Skip to main content

2016 | OriginalPaper | Buchkapitel

15. One-Dimensional Nano-structured Solar Cells

verfasst von : H. Karaağaç, E. Peksu, E. U. Arici, M. Saif Islam

Erschienen in: Low-Dimensional and Nanostructured Materials and Devices

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The solar light harvesting has long been regarded as promising way to meet the increasing world’s annual energy consumption as well as the solution to prevent the detrimental long-term effect of carbon-monoxide emission released by fossil fuel sources. Due to the high cost of today’s conventional PV technology, however, it is not possible to compete with the energy supplied from fossil fuel sources. The use of one-dimensional nanostructures, including nanowires (NWs), nanorods (NRs), nanopillars (NPs) and nanotubes (NTs) in solar cells with different device architectures (e.g. axial, radial, and nanorod/nanowire array embedded in a thin film) provides peculiar and fascinating advantages over single-crystalline and thin film based solar cells in terms of power conversion efficiency and manufacturing cost due to their large surface/interface area, the ability to grow single-crystalline nanowires on inexpensive substrates without resorting to complex epitaxial routes, single-crystalline structure and light trapping function. In this chapter, we review the recent studies conducted on nanowire/nanorod arrays based solar cells with different device architectures for the realization of high-efficiency solar cells at an economically viable cost.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Energy BSRoW, Technical Report, BP (2010) Energy BSRoW, Technical Report, BP (2010)
3.
Zurück zum Zitat J.S. Li, H.Y. Yu, Y.L. Li, Aligned Si nanowire-based solar cells. Nanoscale 3(12), 4888–4900 (2011) J.S. Li, H.Y. Yu, Y.L. Li, Aligned Si nanowire-based solar cells. Nanoscale 3(12), 4888–4900 (2011)
4.
Zurück zum Zitat Y.N. Xia, P.D. Yang, Y.G. Sun, Y.Y. Wu, B. Mayers, B. Gates, Y.D. Yin, F. Kim, Y.Q. Yan, One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15(5), 353–389 (2003) Y.N. Xia, P.D. Yang, Y.G. Sun, Y.Y. Wu, B. Mayers, B. Gates, Y.D. Yin, F. Kim, Y.Q. Yan, One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15(5), 353–389 (2003)
5.
Zurück zum Zitat Z.Y. Fan, D.J. Ruebusch, A.A. Rathore, R. Kapadia, O. Ergen, P.W. Leu, A. Javey, Challenges and prospects of nanopillar-based solar cells. Nano Res 2(11), 829–843 (2009) Z.Y. Fan, D.J. Ruebusch, A.A. Rathore, R. Kapadia, O. Ergen, P.W. Leu, A. Javey, Challenges and prospects of nanopillar-based solar cells. Nano Res 2(11), 829–843 (2009)
6.
Zurück zum Zitat P.V. Kamat, Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J. Phys. Chem. C 111(7), 2834–2860 (2007) P.V. Kamat, Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J. Phys. Chem. C 111(7), 2834–2860 (2007)
7.
Zurück zum Zitat M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P.D. Yang, Nanowire dye-sensitized solar cells. Nat. Mater. 4(6), 455–459 (2005) M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P.D. Yang, Nanowire dye-sensitized solar cells. Nat. Mater. 4(6), 455–459 (2005)
8.
Zurück zum Zitat J.A. Czaban, D.A. Thompson, R.R. LaPierre, GaAs core-shell nanowires for photovoltaic applications. Nano Lett. 9(1), 148–154 (2009) J.A. Czaban, D.A. Thompson, R.R. LaPierre, GaAs core-shell nanowires for photovoltaic applications. Nano Lett. 9(1), 148–154 (2009)
9.
Zurück zum Zitat E.C. Garnett, P.D. Yang, Silicon nanowire radial p-n junction solar cells. J. Am. Chem. Soc. 130(29), 9224–9225 (2008) E.C. Garnett, P.D. Yang, Silicon nanowire radial p-n junction solar cells. J. Am. Chem. Soc. 130(29), 9224–9225 (2008)
10.
Zurück zum Zitat E.C. Garnett, M.L. Brongersma, Y. Cui, M.D. McGehee, Nanowire solar cells. Annu. Rev. Mater. Res. 41, 269–295 (2011) E.C. Garnett, M.L. Brongersma, Y. Cui, M.D. McGehee, Nanowire solar cells. Annu. Rev. Mater. Res. 41, 269–295 (2011)
11.
Zurück zum Zitat R. Kapadia, Z.Y. Fan, K. Takei, A. Javey, Nanopillar photovoltaics: materials, processes, and devices. Nano Energy 1(1), 132–144 (2012) R. Kapadia, Z.Y. Fan, K. Takei, A. Javey, Nanopillar photovoltaics: materials, processes, and devices. Nano Energy 1(1), 132–144 (2012)
13.
Zurück zum Zitat B.Z. Tian, X.L. Zheng, T.J. Kempa, Y. Fang, N.F. Yu, G.H. Yu, J.L. Huang, C.M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449(7164), 885–890 (2007) B.Z. Tian, X.L. Zheng, T.J. Kempa, Y. Fang, N.F. Yu, G.H. Yu, J.L. Huang, C.M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449(7164), 885–890 (2007)
14.
Zurück zum Zitat Y. Zhang, L.W. Wang, A. Mascarenhas, Quantum coaxial cables for solar energy harvesting. Nano Lett. 7(5), 1264–1269 (2007) Y. Zhang, L.W. Wang, A. Mascarenhas, Quantum coaxial cables for solar energy harvesting. Nano Lett. 7(5), 1264–1269 (2007)
15.
Zurück zum Zitat B.M. Kayes, H.A. Atwater, N.S. Lewis, Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. J. Appl. Phys. 97(11), 114302–114313 (2005) B.M. Kayes, H.A. Atwater, N.S. Lewis, Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. J. Appl. Phys. 97(11), 114302–114313 (2005)
16.
Zurück zum Zitat L. Tsakalakos, J. Balch, J. Fronheiser, B.A. Korevaar, O. Sulima, J. Rand, Silicon nanowire solar cells. Appl Phys Lett 91(23) (2007) L. Tsakalakos, J. Balch, J. Fronheiser, B.A. Korevaar, O. Sulima, J. Rand, Silicon nanowire solar cells. Appl Phys Lett 91(23) (2007)
17.
Zurück zum Zitat B.D. Yuhas, P.D. Yang, Nanowire-based all-oxide solar cells. J. Am. Chem. Soc. 131(10), 3756–3761 (2009) B.D. Yuhas, P.D. Yang, Nanowire-based all-oxide solar cells. J. Am. Chem. Soc. 131(10), 3756–3761 (2009)
18.
Zurück zum Zitat Z.Y. Fan, H. Razavi, J.W. Do, A. Moriwaki, O. Ergen, Y.L. Chueh, P.W. Leu, J.C. Ho, T. Takahashi, L.A. Reichertz, S. Neale, K. Yu, M. Wu, J.W. Ager, A. Javey, Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nat. Mater. 8(8), 648–653 (2009) Z.Y. Fan, H. Razavi, J.W. Do, A. Moriwaki, O. Ergen, Y.L. Chueh, P.W. Leu, J.C. Ho, T. Takahashi, L.A. Reichertz, S. Neale, K. Yu, M. Wu, J.W. Ager, A. Javey, Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nat. Mater. 8(8), 648–653 (2009)
19.
Zurück zum Zitat R.R. LaPierre, Numerical model of current-voltage characteristics and efficiency of GaAs nanowire solar cells. J. Appl. Phys. 109(3), 034311–034316 (2011) R.R. LaPierre, Numerical model of current-voltage characteristics and efficiency of GaAs nanowire solar cells. J. Appl. Phys. 109(3), 034311–034316 (2011)
20.
Zurück zum Zitat C. Colombo, M. Heiss, M. Gratzel, A.F.I. Morral, Gallium arsenide p-i-n radial structures for photovoltaic applications. Appl. Phys. Lett. 94(17), 173108 (2009) C. Colombo, M. Heiss, M. Gratzel, A.F.I. Morral, Gallium arsenide p-i-n radial structures for photovoltaic applications. Appl. Phys. Lett. 94(17), 173108 (2009)
21.
