light detection. Adv. Mater. 22(5), 647 (2010). doi:10.​1002/​adma.​200901383CrossRef
84.
go back to reference J. Bae et al., Si nanowire metal–insulator–semiconductor photodetectors as efficient light harvesters. Nanotechnology 21(9), 095502 (2010) J. Bae et al., Si nanowire metal–insulator–semiconductor photodetectors as efficient light harvesters. Nanotechnology 21(9), 095502 (2010)
85.
86.
go back to reference T.C.H. Yamada, S. Ishidac, Y. Arakawac, Si-nanowire optical waveguide devices for optical communications. Proc. SPIE 6019, 60192X (2005) T.C.H. Yamada, S. Ishidac, Y. Arakawac, Si-nanowire optical waveguide devices for optical communications. Proc. SPIE 6019, 60192X (2005)
87.
88.
go back to reference L. Liao, H.B. Lu, M. Shuai, J.C. Li, Y.L. Liu, C. Liu, Z.X. Shen, T. Yu, A novel gas sensor based on field ionization from ZnO nanowires: moderate working voltage and high stability. Nanotechnology 19(17), 175501 (2008). doi:Artn 175501; doi:10.1088/0957-4484/19/17/175501 L. Liao, H.B. Lu, M. Shuai, J.C. Li, Y.L. Liu, C. Liu, Z.X. Shen, T. Yu, A novel gas sensor based on field ionization from ZnO nanowires: moderate working voltage and high stability. Nanotechnology 19(17), 175501 (2008). doi:Artn 175501; doi:10.​1088/​0957-4484/​19/​17/​175501
89.
go back to reference F. Qian, S. Gradečak, Y. Li, C.-Y. Wen, C.M. Lieber, Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett. 5(11), 2287–2291 (2005). doi:10.1021/nl051689eCrossRef F. Qian, S. Gradečak, Y. Li, C.-Y. Wen, C.M. Lieber, Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett. 5(11), 2287–2291 (2005). doi:10.​1021/​nl051689eCrossRef
90.
91.
go back to reference P.D. Li, C.M. Sun, T.G. Jiu, G.J. Wang, J. Li, X.F. Li, J.F. Fangt, High-performance inverted solar cells based on blend films of ZnO naoparticles and TiO2 nanorods as a cathode buffer layer. ACS Appl. Mater. Inter. 6(6), 4074–4080 (2014) P.D. Li, C.M. Sun, T.G. Jiu, G.J. Wang, J. Li, X.F. Li, J.F. Fangt, High-performance inverted solar cells based on blend films of ZnO naoparticles and TiO2 nanorods as a cathode buffer layer. ACS Appl. Mater. Inter. 6(6), 4074–4080 (2014)
92.
go back to reference J.P. Liu, S.S. Wang, Z.Q. Bian, M. Shan, C.H. Huang, Organic/inorganic hybrid solar cells with vertically oriented ZnO nanowires. Appl. Phys. Lett. 94(17), 173107 (2009) J.P. Liu, S.S. Wang, Z.Q. Bian, M. Shan, C.H. Huang, Organic/inorganic hybrid solar cells with vertically oriented ZnO nanowires. Appl. Phys. Lett. 94(17), 173107 (2009)
93.
go back to reference O. Lupan, V.M. Guerin, I.M. Tiginyanu, V.V. Ursaki, L. Chow, H. Heinrich, T. Pauporte, Well-aligned arrays of vertically oriented ZnO nanowires electrodeposited on ITO-coated glass and their integration in dye sensitized solar cells. J. Photoch. Photobio A 211(1), 65–73 (2010) O. Lupan, V.M. Guerin, I.M. Tiginyanu, V.V. Ursaki, L. Chow, H. Heinrich, T. Pauporte, Well-aligned arrays of vertically oriented ZnO nanowires electrodeposited on ITO-coated glass and their integration in dye sensitized solar cells. J. Photoch. Photobio A 211(1), 65–73 (2010)
94.
go back to reference V. Strano, E. Smecca, V. Depauw, C. Trompoukis, A. Alberti, R. Reitano, I. Crupi, I. Gordon, S. Mirabella, Low-cost high-haze films based on ZnO nanorods for light scattering in thin c-Si solar cells. Appl. Phys. Lett. 106(1), 013901 (2015) V. Strano, E. Smecca, V. Depauw, C. Trompoukis, A. Alberti, R. Reitano, I. Crupi, I. Gordon, S. Mirabella, Low-cost high-haze films based on ZnO nanorods for light scattering in thin c-Si solar cells. Appl. Phys. Lett. 106(1), 013901 (2015)
95.
go back to reference D.I. Suh, S.Y. Lee, T.H. Kim, J.M. Chun, E.K. Suh, O.B. Yang, S.K. Lee, The fabrication and characterization of dye-sensitized solar cells with a branched structure of ZnO nanowires. Chem. Phys. Lett. 442(4–6), 348–353 (2007) D.I. Suh, S.Y. Lee, T.H. Kim, J.M. Chun, E.K. Suh, O.B. Yang, S.K. Lee, The fabrication and characterization of dye-sensitized solar cells with a branched structure of ZnO nanowires. Chem. Phys. Lett. 442(4–6), 348–353 (2007)
96.
go back to reference M.T. Tsai, Z.P. Yang, T.S. Jing, H.H. Hsieh, Y.C. Yao, T.Y. Lin, Y.F. Chen, Y.J. Lee, Achieving graded refractive index by use of ZnO nanorods/TiO2 layer to enhance omnidirectional photovoltaic performances of InGaP/GaAs/Ge triple-junction solar cells. Sol. Energy Mat. Sol C 136, 17–24 (2015) M.T. Tsai, Z.P. Yang, T.S. Jing, H.H. Hsieh, Y.C. Yao, T.Y. Lin, Y.F. Chen, Y.J. Lee, Achieving graded refractive index by use of ZnO nanorods/TiO2 layer to enhance omnidirectional photovoltaic performances of InGaP/GaAs/Ge triple-junction solar cells. Sol. Energy Mat. Sol C 136, 17–24 (2015)
97.
go back to reference J. Zhang, W.X. Que, P. Zhong, G.Q. Zhu, p-Cu2O/n-ZnO nanowires on ITO glass for solar cells. J. Nanosci. Nanotechnol. 10(11), 7473–7476 (2010) J. Zhang, W.X. Que, P. Zhong, G.Q. Zhu, p-Cu2O/n-ZnO nanowires on ITO glass for solar cells. J. Nanosci. Nanotechnol. 10(11), 7473–7476 (2010)
98.
go back to reference Y.F. Zhu, W.Z. Shen, Synthesis of ZnO nanoplates decorated rhombus-shaped ZnO nanorods and their application in solar cells. Physica E 59, 110–116 (2014) Y.F. Zhu, W.Z. Shen, Synthesis of ZnO nanoplates decorated rhombus-shaped ZnO nanorods and their application in solar cells. Physica E 59, 110–116 (2014)
100.
go back to reference L. De Marco, M. Manca, R. Giannuzzi, F. Malara, G. Melcarne, G. Ciccarella, I. Zama, R. Cingolani, G. Gigli, Novel preparation method of TiO2-nanorod-based photoelectrodes for dye-sensitized solar cells with improved light-harvesting efficiency. J. Phys. Chem. C 114(9), 4228–4236 (2010). doi:10.1021/Jp910346dCrossRef L. De Marco, M. Manca, R. Giannuzzi, F. Malara, G. Melcarne, G. Ciccarella, I. Zama, R. Cingolani, G. Gigli, Novel preparation method of TiO2-nanorod-based photoelectrodes for dye-sensitized solar cells with improved light-harvesting efficiency. J. Phys. Chem. C 114(9), 4228–4236 (2010). doi:10.​1021/​Jp910346dCrossRef
101.
go back to reference I.S. Cho, Z.B. Chen, A.J. Forman, D.R. Kim, P.M. Rao, T.F. Jaramillo, X.L. Zheng, Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett. 11(11), 4978–4984 (2011). doi:10.1021/Nl2029392CrossRef I.S. Cho, Z.B. Chen, A.J. Forman, D.R. Kim, P.M. Rao, T.F. Jaramillo, X.L. Zheng, Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett. 11(11), 4978–4984 (2011). doi:10.​1021/​Nl2029392CrossRef
103.
go back to reference H.W. Lin, Y.H. Chang, C. Chen, Facile fabrication of TiO2 nanorod arrays for gas sensing using double-layered anodic oxidation method. J. Electrochem. Soc. 159(1), K5–K9 (2012). doi:10.1149/2.013201jesCrossRef H.W. Lin, Y.H. Chang, C. Chen, Facile fabrication of TiO2 nanorod arrays for gas sensing using double-layered anodic oxidation method. J. Electrochem. Soc. 159(1), K5–K9 (2012). doi:10.​1149/​2.​013201jesCrossRef
104.