Zurück zum Zitat Y.B. Tang, Z.H. Chen, H.S. Song, C.S. Lee, H.T. Cong, H.M. Cheng, W.J. Zhang, I. Bello, S.T. Lee, Vertically aligned p-type single-crystalline gan nanorod arrays on n-type si for heterojunction photovoltaic cells. Nano Lett. 8(12), 4191–4195 (2008) Y.B. Tang, Z.H. Chen, H.S. Song, C.S. Lee, H.T. Cong, H.M. Cheng, W.J. Zhang, I. Bello, S.T. Lee, Vertically aligned p-type single-crystalline gan nanorod arrays on n-type si for heterojunction photovoltaic cells. Nano Lett. 8(12), 4191–4195 (2008)
22.
Zurück zum Zitat V. Sivakov, G. Andra, A. Gawlik, A. Berger, J. Plentz, F. Falk, S.H. Christiansen, Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters. Nano Lett. 9(4), 1549–1554 (2009) V. Sivakov, G. Andra, A. Gawlik, A. Berger, J. Plentz, F. Falk, S.H. Christiansen, Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters. Nano Lett. 9(4), 1549–1554 (2009)
23.
Zurück zum Zitat M.Q. Yao, N.F. Huang, S. Cong, C.Y. Chi, M.A. Seyedi, Y.T. Lin, Y. Cao, M.L. Povinelli, P.D. Dapkus, C.W. Zhou, GaAs nanowire array solar cells with axial p-i-n junctions. Nano Lett. 14(6), 3293–3303 (2014) M.Q. Yao, N.F. Huang, S. Cong, C.Y. Chi, M.A. Seyedi, Y.T. Lin, Y. Cao, M.L. Povinelli, P.D. Dapkus, C.W. Zhou, GaAs nanowire array solar cells with axial p-i-n junctions. Nano Lett. 14(6), 3293–3303 (2014)
25.
Zurück zum Zitat L.N. Dem’yanets, L.E. Li, T.G. Uvarova, Zinc oxide: hydrothermal growth of nano- and bulk crystals and their luminescent properties. J. Mater. Sci. 41(5), 1439–1444 (2006). doi:10.1007/s10853-006-7457-zCrossRef L.N. Dem’yanets, L.E. Li, T.G. Uvarova, Zinc oxide: hydrothermal growth of nano- and bulk crystals and their luminescent properties. J. Mater. Sci. 41(5), 1439–1444 (2006). doi:10.​1007/​s10853-006-7457-zCrossRef
26.
Zurück zum Zitat H.-E. Wang, Z. Chen, Y.H. Leung, C. Luan, C. Liu, Y. Tang, C. Yan, W. Zhang, J.A. Zapien, I. Bello, S.-T. Lee, Hydrothermal synthesis of ordered single-crystalline rutile TiO2 nanorod arrays on different substrates. Appl. Phys. Lett. 96(26), 263104 (2010). doi:10.1063/1.3442913CrossRef H.-E. Wang, Z. Chen, Y.H. Leung, C. Luan, C. Liu, Y. Tang, C. Yan, W. Zhang, J.A. Zapien, I. Bello, S.-T. Lee, Hydrothermal synthesis of ordered single-crystalline rutile TiO2 nanorod arrays on different substrates. Appl. Phys. Lett. 96(26), 263104 (2010). doi:10.​1063/​1.​3442913CrossRef
27.
Zurück zum Zitat X. Wang, Y. Li, Selected-control hydrothermal synthesis of α- and β-MnO2 single crystal nanowires. J. Am. Chem. Soc. 124(12), 2880–2881 (2002). doi:10.1021/ja0177105CrossRef X. Wang, Y. Li, Selected-control hydrothermal synthesis of α- and β-MnO2 single crystal nanowires. J. Am. Chem. Soc. 124(12), 2880–2881 (2002). doi:10.​1021/​ja0177105CrossRef
28.
Zurück zum Zitat H. Zhitao, L. Sisi, C. Jinkui, C. Yong, Controlled growth of well-aligned ZnO nanowire arrays using the improved hydrothermal method. J. Semiconduct. 34(6), 063002 (2013) H. Zhitao, L. Sisi, C. Jinkui, C. Yong, Controlled growth of well-aligned ZnO nanowire arrays using the improved hydrothermal method. J. Semiconduct. 34(6), 063002 (2013)
29.
Zurück zum Zitat M. Ahmad, M.A. Iqbal, J. Kiely, R. Luxton, M. Jabeen, Low temperature hydrothermal synthesis of ZnO nanowires for nanogenerator: effect of gold electrode on the output voltage of nanogenerator. Indian J. Eng. Mater. S 21(6), 672–676 (2014) M. Ahmad, M.A. Iqbal, J. Kiely, R. Luxton, M. Jabeen, Low temperature hydrothermal synthesis of ZnO nanowires for nanogenerator: effect of gold electrode on the output voltage of nanogenerator. Indian J. Eng. Mater. S 21(6), 672–676 (2014)
30.
Zurück zum Zitat S.N. Bai, S.C. Wu, Synthesis of ZnO nanowires by the hydrothermal method, using sol-gel prepared ZnO seed films. J. Mater. Sci-Mater El 22(4), 339–344 (2011) S.N. Bai, S.C. Wu, Synthesis of ZnO nanowires by the hydrothermal method, using sol-gel prepared ZnO seed films. J. Mater. Sci-Mater El 22(4), 339–344 (2011)
31.
Zurück zum Zitat R. Hao, X. Deng, Y.B. Yang, D.Y. Chen, Research progress in preparation and applications of ZnO nanowire/rod arrays by hydrothermal method. Acta Chim. Sinica 72(12), 1199–1208 (2014) R. Hao, X. Deng, Y.B. Yang, D.Y. Chen, Research progress in preparation and applications of ZnO nanowire/rod arrays by hydrothermal method. Acta Chim. Sinica 72(12), 1199–1208 (2014)
32.
Zurück zum Zitat H.S. Jang, B. Son, H. Song, G.Y. Jung, H.C. Ko, Controlled hydrothermal growth of multi-length-scale ZnO nanowires using liquid masking layers. J. Mater. Sci. 49(23), 8000–8009 (2014) H.S. Jang, B. Son, H. Song, G.Y. Jung, H.C. Ko, Controlled hydrothermal growth of multi-length-scale ZnO nanowires using liquid masking layers. J. Mater. Sci. 49(23), 8000–8009 (2014)
33.
Zurück zum Zitat H. Karaagac, M. Parlak, E. Yengel, M.S. Islam, Heterojunction solar cells with integrated Si and ZnO nanowires and a chalcopyrite thin film. Mater. Chem. Phys. 140(1), 382–390 (2013) H. Karaagac, M. Parlak, E. Yengel, M.S. Islam, Heterojunction solar cells with integrated Si and ZnO nanowires and a chalcopyrite thin film. Mater. Chem. Phys. 140(1), 382–390 (2013)
34.
Zurück zum Zitat D.P. Neveling, T.S. van den Heever, R. Bucher, W.J. Perold, L.M.T. Dicks, Effect of seed layer deposition, au film layer thickness and crystal orientation on the synthesis of hydrothermally grown ZnO nanowires. Curr. Nanosci. 10(6), 827–836 (2014) D.P. Neveling, T.S. van den Heever, R. Bucher, W.J. Perold, L.M.T. Dicks, Effect of seed layer deposition, au film layer thickness and crystal orientation on the synthesis of hydrothermally grown ZnO nanowires. Curr. Nanosci. 10(6), 827–836 (2014)
35.
Zurück zum Zitat I.J. No, S. Lee, S.H. Kim, J.W. Cho, P.K. Shin, Morphology control of ZnO nanowires grown by hydrothermal methods using Au nanodots on Al doped ZnO seed layer. Jpn. J. Appl. Phys. 52(2), 025003 (2013) I.J. No, S. Lee, S.H. Kim, J.W. Cho, P.K. Shin, Morphology control of ZnO nanowires grown by hydrothermal methods using Au nanodots on Al doped ZnO seed layer. Jpn. J. Appl. Phys. 52(2), 025003 (2013)
36.
Zurück zum Zitat Y.K. Tseng, M.C. Hung, S.L. Su, S.K. Li, Using the hydrothermal method to grow p-type ZnO nanowires on Al-doped ZnO thin film to fabricate a homojunction diode. J. Nanosci. Nanotechnol. 14(10), 7907–7910 (2014) Y.K. Tseng, M.C. Hung, S.L. Su, S.K. Li, Using the hydrothermal method to grow p-type ZnO nanowires on Al-doped ZnO thin film to fabricate a homojunction diode. J. Nanosci. Nanotechnol. 14(10), 7907–7910 (2014)
37.
Zurück zum Zitat H. Karaagac, V.J. Logeeswaran, M.S. Islam, Fabrication of 3D-silicon micropillars/walls decorated with aluminum-ZnO/ZnO nanowires for optoelectric devices. Phys. Status Solidi A 210(7), 1377–1380 (2013) H. Karaagac, V.J. Logeeswaran, M.S. Islam, Fabrication of 3D-silicon micropillars/walls decorated with aluminum-ZnO/ZnO nanowires for optoelectric devices. Phys. Status Solidi A 210(7), 1377–1380 (2013)
38.
39.
Zurück zum Zitat K.J. Morton, G. Nieberg, S.F. Bai, S.Y. Chou, Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching. Nanotechnology 19(34), 345301 (2008) K.J. Morton, G. Nieberg, S.F. Bai, S.Y. Chou, Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching. Nanotechnology 19(34), 345301 (2008)
41.
Zurück zum Zitat H. Karaagac, M.S. Islam, Enhanced field ionization enabled by metal induced surface states on semiconductor nanotips. Adv. Funct. Mater. 24(15), 2224–2232 (2014) H. Karaagac, M.S. Islam, Enhanced field ionization enabled by metal induced surface states on semiconductor nanotips. Adv. Funct. Mater. 24(15), 2224–2232 (2014)
42.
Zurück zum Zitat M. Meyyappan MS, Inorganic Nanowires: Applications, Properties and Characterization. (CRC Press, 2010) M. Meyyappan MS, Inorganic Nanowires: Applications, Properties and Characterization. (CRC Press, 2010)
43.
Zurück zum Zitat B. Gates, B. Mayers, A. Grossman, Y. Xia, A sonochemical approach to the synthesis of crystalline selenium nanowires in solutions and on solid supports. Adv. Mater. 14(23), 1749–1752 (2002) B. Gates, B. Mayers, A. Grossman, Y. Xia, A sonochemical approach to the synthesis of crystalline selenium nanowires in solutions and on solid supports. Adv. Mater. 14(23), 1749–1752 (2002)
44.
Zurück zum Zitat R.V. Kumar, Y. Koltypin, X.N. Xu, Y. Yeshurun, A. Gedanken, I. Felner, Fabrication of magnetite nanorods by ultrasound irradiation. J. Appl. Phys. 89(11), 6324–6328 (2001) R.V. Kumar, Y. Koltypin, X.N. Xu, Y. Yeshurun, A. Gedanken, I. Felner, Fabrication of magnetite nanorods by ultrasound irradiation. J. Appl. Phys. 89(11), 6324–6328 (2001)
45.
Zurück zum Zitat A.P. Nayak, A.M. Katzenmeyer, J.-Y. Kim, M.K. Kwon, Y. Gosho, M. Saif Islam, Purely sonochemical route for oriented zinc oxide nanowire growth on arbitrary substrate. Proc. SPIE 7683, 738312. doi:10.1117/12.851755 A.P. Nayak, A.M. Katzenmeyer, J.-Y. Kim, M.K. Kwon, Y. Gosho, M. Saif Islam, Purely sonochemical route for oriented zinc oxide nanowire growth on arbitrary substrate. Proc. SPIE 7683, 738312. doi:​10.​1117/​12.​851755  
46.
Zurück zum Zitat Y.Y. Wu, P.D. Yang, Direct observation of vapor-liquid-solid nanowire growth. J. Am. Chem. Soc. 123(13), 3165–3166 (2001) Y.Y. Wu, P.D. Yang, Direct observation of vapor-liquid-solid nanowire growth. J. Am. Chem. Soc. 123(13), 3165–3166 (2001)
47.
Zurück zum Zitat M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, E. Weber, R. Russo, P.D. Yang, Room-temperature ultraviolet nanowire nanolasers. Science 292(5523), 1897–1899 (2001) M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, E. Weber, R. Russo, P.D. Yang, Room-temperature ultraviolet nanowire nanolasers. Science 292(5523), 1897–1899 (2001)
48.
Zurück zum Zitat W. Lu, C.M. Lieber, Semiconductor nanowires. J. Phys. D Appl. Phys. 39(21), R387–R406 (2006) W. Lu, C.M. Lieber, Semiconductor nanowires. J. Phys. D Appl. Phys. 39(21), R387–R406 (2006)
49.
Zurück zum Zitat S. Han, R.S. Wagner, Grain boundary effects on carrier transport in undoped polycrystalline chemical-vapor-deposited diamond. Appl. Phys. Lett. 68(21), 3016–3018 (1996) S. Han, R.S. Wagner, Grain boundary effects on carrier transport in undoped polycrystalline chemical-vapor-deposited diamond. Appl. Phys. Lett. 68(21), 3016–3018 (1996)
50.
Zurück zum Zitat C.C. Chen, C.C. Yeh, Large-scale catalytic synthesis of crystalline gallium nitride nanowires. Adv. Mater. 12(10), 738 (2000) C.C. Chen, C.C. Yeh, Large-scale catalytic synthesis of crystalline gallium nitride nanowires. Adv. Mater. 12(10), 738 (2000)
51.
Zurück zum Zitat Y.J. Chen, J.B. Li, Y.S. Han, X.Z. Yang, J.H. Dai, The effect of Mg vapor source on the formation of MgO whiskers and sheets. J. Cryst. Growth 245(1–2), 163–170 (2002) Y.J. Chen, J.B. Li, Y.S. Han, X.Z. Yang, J.H. Dai, The effect of Mg vapor source on the formation of MgO whiskers and sheets. J. Cryst. Growth 245(1–2), 163–170 (2002)
52.
Zurück zum Zitat X.F. Duan, C.M. Lieber, General synthesis of compound semiconductor nanowires. Adv. Mater. 12(4), 298–302 (2000) X.F. Duan, C.M. Lieber, General synthesis of compound semiconductor nanowires. Adv. Mater. 12(4), 298–302 (2000)
53.
Zurück zum Zitat Y.W. Wang, L.D. Zhang, C.H. Liang, G.Z. Wang, X.S. Peng, Catalytic growth and photoluminescence properties of semiconductor single-crystal ZnS nanowires. Chem. Phys. Lett. 357(3–4), 314–318 (2002) Y.W. Wang, L.D. Zhang, C.H. Liang, G.Z. Wang, X.S. Peng, Catalytic growth and photoluminescence properties of semiconductor single-crystal ZnS nanowires. Chem. Phys. Lett. 357(3–4), 314–318 (2002)
54.
55.
Zurück zum Zitat M. Triplett, H. Nishimura, M. Ombaba, V.J. Logeeswarren, M. Yee, K.G. Polat, J.Y. Oh, T. Fuyuki, F. Leonard, M.S. Islam, High-precision transfer-printing and integration of vertically oriented semiconductor arrays for flexible device fabrication. Nano Res. 7(7), 998–1006 (2014) M. Triplett, H. Nishimura, M. Ombaba, V.J. Logeeswarren, M. Yee, K.G. Polat, J.Y. Oh, T. Fuyuki, F. Leonard, M.S. Islam, High-precision transfer-printing and integration of vertically oriented semiconductor arrays for flexible device fabrication. Nano Res. 7(7), 998–1006 (2014)
56.
Zurück zum Zitat C.N.R. Rao, F.L. Deepak, G. Gundiah, A. Govindaraj, Inorganic nanowires. Prog. Solid State Ch 31(1–2), 5–147 (2003) C.N.R. Rao, F.L. Deepak, G. Gundiah, A. Govindaraj, Inorganic nanowires. Prog. Solid State Ch 31(1–2), 5–147 (2003)
57.
Zurück zum Zitat P.L. Dong, X.D. Wang, M. Zhang, M. Guo, S. Seetharaman, The preparation and characterization of beta-SiAlON nanostructure whiskers. J. Nanomater. 2008, 282187–282192 (2008) P.L. Dong, X.D. Wang, M. Zhang, M. Guo, S. Seetharaman, The preparation and characterization of beta-SiAlON nanostructure whiskers. J. Nanomater. 2008, 282187–282192 (2008)
58.