go back to reference J.K. Chen, W.Y. Fu, G.Y. Yuan, A. Runa, H. Bala, X.D. Wang, G. Sun, J.L. Cao, Z.Y. Zhang, Fabrication of TiO2 nanocrystals/nanorods composites thin film electrode: Enhanced performance of dye-sensitized solar cells. Mater. Lett. 135, 229–232 (2014) J.K. Chen, W.Y. Fu, G.Y. Yuan, A. Runa, H. Bala, X.D. Wang, G. Sun, J.L. Cao, Z.Y. Zhang, Fabrication of TiO2 nanocrystals/nanorods composites thin film electrode: Enhanced performance of dye-sensitized solar cells. Mater. Lett. 135, 229–232 (2014)
105.
go back to reference K. Fan, W. Zhang, T.Y. Peng, J.N. Chen, F. Yang, Application of TiO2 fusiform nanorods for dye-sensitized solar cells with significantly improved efficiency. J. Phys. Chem. C 115(34), 17213–17219 (2011) K. Fan, W. Zhang, T.Y. Peng, J.N. Chen, F. Yang, Application of TiO2 fusiform nanorods for dye-sensitized solar cells with significantly improved efficiency. J. Phys. Chem. C 115(34), 17213–17219 (2011)
106.
go back to reference Z.M. He, J. Liu, J.W. Miao, B. Liu, T.T.Y. Tan, A one-pot solvothermal synthesis of hierarchical microspheres with radially assembled single-crystalline TiO2-nanorods for high performance dye-sensitized solar cells. J. Mater. Chem. C 2(8), 1381–1385 (2014) Z.M. He, J. Liu, J.W. Miao, B. Liu, T.T.Y. Tan, A one-pot solvothermal synthesis of hierarchical microspheres with radially assembled single-crystalline TiO2-nanorods for high performance dye-sensitized solar cells. J. Mater. Chem. C 2(8), 1381–1385 (2014)
107.
go back to reference Y.H. Jung, K.H. Park, J.S. Oh, D.H. Kim, C.K. Hong, Effect of TiO2 rutile nanorods on the photoelectrodes of dye-sensitized solar cells. Nanoscale Res. Lett. 8, 37 (2013) Y.H. Jung, K.H. Park, J.S. Oh, D.H. Kim, C.K. Hong, Effect of TiO2 rutile nanorods on the photoelectrodes of dye-sensitized solar cells. Nanoscale Res. Lett. 8, 37 (2013)
108.
go back to reference S.H. Kang, Thickness effect of single crystalline TiO2 nanorods for dye-sensitized solar cells. J. Nanosci. Nanotechnol. 14(8), 6318–6321 (2014) S.H. Kang, Thickness effect of single crystalline TiO2 nanorods for dye-sensitized solar cells. J. Nanosci. Nanotechnol. 14(8), 6318–6321 (2014)
109.
go back to reference S. Kathirvel, C.C. Su, H.C. Lin, B.R. Chen, W.R. Li, Facile non-hydrolytic solvothermal synthesis of one dimensional TiO2 nanorods for efficient dye-sensitized solar cells. Mater. Lett. 129, 149–152 (2014) S. Kathirvel, C.C. Su, H.C. Lin, B.R. Chen, W.R. Li, Facile non-hydrolytic solvothermal synthesis of one dimensional TiO2 nanorods for efficient dye-sensitized solar cells. Mater. Lett. 129, 149–152 (2014)
110.
go back to reference P.L. Kuo, T.S. Jan, C.H. Liao, C.C. Chen, K.M. Lee, Syntheses of size-varied nanorods TiO2 and blending effects on efficiency for dye-sensitized solar cells. J. Power Sources 235, 297–302 (2013) P.L. Kuo, T.S. Jan, C.H. Liao, C.C. Chen, K.M. Lee, Syntheses of size-varied nanorods TiO2 and blending effects on efficiency for dye-sensitized solar cells. J. Power Sources 235, 297–302 (2013)
111.
go back to reference J. Liu, J. Luo, W.G. Yang, Y.L. Wang, L.Y. Zhu, Y.Y. Xu, Y. Tang, Y.J. Hu, C. Wang, Y.G. Chen, W.M. Shi, Synthesis of single-crystalline anatase TiO2 nanorods with high-performance dye-sensitized solar cells. J. Mater. Sci. Technol. 31(1), 106–109 (2015) J. Liu, J. Luo, W.G. Yang, Y.L. Wang, L.Y. Zhu, Y.Y. Xu, Y. Tang, Y.J. Hu, C. Wang, Y.G. Chen, W.M. Shi, Synthesis of single-crystalline anatase TiO2 nanorods with high-performance dye-sensitized solar cells. J. Mater. Sci. Technol. 31(1), 106–109 (2015)
112.