Zurück zum Zitat Y.J. Hsu, S.Y. Lu, Vapor-solid growth of Sn nanowires: growth mechanism and superconductivity. J. Phys. Chem. B 109(10), 4398–4403 (2005) Y.J. Hsu, S.Y. Lu, Vapor-solid growth of Sn nanowires: growth mechanism and superconductivity. J. Phys. Chem. B 109(10), 4398–4403 (2005)
59.
Zurück zum Zitat Z.W. Pan, Z.R. Dai, Z.L. Wang, Nanobelts of semiconducting oxides. Science 291(5510), 1947–1949 (2001) Z.W. Pan, Z.R. Dai, Z.L. Wang, Nanobelts of semiconducting oxides. Science 291(5510), 1947–1949 (2001)
60.
Zurück zum Zitat Y.J. Zhang, N.L. Wang, S.P. Gao, R.R. He, S. Miao, J. Liu, J. Zhu, X. Zhang, A simple method to synthesize nanowires. Chem. Mater. 14(8), 3564–3568 (2002) Y.J. Zhang, N.L. Wang, S.P. Gao, R.R. He, S. Miao, J. Liu, J. Zhu, X. Zhang, A simple method to synthesize nanowires. Chem. Mater. 14(8), 3564–3568 (2002)
61.
Zurück zum Zitat S.S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H.J. Dai, Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283(5401), 512–514 (1999) S.S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H.J. Dai, Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283(5401), 512–514 (1999)
62.
Zurück zum Zitat S. Sakurai, M. Inaguma, D.N. Futaba, M. Yumura, K. Hata, A fundamental limitation of small diameter single-walled carbon nanotube synthesis-a scaling rule of the carbon nanotube yield with catalyst volume. Materials 6(7), 2633–2641 (2013) S. Sakurai, M. Inaguma, D.N. Futaba, M. Yumura, K. Hata, A fundamental limitation of small diameter single-walled carbon nanotube synthesis-a scaling rule of the carbon nanotube yield with catalyst volume. Materials 6(7), 2633–2641 (2013)
63.
Zurück zum Zitat M. Xu, D.N. Futaba, M. Yumura, K. Hata, Alignment control of carbon nanotube forest from random to nearly perfectly aligned by utilizing the crowding effect. ACS Nano 6(7), 5837–5844 (2012) M. Xu, D.N. Futaba, M. Yumura, K. Hata, Alignment control of carbon nanotube forest from random to nearly perfectly aligned by utilizing the crowding effect. ACS Nano 6(7), 5837–5844 (2012)
64.
65.
Zurück zum Zitat I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, B. To, R. Noufi, 19.9 %-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2 % fill factor. Prog. Photovolt. 16(3), 235–239 (2008). doi:10.1002/Pip.822CrossRef I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, B. To, R. Noufi, 19.9 %-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2 % fill factor. Prog. Photovolt. 16(3), 235–239 (2008). doi:10.​1002/​Pip.​822CrossRef
67.
Zurück zum Zitat P.P. Ramesh, O.M. Hussain, S. Uthanna, B.S. Naidu, P.J. Reddy, Photovoltaic performance of p-AgInSe2/n-CdS thin film heterojunctions. Mater. Lett. 34(3–6), 217–221 (1998) P.P. Ramesh, O.M. Hussain, S. Uthanna, B.S. Naidu, P.J. Reddy, Photovoltaic performance of p-AgInSe2/n-CdS thin film heterojunctions. Mater. Lett. 34(3–6), 217–221 (1998)
68.
Zurück zum Zitat Y.S. Murthy, O.M. Hussain, B.S. Naidu, P.J. Reddy, Characterization of P-Aggase2/N-Cds thin-film heterojunction. Mater. Lett. 10(11–12), 504–508 (1991) Y.S. Murthy, O.M. Hussain, B.S. Naidu, P.J. Reddy, Characterization of P-Aggase2/N-Cds thin-film heterojunction. Mater. Lett. 10(11–12), 504–508 (1991)
69.
Zurück zum Zitat G.H. Chandra, O.M. Hussain, S. Uthanna, B.S. Naidu, Characterization of p-AgGa0.25In0.75Se2/n-Zn0.35Cd0.65S polycrystalline thin film heterojunctions. Mat. Sci. Eng. B-Solid 86(1), 60–63 (2001) G.H. Chandra, O.M. Hussain, S. Uthanna, B.S. Naidu, Characterization of p-AgGa0.25In0.75Se2/n-Zn0.35Cd0.65S polycrystalline thin film heterojunctions. Mat. Sci. Eng. B-Solid 86(1), 60–63 (2001)
70.
Zurück zum Zitat B. Ozdemir, M. Kulakci, R. Turan, H.E. Unalan, Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires. Nanotechnology 22(15), 155606 (2011). doi:Artn 155606; doi:10.1088/0957-4484/22/15/155606 B. Ozdemir, M. Kulakci, R. Turan, H.E. Unalan, Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires. Nanotechnology 22(15), 155606 (2011). doi:Artn 155606; doi:10.​1088/​0957-4484/​22/​15/​155606
71.
Zurück zum Zitat K.Q. Peng, J.J. Hu, Y.J. Yan, Y. Wu, H. Fang, Y. Xu, S.T. Lee, J. Zhu, Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles. Adv. Funct. Mater. 16(3), 387–394 (2006). doi:10.1002/adfm.200500392CrossRef K.Q. Peng, J.J. Hu, Y.J. Yan, Y. Wu, H. Fang, Y. Xu, S.T. Lee, J. Zhu, Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles. Adv. Funct. Mater. 16(3), 387–394 (2006). doi:10.​1002/​adfm.​200500392CrossRef
73.
Zurück zum Zitat D.R. Kim, C.H. Lee, P.M. Rao, I.S. Cho, X.L. Zheng, Hybrid Si microwire and planar solar cells: passivation and characterization. Nano Lett. 11(7), 2704–2708 (2011). doi:10.1021/Nl2009636CrossRef D.R. Kim, C.H. Lee, P.M. Rao, I.S. Cho, X.L. Zheng, Hybrid Si microwire and planar solar cells: passivation and characterization. Nano Lett. 11(7), 2704–2708 (2011). doi:10.​1021/​Nl2009636CrossRef
74.
Zurück zum Zitat V.J. Logeeswaran, A.M. Katzenmeyer, M.S. Islam, Harvesting and transferring vertical pillar arrays of single-crystal semiconductor devices to arbitrary substrates. IEEE T Electron. Dev. 57(8), 1856–1864 (2010). doi:10.1109/Ted.2010.2051195CrossRef V.J. Logeeswaran, A.M. Katzenmeyer, M.S. Islam, Harvesting and transferring vertical pillar arrays of single-crystal semiconductor devices to arbitrary substrates. IEEE T Electron. Dev. 57(8), 1856–1864 (2010). doi:10.​1109/​Ted.​2010.​2051195CrossRef
75.
Zurück zum Zitat M.M. Ombaba, L.V. Jayaraman, M.S. Islam, Precision stress localization during mechanical harvesting of vertically oriented semiconductor micro- and nanostructure arrays. Appl. Phys. Lett. 104(24), 243109 (2014) M.M. Ombaba, L.V. Jayaraman, M.S. Islam, Precision stress localization during mechanical harvesting of vertically oriented semiconductor micro- and nanostructure arrays. Appl. Phys. Lett. 104(24), 243109 (2014)
78.
Zurück zum Zitat B. Eisenhawer, S. Sensfuss, V. Sivakov, M. Pietsch, G. Andra, F. Falk, Increasing the efficiency of polymer solar cells by silicon nanowires. Nanotechnology 22(31), 315401 (2011). doi:Artn 315401; doi:10.1088/0957-4484/22/31/315401 B. Eisenhawer, S. Sensfuss, V. Sivakov, M. Pietsch, G. Andra, F. Falk, Increasing the efficiency of polymer solar cells by silicon nanowires. Nanotechnology 22(31), 315401 (2011). doi:Artn 315401; doi:10.​1088/​0957-4484/​22/​31/​315401
79.