go back to reference Y.D. Park, K. Anabuki, S. Kim, K.W. Park, D.H. Lee, S.H. Um, J. Kim, J.H. Cho, Fabrication of stable electrospun TiO2 nanorods for high-performance dye-sensitized solar cells. Macromol. Res. 21(6), 636–640 (2013) Y.D. Park, K. Anabuki, S. Kim, K.W. Park, D.H. Lee, S.H. Um, J. Kim, J.H. Cho, Fabrication of stable electrospun TiO2 nanorods for high-performance dye-sensitized solar cells. Macromol. Res. 21(6), 636–640 (2013)
113.
go back to reference M.K. Wang, J. Bai, F. Le Formal, S.J. Moon, L. Cevey-Ha, R. Humphry-Baker, C. Gratzel, S.M. Zakeeruddin, M. Gratzel, Solid-state dye-sensitized solar cells using ordered TiO2 nanorods on transparent conductive oxide as photoanodes. J. Phys. Chem. C 116(5), 3266–3273 (2012) M.K. Wang, J. Bai, F. Le Formal, S.J. Moon, L. Cevey-Ha, R. Humphry-Baker, C. Gratzel, S.M. Zakeeruddin, M. Gratzel, Solid-state dye-sensitized solar cells using ordered TiO2 nanorods on transparent conductive oxide as photoanodes. J. Phys. Chem. C 116(5), 3266–3273 (2012)
114.
go back to reference Y.L. Xie, P.C. Lin, S.Q. Hu, Y.C. Lu, L. Li, H. Wang, Growth of ZnO nanorods on TiO2 nanoparticles films and their application to the electrode of dye-sensitized solar cells. J. Mater. Sci-Mater El 25(6), 2665–2670 (2014) Y.L. Xie, P.C. Lin, S.Q. Hu, Y.C. Lu, L. Li, H. Wang, Growth of ZnO nanorods on TiO2 nanoparticles films and their application to the electrode of dye-sensitized solar cells. J. Mater. Sci-Mater El 25(6), 2665–2670 (2014)
115.
go back to reference W.J. Zhang, Y. Xie, D.H. Xiong, X.W. Zeng, Z.H. Li, M.K. Wang, Y.B. Cheng, W. Chen, K.Y. Yan, S.H. Yang, TiO2 nanorods: a facile size- and shape-tunable synthesis and effective improvement of charge collection kinetics for dye-sensitized solar cells. ACS Appl. Mater. Inter. 6(12), 9698–9704 (2014) W.J. Zhang, Y. Xie, D.H. Xiong, X.W. Zeng, Z.H. Li, M.K. Wang, Y.B. Cheng, W. Chen, K.Y. Yan, S.H. Yang, TiO2 nanorods: a facile size- and shape-tunable synthesis and effective improvement of charge collection kinetics for dye-sensitized solar cells. ACS Appl. Mater. Inter. 6(12), 9698–9704 (2014)
116.
117.
go back to reference H.B. Zhang, M.J. Zhang, C.B. Tian, N. Li, P. Lin, Z.H. Li, S.W. Du, An effective method for the synthesis of 3D inorganic Ln(III)-K(I) sulfate open frameworks with unusually high thermal stability: in situ generation of sulfate anions. J. Mater. Chem. 22(14), 6831–6837 (2012). doi:10.1039/C2jm16779dCrossRef H.B. Zhang, M.J. Zhang, C.B. Tian, N. Li, P. Lin, Z.H. Li, S.W. Du, An effective method for the synthesis of 3D inorganic Ln(III)-K(I) sulfate open frameworks with unusually high thermal stability: in situ generation of sulfate anions. J. Mater. Chem. 22(14), 6831–6837 (2012). doi:10.​1039/​C2jm16779dCrossRef
119.
120.
go back to reference J. Tang, Z. Huo, S. Brittman, H. Gao, P. Yang, Solution-processed core-shell nanowires for efficient photovoltaic cells. Nat. Nano 6(9), 568–572 (2011) J. Tang, Z. Huo, S. Brittman, H. Gao, P. Yang, Solution-processed core-shell nanowires for efficient photovoltaic cells. Nat. Nano 6(9), 568–572 (2011)
121.
go back to reference Y. Tak, S.J. Hong, J.S. Lee, K. Yong, Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion. J. Mater. Chem. 19(33), 5945–5951 (2009). doi:10.1039/B904993BCrossRef Y. Tak, S.J. Hong, J.S. Lee, K. Yong, Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion. J. Mater. Chem. 19(33), 5945–5951 (2009). doi:10.​1039/​B904993BCrossRef
122.
123.
go back to reference B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C.M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449(7164):885–889 (2007) B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C.M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449(7164):885–889 (2007)
127.
go back to reference B.M. Kayes, H.A. Atwater, N.S. Lewis, Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. J. Appl. Phys. 97(11), 114302 (2005). doi:10.1063/1.1901835CrossRef B.M. Kayes, H.A. Atwater, N.S. Lewis, Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. J. Appl. Phys. 97(11), 114302 (2005). doi:10.​1063/​1.​1901835CrossRef
128.