Zurück zum Zitat L.N. He, C.Y. Jiang, H. Wang, D. Lai, Rusli, Si nanowires organic semiconductor hybrid heterojunction solar cells toward 10 % efficiency. ACS Appl. Mater. Inter. 4(3), 1704–1708 (2012). doi:10.1021/Am201838yCrossRef L.N. He, C.Y. Jiang, H. Wang, D. Lai, Rusli, Si nanowires organic semiconductor hybrid heterojunction solar cells toward 10 % efficiency. ACS Appl. Mater. Inter. 4(3), 1704–1708 (2012). doi:10.​1021/​Am201838yCrossRef
83.
Zurück zum Zitat G.J. Matt, T. Fromherz, M. Bednorz, S. Zamiri, G. Goncalves, C. Lungenschmied, D. Meissner, H. Sitter, N.S. Sariciftci, C.J. Brabec, G. Bauer, Fullerene sensitized silicon for near-to mid-infrared light detection. Adv. Mater. 22(5), 647 (2010). doi:10.1002/adma.200901383CrossRef G.J. Matt, T. Fromherz, M. Bednorz, S. Zamiri, G. Goncalves, C. Lungenschmied, D. Meissner, H. Sitter, N.S. Sariciftci, C.J. Brabec, G. Bauer, Fullerene sensitized silicon for near-to mid-infrared light detection. Adv. Mater. 22(5), 647 (2010). doi:10.​1002/​adma.​200901383CrossRef
84.
Zurück zum Zitat J. Bae et al., Si nanowire metal–insulator–semiconductor photodetectors as efficient light harvesters. Nanotechnology 21(9), 095502 (2010) J. Bae et al., Si nanowire metal–insulator–semiconductor photodetectors as efficient light harvesters. Nanotechnology 21(9), 095502 (2010)
85.
Zurück zum Zitat Y. Cui, Q. Wei, H. Park, C.M. Lieber, Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533), 1289–1292 (2001). doi:10.1126/science.1062711CrossRef Y. Cui, Q. Wei, H. Park, C.M. Lieber, Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533), 1289–1292 (2001). doi:10.​1126/​science.​1062711CrossRef
86.
Zurück zum Zitat T.C.H. Yamada, S. Ishidac, Y. Arakawac, Si-nanowire optical waveguide devices for optical communications. Proc. SPIE 6019, 60192X (2005) T.C.H. Yamada, S. Ishidac, Y. Arakawac, Si-nanowire optical waveguide devices for optical communications. Proc. SPIE 6019, 60192X (2005)
87.
88.
Zurück zum Zitat L. Liao, H.B. Lu, M. Shuai, J.C. Li, Y.L. Liu, C. Liu, Z.X. Shen, T. Yu, A novel gas sensor based on field ionization from ZnO nanowires: moderate working voltage and high stability. Nanotechnology 19(17), 175501 (2008). doi:Artn 175501; doi:10.1088/0957-4484/19/17/175501 L. Liao, H.B. Lu, M. Shuai, J.C. Li, Y.L. Liu, C. Liu, Z.X. Shen, T. Yu, A novel gas sensor based on field ionization from ZnO nanowires: moderate working voltage and high stability. Nanotechnology 19(17), 175501 (2008). doi:Artn 175501; doi:10.​1088/​0957-4484/​19/​17/​175501
89.
Zurück zum Zitat F. Qian, S. Gradečak, Y. Li, C.-Y. Wen, C.M. Lieber, Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett. 5(11), 2287–2291 (2005). doi:10.1021/nl051689eCrossRef F. Qian, S. Gradečak, Y. Li, C.-Y. Wen, C.M. Lieber, Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett. 5(11), 2287–2291 (2005). doi:10.​1021/​nl051689eCrossRef
90.
Zurück zum Zitat V. Schmidt, H. Riel, S. Senz, S. Karg, W. Riess, U. Gösele, Realization of a silicon nanowire vertical surround-gate field-effect transistor. Small 2(1), 85–88 (2006). doi:10.1002/smll.200500181CrossRef V. Schmidt, H. Riel, S. Senz, S. Karg, W. Riess, U. Gösele, Realization of a silicon nanowire vertical surround-gate field-effect transistor. Small 2(1), 85–88 (2006). doi:10.​1002/​smll.​200500181CrossRef
91.
Zurück zum Zitat P.D. Li, C.M. Sun, T.G. Jiu, G.J. Wang, J. Li, X.F. Li, J.F. Fangt, High-performance inverted solar cells based on blend films of ZnO naoparticles and TiO2 nanorods as a cathode buffer layer. ACS Appl. Mater. Inter. 6(6), 4074–4080 (2014) P.D. Li, C.M. Sun, T.G. Jiu, G.J. Wang, J. Li, X.F. Li, J.F. Fangt, High-performance inverted solar cells based on blend films of ZnO naoparticles and TiO2 nanorods as a cathode buffer layer. ACS Appl. Mater. Inter. 6(6), 4074–4080 (2014)
92.
Zurück zum Zitat J.P. Liu, S.S. Wang, Z.Q. Bian, M. Shan, C.H. Huang, Organic/inorganic hybrid solar cells with vertically oriented ZnO nanowires. Appl. Phys. Lett. 94(17), 173107 (2009) J.P. Liu, S.S. Wang, Z.Q. Bian, M. Shan, C.H. Huang, Organic/inorganic hybrid solar cells with vertically oriented ZnO nanowires. Appl. Phys. Lett. 94(17), 173107 (2009)
93.
Zurück zum Zitat O. Lupan, V.M. Guerin, I.M. Tiginyanu, V.V. Ursaki, L. Chow, H. Heinrich, T. Pauporte, Well-aligned arrays of vertically oriented ZnO nanowires electrodeposited on ITO-coated glass and their integration in dye sensitized solar cells. J. Photoch. Photobio A 211(1), 65–73 (2010) O. Lupan, V.M. Guerin, I.M. Tiginyanu, V.V. Ursaki, L. Chow, H. Heinrich, T. Pauporte, Well-aligned arrays of vertically oriented ZnO nanowires electrodeposited on ITO-coated glass and their integration in dye sensitized solar cells. J. Photoch. Photobio A 211(1), 65–73 (2010)
94.
Zurück zum Zitat V. Strano, E. Smecca, V. Depauw, C. Trompoukis, A. Alberti, R. Reitano, I. Crupi, I. Gordon, S. Mirabella, Low-cost high-haze films based on ZnO nanorods for light scattering in thin c-Si solar cells. Appl. Phys. Lett. 106(1), 013901 (2015) V. Strano, E. Smecca, V. Depauw, C. Trompoukis, A. Alberti, R. Reitano, I. Crupi, I. Gordon, S. Mirabella, Low-cost high-haze films based on ZnO nanorods for light scattering in thin c-Si solar cells. Appl. Phys. Lett. 106(1), 013901 (2015)
95.
Zurück zum Zitat D.I. Suh, S.Y. Lee, T.H. Kim, J.M. Chun, E.K. Suh, O.B. Yang, S.K. Lee, The fabrication and characterization of dye-sensitized solar cells with a branched structure of ZnO nanowires. Chem. Phys. Lett. 442(4–6), 348–353 (2007) D.I. Suh, S.Y. Lee, T.H. Kim, J.M. Chun, E.K. Suh, O.B. Yang, S.K. Lee, The fabrication and characterization of dye-sensitized solar cells with a branched structure of ZnO nanowires. Chem. Phys. Lett. 442(4–6), 348–353 (2007)
96.
Zurück zum Zitat M.T. Tsai, Z.P. Yang, T.S. Jing, H.H. Hsieh, Y.C. Yao, T.Y. Lin, Y.F. Chen, Y.J. Lee, Achieving graded refractive index by use of ZnO nanorods/TiO2 layer to enhance omnidirectional photovoltaic performances of InGaP/GaAs/Ge triple-junction solar cells. Sol. Energy Mat. Sol C 136, 17–24 (2015) M.T. Tsai, Z.P. Yang, T.S. Jing, H.H. Hsieh, Y.C. Yao, T.Y. Lin, Y.F. Chen, Y.J. Lee, Achieving graded refractive index by use of ZnO nanorods/TiO2 layer to enhance omnidirectional photovoltaic performances of InGaP/GaAs/Ge triple-junction solar cells. Sol. Energy Mat. Sol C 136, 17–24 (2015)
97.