129.
go back to reference L. Aé, D. Kieven, J. Chen, R. Klenk, T. Rissom, Y. Tang, M.C. Lux-Steiner, ZnO nanorod arrays as an antireflective coating for Cu(In, Ga)Se2 thin film solar cells. Prog. Photovoltaics Res. Appl. 18(3), 209–213 (2010). doi:10.1002/pip.946CrossRef L. Aé, D. Kieven, J. Chen, R. Klenk, T. Rissom, Y. Tang, M.C. Lux-Steiner, ZnO nanorod arrays as an antireflective coating for Cu(In, Ga)Se2 thin film solar cells. Prog. Photovoltaics Res. Appl. 18(3), 209–213 (2010). doi:10.​1002/​pip.​946CrossRef
130.
go back to reference T. Stelzner, M. Pietsch, G. Andra, F. Falk, E. Ose, S. Christiansen, Silicon nanowire-based solar cells. Nanotechnology 19(29), 295203 (2008) T. Stelzner, M. Pietsch, G. Andra, F. Falk, E. Ose, S. Christiansen, Silicon nanowire-based solar cells. Nanotechnology 19(29), 295203 (2008)
131.
go back to reference S.A. Moiz, A.M. Nahhas, H.D. Um, S.W. Jee, H.K. Cho, S.W. Kim, J.H. Lee, A stamped PEDOT:PSS-silicon nanowire hybrid solar cell. Nanotechnology 23(14), 145401 (2012) S.A. Moiz, A.M. Nahhas, H.D. Um, S.W. Jee, H.K. Cho, S.W. Kim, J.H. Lee, A stamped PEDOT:PSS-silicon nanowire hybrid solar cell. Nanotechnology 23(14), 145401 (2012)
132.
go back to reference A. Kim, Y. Won, K. Woo, C.-H. Kim, J. Moon, Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells. ACS Nano 7(2), 1081–1091 (2013). doi:10.1021/nn305491xCrossRef A. Kim, Y. Won, K. Woo, C.-H. Kim, J. Moon, Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells. ACS Nano 7(2), 1081–1091 (2013). doi:10.​1021/​nn305491xCrossRef
133.
go back to reference S. Cataldo, P. Salice, E. Menna, B. Pignataro, Carbon nanotubes and organic solar cells. Energy Environ. Sci. 5(3), 5919–5940 (2012) S. Cataldo, P. Salice, E. Menna, B. Pignataro, Carbon nanotubes and organic solar cells. Energy Environ. Sci. 5(3), 5919–5940 (2012)
134.
go back to reference P.-L. Ong, W.B. Euler, I.A. Levitsky, Hybrid solar cells based on single-walled carbon nanotubes/Si heterojunctions. Nanotechnology 21(10), 105203 (2010) P.-L. Ong, W.B. Euler, I.A. Levitsky, Hybrid solar cells based on single-walled carbon nanotubes/Si heterojunctions. Nanotechnology 21(10), 105203 (2010)
135.
136.
go back to reference P.X. Hou, C. Liu, H.M. Cheng, Purification of carbon nanotubes. Carbon 46(15), 2003–2025 (2008) P.X. Hou, C. Liu, H.M. Cheng, Purification of carbon nanotubes. Carbon 46(15), 2003–2025 (2008)
137.
go back to reference L.A. Montoro, J.M. Rosolen, A multi-step treatment to effective purification of single-walled carbon nanotubes. Carbon 44(15), 3293–3301 (2006) L.A. Montoro, J.M. Rosolen, A multi-step treatment to effective purification of single-walled carbon nanotubes. Carbon 44(15), 3293–3301 (2006)
138.
go back to reference C.M. Aguirre, S. Auvray, S. Pigeon, R. Izquierdo, P. Desjardins, R. Martel, Carbon nanotube sheets as electrodes in organic light-emitting diodes. Appl. Phys. Lett. 88(18) (2006) C.M. Aguirre, S. Auvray, S. Pigeon, R. Izquierdo, P. Desjardins, R. Martel, Carbon nanotube sheets as electrodes in organic light-emitting diodes. Appl. Phys. Lett. 88(18) (2006)
139.
go back to reference D.H. Zhang, K. Ryu, X.L. Liu, E. Polikarpov, J. Ly, M.E. Tompson, C.W. Zhou, Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. Nano Lett. 6(9), 1880–1886 (2006) D.H. Zhang, K. Ryu, X.L. Liu, E. Polikarpov, J. Ly, M.E. Tompson, C.W. Zhou, Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. Nano Lett. 6(9), 1880–1886 (2006)
140.