Zurück zum Zitat J. Zhang, W.X. Que, P. Zhong, G.Q. Zhu, p-Cu2O/n-ZnO nanowires on ITO glass for solar cells. J. Nanosci. Nanotechnol. 10(11), 7473–7476 (2010) J. Zhang, W.X. Que, P. Zhong, G.Q. Zhu, p-Cu2O/n-ZnO nanowires on ITO glass for solar cells. J. Nanosci. Nanotechnol. 10(11), 7473–7476 (2010)
98.
Zurück zum Zitat Y.F. Zhu, W.Z. Shen, Synthesis of ZnO nanoplates decorated rhombus-shaped ZnO nanorods and their application in solar cells. Physica E 59, 110–116 (2014) Y.F. Zhu, W.Z. Shen, Synthesis of ZnO nanoplates decorated rhombus-shaped ZnO nanorods and their application in solar cells. Physica E 59, 110–116 (2014)
100.
Zurück zum Zitat L. De Marco, M. Manca, R. Giannuzzi, F. Malara, G. Melcarne, G. Ciccarella, I. Zama, R. Cingolani, G. Gigli, Novel preparation method of TiO2-nanorod-based photoelectrodes for dye-sensitized solar cells with improved light-harvesting efficiency. J. Phys. Chem. C 114(9), 4228–4236 (2010). doi:10.1021/Jp910346dCrossRef L. De Marco, M. Manca, R. Giannuzzi, F. Malara, G. Melcarne, G. Ciccarella, I. Zama, R. Cingolani, G. Gigli, Novel preparation method of TiO2-nanorod-based photoelectrodes for dye-sensitized solar cells with improved light-harvesting efficiency. J. Phys. Chem. C 114(9), 4228–4236 (2010). doi:10.​1021/​Jp910346dCrossRef
101.
Zurück zum Zitat I.S. Cho, Z.B. Chen, A.J. Forman, D.R. Kim, P.M. Rao, T.F. Jaramillo, X.L. Zheng, Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett. 11(11), 4978–4984 (2011). doi:10.1021/Nl2029392CrossRef I.S. Cho, Z.B. Chen, A.J. Forman, D.R. Kim, P.M. Rao, T.F. Jaramillo, X.L. Zheng, Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett. 11(11), 4978–4984 (2011). doi:10.​1021/​Nl2029392CrossRef
103.
Zurück zum Zitat H.W. Lin, Y.H. Chang, C. Chen, Facile fabrication of TiO2 nanorod arrays for gas sensing using double-layered anodic oxidation method. J. Electrochem. Soc. 159(1), K5–K9 (2012). doi:10.1149/2.013201jesCrossRef H.W. Lin, Y.H. Chang, C. Chen, Facile fabrication of TiO2 nanorod arrays for gas sensing using double-layered anodic oxidation method. J. Electrochem. Soc. 159(1), K5–K9 (2012). doi:10.​1149/​2.​013201jesCrossRef
104.
Zurück zum Zitat J.K. Chen, W.Y. Fu, G.Y. Yuan, A. Runa, H. Bala, X.D. Wang, G. Sun, J.L. Cao, Z.Y. Zhang, Fabrication of TiO2 nanocrystals/nanorods composites thin film electrode: Enhanced performance of dye-sensitized solar cells. Mater. Lett. 135, 229–232 (2014) J.K. Chen, W.Y. Fu, G.Y. Yuan, A. Runa, H. Bala, X.D. Wang, G. Sun, J.L. Cao, Z.Y. Zhang, Fabrication of TiO2 nanocrystals/nanorods composites thin film electrode: Enhanced performance of dye-sensitized solar cells. Mater. Lett. 135, 229–232 (2014)
105.
Zurück zum Zitat K. Fan, W. Zhang, T.Y. Peng, J.N. Chen, F. Yang, Application of TiO2 fusiform nanorods for dye-sensitized solar cells with significantly improved efficiency. J. Phys. Chem. C 115(34), 17213–17219 (2011) K. Fan, W. Zhang, T.Y. Peng, J.N. Chen, F. Yang, Application of TiO2 fusiform nanorods for dye-sensitized solar cells with significantly improved efficiency. J. Phys. Chem. C 115(34), 17213–17219 (2011)
106.
Zurück zum Zitat Z.M. He, J. Liu, J.W. Miao, B. Liu, T.T.Y. Tan, A one-pot solvothermal synthesis of hierarchical microspheres with radially assembled single-crystalline TiO2-nanorods for high performance dye-sensitized solar cells. J. Mater. Chem. C 2(8), 1381–1385 (2014) Z.M. He, J. Liu, J.W. Miao, B. Liu, T.T.Y. Tan, A one-pot solvothermal synthesis of hierarchical microspheres with radially assembled single-crystalline TiO2-nanorods for high performance dye-sensitized solar cells. J. Mater. Chem. C 2(8), 1381–1385 (2014)
107.
Zurück zum Zitat Y.H. Jung, K.H. Park, J.S. Oh, D.H. Kim, C.K. Hong, Effect of TiO2 rutile nanorods on the photoelectrodes of dye-sensitized solar cells. Nanoscale Res. Lett. 8, 37 (2013) Y.H. Jung, K.H. Park, J.S. Oh, D.H. Kim, C.K. Hong, Effect of TiO2 rutile nanorods on the photoelectrodes of dye-sensitized solar cells. Nanoscale Res. Lett. 8, 37 (2013)
108.
Zurück zum Zitat S.H. Kang, Thickness effect of single crystalline TiO2 nanorods for dye-sensitized solar cells. J. Nanosci. Nanotechnol. 14(8), 6318–6321 (2014) S.H. Kang, Thickness effect of single crystalline TiO2 nanorods for dye-sensitized solar cells. J. Nanosci. Nanotechnol. 14(8), 6318–6321 (2014)
109.
Zurück zum Zitat S. Kathirvel, C.C. Su, H.C. Lin, B.R. Chen, W.R. Li, Facile non-hydrolytic solvothermal synthesis of one dimensional TiO2 nanorods for efficient dye-sensitized solar cells. Mater. Lett. 129, 149–152 (2014) S. Kathirvel, C.C. Su, H.C. Lin, B.R. Chen, W.R. Li, Facile non-hydrolytic solvothermal synthesis of one dimensional TiO2 nanorods for efficient dye-sensitized solar cells. Mater. Lett. 129, 149–152 (2014)
110.
Zurück zum Zitat P.L. Kuo, T.S. Jan, C.H. Liao, C.C. Chen, K.M. Lee, Syntheses of size-varied nanorods TiO2 and blending effects on efficiency for dye-sensitized solar cells. J. Power Sources 235, 297–302 (2013) P.L. Kuo, T.S. Jan, C.H. Liao, C.C. Chen, K.M. Lee, Syntheses of size-varied nanorods TiO2 and blending effects on efficiency for dye-sensitized solar cells. J. Power Sources 235, 297–302 (2013)
111.
Zurück zum Zitat J. Liu, J. Luo, W.G. Yang, Y.L. Wang, L.Y. Zhu, Y.Y. Xu, Y. Tang, Y.J. Hu, C. Wang, Y.G. Chen, W.M. Shi, Synthesis of single-crystalline anatase TiO2 nanorods with high-performance dye-sensitized solar cells. J. Mater. Sci. Technol. 31(1), 106–109 (2015) J. Liu, J. Luo, W.G. Yang, Y.L. Wang, L.Y. Zhu, Y.Y. Xu, Y. Tang, Y.J. Hu, C. Wang, Y.G. Chen, W.M. Shi, Synthesis of single-crystalline anatase TiO2 nanorods with high-performance dye-sensitized solar cells. J. Mater. Sci. Technol. 31(1), 106–109 (2015)
112.
Zurück zum Zitat Y.D. Park, K. Anabuki, S. Kim, K.W. Park, D.H. Lee, S.H. Um, J. Kim, J.H. Cho, Fabrication of stable electrospun TiO2 nanorods for high-performance dye-sensitized solar cells. Macromol. Res. 21(6), 636–640 (2013) Y.D. Park, K. Anabuki, S. Kim, K.W. Park, D.H. Lee, S.H. Um, J. Kim, J.H. Cho, Fabrication of stable electrospun TiO2 nanorods for high-performance dye-sensitized solar cells. Macromol. Res. 21(6), 636–640 (2013)
113.
Zurück zum Zitat M.K. Wang, J. Bai, F. Le Formal, S.J. Moon, L. Cevey-Ha, R. Humphry-Baker, C. Gratzel, S.M. Zakeeruddin, M. Gratzel, Solid-state dye-sensitized solar cells using ordered TiO2 nanorods on transparent conductive oxide as photoanodes. J. Phys. Chem. C 116(5), 3266–3273 (2012) M.K. Wang, J. Bai, F. Le Formal, S.J. Moon, L. Cevey-Ha, R. Humphry-Baker, C. Gratzel, S.M. Zakeeruddin, M. Gratzel, Solid-state dye-sensitized solar cells using ordered TiO2 nanorods on transparent conductive oxide as photoanodes. J. Phys. Chem. C 116(5), 3266–3273 (2012)
114.
Zurück zum Zitat Y.L. Xie, P.C. Lin, S.Q. Hu, Y.C. Lu, L. Li, H. Wang, Growth of ZnO nanorods on TiO2 nanoparticles films and their application to the electrode of dye-sensitized solar cells. J. Mater. Sci-Mater El 25(6), 2665–2670 (2014) Y.L. Xie, P.C. Lin, S.Q. Hu, Y.C. Lu, L. Li, H. Wang, Growth of ZnO nanorods on TiO2 nanoparticles films and their application to the electrode of dye-sensitized solar cells. J. Mater. Sci-Mater El 25(6), 2665–2670 (2014)
115.
Zurück zum Zitat W.J. Zhang, Y. Xie, D.H. Xiong, X.W. Zeng, Z.H. Li, M.K. Wang, Y.B. Cheng, W. Chen, K.Y. Yan, S.H. Yang, TiO2 nanorods: a facile size- and shape-tunable synthesis and effective improvement of charge collection kinetics for dye-sensitized solar cells. ACS Appl. Mater. Inter. 6(12), 9698–9704 (2014) W.J. Zhang, Y. Xie, D.H. Xiong, X.W. Zeng, Z.H. Li, M.K. Wang, Y.B. Cheng, W. Chen, K.Y. Yan, S.H. Yang, TiO2 nanorods: a facile size- and shape-tunable synthesis and effective improvement of charge collection kinetics for dye-sensitized solar cells. ACS Appl. Mater. Inter. 6(12), 9698–9704 (2014)
116.
Zurück zum Zitat B.W. Luo, Y. Deng, Y. Wang, Z.W. Zhang, M. Tan, Heterogeneous flammulina velutipes-like CdTe/TiO2 nanorod array: A promising composite nanostructure for solar cell application. J. Alloy. Compd. 517, 192–197 (2012). doi:10.1016/j.jallcom.2011.12.090CrossRef B.W. Luo, Y. Deng, Y. Wang, Z.W. Zhang, M. Tan, Heterogeneous flammulina velutipes-like CdTe/TiO2 nanorod array: A promising composite nanostructure for solar cell application. J. Alloy. Compd. 517, 192–197 (2012). doi:10.​1016/​j.​jallcom.​2011.​12.​090CrossRef
117.
Zurück zum Zitat H.B. Zhang, M.J. Zhang, C.B. Tian, N. Li, P. Lin, Z.H. Li, S.W. Du, An effective method for the synthesis of 3D inorganic Ln(III)-K(I) sulfate open frameworks with unusually high thermal stability: in situ generation of sulfate anions. J. Mater. Chem. 22(14), 6831–6837 (2012). doi:10.1039/C2jm16779dCrossRef H.B. Zhang, M.J. Zhang, C.B. Tian, N. Li, P. Lin, Z.H. Li, S.W. Du, An effective method for the synthesis of 3D inorganic Ln(III)-K(I) sulfate open frameworks with unusually high thermal stability: in situ generation of sulfate anions. J. Mater. Chem. 22(14), 6831–6837 (2012). doi:10.​1039/​C2jm16779dCrossRef
119.
Zurück zum Zitat H. Karaagac, L.E. Aygun, M. Parlak, M. Ghaffari, N. Biyikli, A.K. Okyay, Au/TiO2 nanorod-based schottky-type UV photodetectors. Phys. Status Solidi-R 6(11), 442–444 (2012). doi:10.1002/pssr.201206379CrossRef H. Karaagac, L.E. Aygun, M. Parlak, M. Ghaffari, N. Biyikli, A.K. Okyay, Au/TiO2 nanorod-based schottky-type UV photodetectors. Phys. Status Solidi-R 6(11), 442–444 (2012). doi:10.​1002/​pssr.​201206379CrossRef
120.
Zurück zum Zitat J. Tang, Z. Huo, S. Brittman, H. Gao, P. Yang, Solution-processed core-shell nanowires for efficient photovoltaic cells. Nat. Nano 6(9), 568–572 (2011) J. Tang, Z. Huo, S. Brittman, H. Gao, P. Yang, Solution-processed core-shell nanowires for efficient photovoltaic cells. Nat. Nano 6(9), 568–572 (2011)
121.
Zurück zum Zitat Y. Tak, S.J. Hong, J.S. Lee, K. Yong, Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion. J. Mater. Chem. 19(33), 5945–5951 (2009). doi:10.1039/B904993BCrossRef Y. Tak, S.J. Hong, J.S. Lee, K. Yong, Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion. J. Mater. Chem. 19(33), 5945–5951 (2009). doi:10.​1039/​B904993BCrossRef
122.
123.
Zurück zum Zitat B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C.M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449(7164):885–889 (2007) B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C.M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449(7164):885–889 (2007)
127.
Zurück zum Zitat B.M. Kayes, H.A. Atwater, N.S. Lewis, Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. J. Appl. Phys. 97(11), 114302 (2005). doi:10.1063/1.1901835CrossRef B.M. Kayes, H.A. Atwater, N.S. Lewis, Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. J. Appl. Phys. 97(11), 114302 (2005). doi:10.​1063/​1.​1901835CrossRef
128.
129.
Zurück zum Zitat L. Aé, D. Kieven, J. Chen, R. Klenk, T. Rissom, Y. Tang, M.C. Lux-Steiner, ZnO nanorod arrays as an antireflective coating for Cu(In, Ga)Se2 thin film solar cells. Prog. Photovoltaics Res. Appl. 18(3), 209–213 (2010). doi:10.1002/pip.946CrossRef L. Aé, D. Kieven, J. Chen, R. Klenk, T. Rissom, Y. Tang, M.C. Lux-Steiner, ZnO nanorod arrays as an antireflective coating for Cu(In, Ga)Se2 thin film solar cells. Prog. Photovoltaics Res. Appl. 18(3), 209–213 (2010). doi:10.​1002/​pip.​946CrossRef
130.
Zurück zum Zitat T. Stelzner, M. Pietsch, G. Andra, F. Falk, E. Ose, S. Christiansen, Silicon nanowire-based solar cells. Nanotechnology 19(29), 295203 (2008) T. Stelzner, M. Pietsch, G. Andra, F. Falk, E. Ose, S. Christiansen, Silicon nanowire-based solar cells. Nanotechnology 19(29), 295203 (2008)
131.
Zurück zum Zitat S.A. Moiz, A.M. Nahhas, H.D. Um, S.W. Jee, H.K. Cho, S.W. Kim, J.H. Lee, A stamped PEDOT:PSS-silicon nanowire hybrid solar cell. Nanotechnology 23(14), 145401 (2012) S.A. Moiz, A.M. Nahhas, H.D. Um, S.W. Jee, H.K. Cho, S.W. Kim, J.H. Lee, A stamped PEDOT:PSS-silicon nanowire hybrid solar cell. Nanotechnology 23(14), 145401 (2012)
132.
Zurück zum Zitat A. Kim, Y. Won, K. Woo, C.-H. Kim, J. Moon, Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells. ACS Nano 7(2), 1081–1091 (2013). doi:10.1021/nn305491xCrossRef A. Kim, Y. Won, K. Woo, C.-H. Kim, J. Moon, Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells. ACS Nano 7(2), 1081–1091 (2013). doi:10.​1021/​nn305491xCrossRef
133.
Zurück zum Zitat S. Cataldo, P. Salice, E. Menna, B. Pignataro, Carbon nanotubes and organic solar cells. Energy Environ. Sci. 5(3), 5919–5940 (2012) S. Cataldo, P. Salice, E. Menna, B. Pignataro, Carbon nanotubes and organic solar cells. Energy Environ. Sci. 5(3), 5919–5940 (2012)
134.