go back to reference B.B. Parekh, G. Fanchini, G. Eda, M. Chhowalla, Improved conductivity of transparent single-wall carbon nanotube thin films via stable postdeposition functionalization. Appl. Phys. Lett. 90(12), 121913 (2007) B.B. Parekh, G. Fanchini, G. Eda, M. Chhowalla, Improved conductivity of transparent single-wall carbon nanotube thin films via stable postdeposition functionalization. Appl. Phys. Lett. 90(12), 121913 (2007)
141.
go back to reference T. Tanaka, Y. Urabe, D. Nishide, H. Kataura, Discovery of surfactants for metal/semiconductor separation of single-wall carbon nanotubes via high-throughput screening. J. Am. Chem. Soc. 133(44), 17610–17613 (2011) T. Tanaka, Y. Urabe, D. Nishide, H. Kataura, Discovery of surfactants for metal/semiconductor separation of single-wall carbon nanotubes via high-throughput screening. J. Am. Chem. Soc. 133(44), 17610–17613 (2011)
142.
go back to reference P. Havu, M.J. Hashemi, M. Kaukonen, E.T. Seppälä, R.M. Nieminen, Effect of gating and pressure on the electronic transport properties of crossed nanotube junctions: formation of a Schottky barrier. J. Phys.: Condens. Matter 23(11), 112203 (2011) P. Havu, M.J. Hashemi, M. Kaukonen, E.T. Seppälä, R.M. Nieminen, Effect of gating and pressure on the electronic transport properties of crossed nanotube junctions: formation of a Schottky barrier. J. Phys.: Condens. Matter 23(11), 112203 (2011)
143.
go back to reference Y. Jung, X.K. Li, N.K. Rajan, A.D. Tayor, M.A. Reed, Record high efficiency single-walled carbon nanotube/silicon p-n junction solar cells. Nano Lett. 13(1), 95–99 (2013) Y. Jung, X.K. Li, N.K. Rajan, A.D. Tayor, M.A. Reed, Record high efficiency single-walled carbon nanotube/silicon p-n junction solar cells. Nano Lett. 13(1), 95–99 (2013)
144.
go back to reference F. Hennrich, R. Wellmann, S. Malik, S. Lebedkin, M.M. Kappes, Reversible modification of the absorption properties of single-walled carbon nanotube thin films via nitric acid exposure. Phys. Chem. Chem. Phys. 5(1), 178–183 (2003) F. Hennrich, R. Wellmann, S. Malik, S. Lebedkin, M.M. Kappes, Reversible modification of the absorption properties of single-walled carbon nanotube thin films via nitric acid exposure. Phys. Chem. Chem. Phys. 5(1), 178–183 (2003)
145.
go back to reference R. Jackson, B. Domercq, R. Jain, B. Kippelen, S. Graham, Stability of doped transparent carbon nanotube electrodes. Adv. Funct. Mater. 18(17), 2548–2554 (2008) R. Jackson, B. Domercq, R. Jain, B. Kippelen, S. Graham, Stability of doped transparent carbon nanotube electrodes. Adv. Funct. Mater. 18(17), 2548–2554 (2008)
146.
go back to reference S.L. Hellstrom, M. Vosgueritchian, R.M. Stoltenberg, I. Irfan, M. Hammock, Y.B. Wang, C.C. Jia, X.F. Guo, Y.L. Gao, Z.N. Bao, Strong and stable doping of carbon nanotubes and graphene by MoOx for transparent electrodes. Nano Lett. 12(7), 3574–3580 (2012) S.L. Hellstrom, M. Vosgueritchian, R.M. Stoltenberg, I. Irfan, M. Hammock, Y.B. Wang, C.C. Jia, X.F. Guo, Y.L. Gao, Z.N. Bao, Strong and stable doping of carbon nanotubes and graphene by MoOx for transparent electrodes. Nano Lett. 12(7), 3574–3580 (2012)
147.
go back to reference H.-Z. Geng, K.K. Kim, K.P. So, Y.S. Lee, Y. Chang, Y.H. Lee, Effect of acid treatment on carbon nanotube-based flexible transparent conducting films. J. Am. Chem. Soc. 129(25), 7758–7759 (2007). doi:10.1021/ja0722224CrossRef H.-Z. Geng, K.K. Kim, K.P. So, Y.S. Lee, Y. Chang, Y.H. Lee, Effect of acid treatment on carbon nanotube-based flexible transparent conducting films. J. Am. Chem. Soc. 129(25), 7758–7759 (2007). doi:10.​1021/​ja0722224CrossRef
148.
go back to reference S. Kim, J. Yim, X. Wang, D.D.C. Bradley, S. Lee, J.C. Demello, Spin- and spray-deposited single-walled carbon-nanotube electrodes for organic solar cells. Adv. Funct. Mater. 20(14), 2310–2316 (2010) S. Kim, J. Yim, X. Wang, D.D.C. Bradley, S. Lee, J.C. Demello, Spin- and spray-deposited single-walled carbon-nanotube electrodes for organic solar cells. Adv. Funct. Mater. 20(14), 2310–2316 (2010)
149.
go back to reference M.S. Strano, V.C. Moore, M.K. Miller, M.J. Allen, E.H. Haroz, C. Kittrell, R.H. Hauge, R.E. Smalley, The role of surfactant adsorption during ultrasonication in the dispersion of single-walled carbon nanotubes. J. Nanosci. Nanotechnol. 3(1–2), 81–86 (2003) M.S. Strano, V.C. Moore, M.K. Miller, M.J. Allen, E.H. Haroz, C. Kittrell, R.H. Hauge, R.E. Smalley, The role of surfactant adsorption during ultrasonication in the dispersion of single-walled carbon nanotubes. J. Nanosci. Nanotechnol. 3(1–2), 81–86 (2003)
150.
go back to reference H. Cebeci, R.G. de Villoria, A.J. Hart, B.L. Wardle, Multifunctional properties of high volume fraction aligned carbon nanotube polymer composites with controlled morphology. Compos. Sci. Technol. 69(15–16), 2649–2656 (2009) H. Cebeci, R.G. de Villoria, A.J. Hart, B.L. Wardle, Multifunctional properties of high volume fraction aligned carbon nanotube polymer composites with controlled morphology. Compos. Sci. Technol. 69(15–16), 2649–2656 (2009)
151.
go back to reference A. Hagfeldt, M. Gratzel, Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 95(1), 49–68 (1995) A. Hagfeldt, M. Gratzel, Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 95(1), 49–68 (1995)
153.
go back to reference A.C. Fisher, L.M. Peter, E.A. Ponomarev, A.B. Walker, K.G.U. Wijayantha, Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanacrystalline TiO2 solar cells. J. Phys. Chem. B 104(5), 949–958 (2000) A.C. Fisher, L.M. Peter, E.A. Ponomarev, A.B. Walker, K.G.U. Wijayantha, Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanacrystalline TiO2 solar cells. J. Phys. Chem. B 104(5), 949–958 (2000)
154.
go back to reference T. Oekermann, D. Zhang, T. Yoshida, H. Minoura, Electron transport and back reaction in nanocrystalline TiO2 films prepared by hydrothermal crystallization. J. Phys. Chem. B 108(7), 2227–2235 (2004) T. Oekermann, D. Zhang, T. Yoshida, H. Minoura, Electron transport and back reaction in nanocrystalline TiO2 films prepared by hydrothermal crystallization. J. Phys. Chem. B 108(7), 2227–2235 (2004)
156.
go back to reference J. van de Lagemaat, A.J. Frank, Nonthermalized electron transport in dye-sensitized nanocrystalline TiO2 films: transient photocurrent and random-walk modeling studies. J. Phys. Chem. B 105(45), 11194–11205 (2001). doi:10.1021/jp0118468CrossRef J. van de Lagemaat, A.J. Frank, Nonthermalized electron transport in dye-sensitized nanocrystalline TiO2 films: transient photocurrent and random-walk modeling studies. J. Phys. Chem. B 105(45), 11194–11205 (2001). doi:10.​1021/​jp0118468CrossRef
157.
go back to reference T.Y. Lee, P.S. Alegaonkar, J.B. Yoo, Fabrication of dye sensitized solar cell using TiO2 coated carbon nanotubes. Thin Solid Films 515(12), 5131–5135 (2007) T.Y. Lee, P.S. Alegaonkar, J.B. Yoo, Fabrication of dye sensitized solar cell using TiO2 coated carbon nanotubes. Thin Solid Films 515(12), 5131–5135 (2007)
159.
go back to reference K.T. Dembele, G.S. Selopal, C. Soldano, R. Nechache, J.C. Rimada, I. Concina, G. Sberveglieri, F. Rosei, A. Vomiero, Hybrid carbon nanotubes-TiO2 photoanodes for high efficiency dye-sensitized solar cells. J. Phys. Chem. C 117(28), 14510–14517 (2013) K.T. Dembele, G.S. Selopal, C. Soldano, R. Nechache, J.C. Rimada, I. Concina, G. Sberveglieri, F. Rosei, A. Vomiero, Hybrid carbon nanotubes-TiO2 photoanodes for high efficiency dye-sensitized solar cells. J. Phys. Chem. C 117(28), 14510–14517 (2013)
160.
go back to reference Z. Peining, A.S. Nair, Y. Shengyuan, P. Shengjie, N.K. Elumalai, S. Ramakrishna, Rice grain-shaped TiO2–CNT composite—a functional material with a novel morphology for dye-sensitized solar cells. J. Photochem. Photobiol. A 231(1), 9–18 (2012). doi:10.1016/j.jphotochem.2012.01.002CrossRef Z. Peining, A.S. Nair, Y. Shengyuan, P. Shengjie, N.K. Elumalai, S. Ramakrishna, Rice grain-shaped TiO2–CNT composite—a functional material with a novel morphology for dye-sensitized solar cells. J. Photochem. Photobiol. A 231(1), 9–18 (2012). doi:10.​1016/​j.​jphotochem.​2012.​01.​002CrossRef
161.
go back to reference L.J. Yang, W.W.F. Leung, Electrospun TiO2 nanorods with carbon nanotubes for efficient electron collection in dye-sensitized solar cells. Adv. Mater. 25(12), 1792–1795 (2013) L.J. Yang, W.W.F. Leung, Electrospun TiO2 nanorods with carbon nanotubes for efficient electron collection in dye-sensitized solar cells. Adv. Mater. 25(12), 1792–1795 (2013)
163.
go back to reference K. Suzuki, M. Yamaguchi, M. Kumagai, S. Yanagida, Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells. Chem. Lett. 32(1), 28–29 (2003). doi:10.1246/cl.2003.28CrossRef K. Suzuki, M. Yamaguchi, M. Kumagai, S. Yanagida, Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells. Chem. Lett. 32(1), 28–29 (2003). doi:10.​1246/​cl.​2003.​28CrossRef
165.
go back to reference S.H. Seo, S.Y. Kim, B.K. Koo, S.I. Cha, D.Y. Lee, Influence of electrolyte composition on the photovoltaic performance and stability of dye-sensitized solar cells with multiwalled carbon nanotube catalysts. Langmuir 26(12), 10341–10346 (2010) S.H. Seo, S.Y. Kim, B.K. Koo, S.I. Cha, D.Y. Lee, Influence of electrolyte composition on the photovoltaic performance and stability of dye-sensitized solar cells with multiwalled carbon nanotube catalysts. Langmuir 26(12), 10341–10346 (2010)
166.
go back to reference J. Velten, A.J. Mozer, D. Li, D. Officer, G. Wallace, R. Baughman, A. Zakhidov, Carbon nanotube/graphene nanocomposite as efficient counter electrodes in dye-sensitized solar cells. Nanotechnology 23(8), 085201 (2012) J. Velten, A.J. Mozer, D. Li, D. Officer, G. Wallace, R. Baughman, A. Zakhidov, Carbon nanotube/graphene nanocomposite as efficient counter electrodes in dye-sensitized solar cells. Nanotechnology 23(8), 085201 (2012)
167.
go back to reference H. Anwar, A.E. George, I.G. Hill, Vertically-aligned carbon nanotube counter electrodes for dye-sensitized solar cells. Sol. Energy 88, 129–136 (2013) H. Anwar, A.E. George, I.G. Hill, Vertically-aligned carbon nanotube counter electrodes for dye-sensitized solar cells. Sol. Energy 88, 129–136 (2013)
168.
go back to reference G.-R. Li, F. Wang, Q.-W. Jiang, X.-P. Gao, P.-W. Shen, Carbon nanotubes with titanium nitride as a low-cost counter-electrode material for dye-sensitized solar cells. Angew. Chem. Int. Ed. 49(21), 3653–3656 (2010). doi:10.1002/anie.201000659CrossRef G.-R. Li, F. Wang, Q.-W. Jiang, X.-P. Gao, P.-W. Shen, Carbon nanotubes with titanium nitride as a low-cost counter-electrode material for dye-sensitized solar cells. Angew. Chem. Int. Ed. 49(21), 3653–3656 (2010). doi:10.​1002/​anie.​201000659CrossRef
169.
go back to reference Q.W. Jiang, G.R. Li, X.P. Gao, Highly ordered TiN nanotube arrays as counter electrodes for dye-sensitized solar cells. Chem. Commun. 44, 6720–6722 (2009) Q.W. Jiang, G.R. Li, X.P. Gao, Highly ordered TiN nanotube arrays as counter electrodes for dye-sensitized solar cells. Chem. Commun. 44, 6720–6722 (2009)
Metadata
Title
One-Dimensional Nano-structured Solar Cells
Authors
H. Karaağaç
E. Peksu
E. U. Arici
M. Saif Islam
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-25340-4_15

Premium Partners