Zurück zum Zitat P.-L. Ong, W.B. Euler, I.A. Levitsky, Hybrid solar cells based on single-walled carbon nanotubes/Si heterojunctions. Nanotechnology 21(10), 105203 (2010) P.-L. Ong, W.B. Euler, I.A. Levitsky, Hybrid solar cells based on single-walled carbon nanotubes/Si heterojunctions. Nanotechnology 21(10), 105203 (2010)
135.
136.
Zurück zum Zitat P.X. Hou, C. Liu, H.M. Cheng, Purification of carbon nanotubes. Carbon 46(15), 2003–2025 (2008) P.X. Hou, C. Liu, H.M. Cheng, Purification of carbon nanotubes. Carbon 46(15), 2003–2025 (2008)
137.
Zurück zum Zitat L.A. Montoro, J.M. Rosolen, A multi-step treatment to effective purification of single-walled carbon nanotubes. Carbon 44(15), 3293–3301 (2006) L.A. Montoro, J.M. Rosolen, A multi-step treatment to effective purification of single-walled carbon nanotubes. Carbon 44(15), 3293–3301 (2006)
138.
Zurück zum Zitat C.M. Aguirre, S. Auvray, S. Pigeon, R. Izquierdo, P. Desjardins, R. Martel, Carbon nanotube sheets as electrodes in organic light-emitting diodes. Appl. Phys. Lett. 88(18) (2006) C.M. Aguirre, S. Auvray, S. Pigeon, R. Izquierdo, P. Desjardins, R. Martel, Carbon nanotube sheets as electrodes in organic light-emitting diodes. Appl. Phys. Lett. 88(18) (2006)
139.
Zurück zum Zitat D.H. Zhang, K. Ryu, X.L. Liu, E. Polikarpov, J. Ly, M.E. Tompson, C.W. Zhou, Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. Nano Lett. 6(9), 1880–1886 (2006) D.H. Zhang, K. Ryu, X.L. Liu, E. Polikarpov, J. Ly, M.E. Tompson, C.W. Zhou, Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. Nano Lett. 6(9), 1880–1886 (2006)
140.
Zurück zum Zitat B.B. Parekh, G. Fanchini, G. Eda, M. Chhowalla, Improved conductivity of transparent single-wall carbon nanotube thin films via stable postdeposition functionalization. Appl. Phys. Lett. 90(12), 121913 (2007) B.B. Parekh, G. Fanchini, G. Eda, M. Chhowalla, Improved conductivity of transparent single-wall carbon nanotube thin films via stable postdeposition functionalization. Appl. Phys. Lett. 90(12), 121913 (2007)
141.
Zurück zum Zitat T. Tanaka, Y. Urabe, D. Nishide, H. Kataura, Discovery of surfactants for metal/semiconductor separation of single-wall carbon nanotubes via high-throughput screening. J. Am. Chem. Soc. 133(44), 17610–17613 (2011) T. Tanaka, Y. Urabe, D. Nishide, H. Kataura, Discovery of surfactants for metal/semiconductor separation of single-wall carbon nanotubes via high-throughput screening. J. Am. Chem. Soc. 133(44), 17610–17613 (2011)
142.
Zurück zum Zitat P. Havu, M.J. Hashemi, M. Kaukonen, E.T. Seppälä, R.M. Nieminen, Effect of gating and pressure on the electronic transport properties of crossed nanotube junctions: formation of a Schottky barrier. J. Phys.: Condens. Matter 23(11), 112203 (2011) P. Havu, M.J. Hashemi, M. Kaukonen, E.T. Seppälä, R.M. Nieminen, Effect of gating and pressure on the electronic transport properties of crossed nanotube junctions: formation of a Schottky barrier. J. Phys.: Condens. Matter 23(11), 112203 (2011)
143.
Zurück zum Zitat Y. Jung, X.K. Li, N.K. Rajan, A.D. Tayor, M.A. Reed, Record high efficiency single-walled carbon nanotube/silicon p-n junction solar cells. Nano Lett. 13(1), 95–99 (2013) Y. Jung, X.K. Li, N.K. Rajan, A.D. Tayor, M.A. Reed, Record high efficiency single-walled carbon nanotube/silicon p-n junction solar cells. Nano Lett. 13(1), 95–99 (2013)
144.
Zurück zum Zitat F. Hennrich, R. Wellmann, S. Malik, S. Lebedkin, M.M. Kappes, Reversible modification of the absorption properties of single-walled carbon nanotube thin films via nitric acid exposure. Phys. Chem. Chem. Phys. 5(1), 178–183 (2003) F. Hennrich, R. Wellmann, S. Malik, S. Lebedkin, M.M. Kappes, Reversible modification of the absorption properties of single-walled carbon nanotube thin films via nitric acid exposure. Phys. Chem. Chem. Phys. 5(1), 178–183 (2003)
145.
Zurück zum Zitat R. Jackson, B. Domercq, R. Jain, B. Kippelen, S. Graham, Stability of doped transparent carbon nanotube electrodes. Adv. Funct. Mater. 18(17), 2548–2554 (2008) R. Jackson, B. Domercq, R. Jain, B. Kippelen, S. Graham, Stability of doped transparent carbon nanotube electrodes. Adv. Funct. Mater. 18(17), 2548–2554 (2008)
146.
Zurück zum Zitat S.L. Hellstrom, M. Vosgueritchian, R.M. Stoltenberg, I. Irfan, M. Hammock, Y.B. Wang, C.C. Jia, X.F. Guo, Y.L. Gao, Z.N. Bao, Strong and stable doping of carbon nanotubes and graphene by MoOx for transparent electrodes. Nano Lett. 12(7), 3574–3580 (2012) S.L. Hellstrom, M. Vosgueritchian, R.M. Stoltenberg, I. Irfan, M. Hammock, Y.B. Wang, C.C. Jia, X.F. Guo, Y.L. Gao, Z.N. Bao, Strong and stable doping of carbon nanotubes and graphene by MoOx for transparent electrodes. Nano Lett. 12(7), 3574–3580 (2012)
147.
Zurück zum Zitat H.-Z. Geng, K.K. Kim, K.P. So, Y.S. Lee, Y. Chang, Y.H. Lee, Effect of acid treatment on carbon nanotube-based flexible transparent conducting films. J. Am. Chem. Soc. 129(25), 7758–7759 (2007). doi:10.1021/ja0722224CrossRef H.-Z. Geng, K.K. Kim, K.P. So, Y.S. Lee, Y. Chang, Y.H. Lee, Effect of acid treatment on carbon nanotube-based flexible transparent conducting films. J. Am. Chem. Soc. 129(25), 7758–7759 (2007). doi:10.​1021/​ja0722224CrossRef
148.
Zurück zum Zitat S. Kim, J. Yim, X. Wang, D.D.C. Bradley, S. Lee, J.C. Demello, Spin- and spray-deposited single-walled carbon-nanotube electrodes for organic solar cells. Adv. Funct. Mater. 20(14), 2310–2316 (2010) S. Kim, J. Yim, X. Wang, D.D.C. Bradley, S. Lee, J.C. Demello, Spin- and spray-deposited single-walled carbon-nanotube electrodes for organic solar cells. Adv. Funct. Mater. 20(14), 2310–2316 (2010)
149.
Zurück zum Zitat M.S. Strano, V.C. Moore, M.K. Miller, M.J. Allen, E.H. Haroz, C. Kittrell, R.H. Hauge, R.E. Smalley, The role of surfactant adsorption during ultrasonication in the dispersion of single-walled carbon nanotubes. J. Nanosci. Nanotechnol. 3(1–2), 81–86 (2003) M.S. Strano, V.C. Moore, M.K. Miller, M.J. Allen, E.H. Haroz, C. Kittrell, R.H. Hauge, R.E. Smalley, The role of surfactant adsorption during ultrasonication in the dispersion of single-walled carbon nanotubes. J. Nanosci. Nanotechnol. 3(1–2), 81–86 (2003)
150.
Zurück zum Zitat H. Cebeci, R.G. de Villoria, A.J. Hart, B.L. Wardle, Multifunctional properties of high volume fraction aligned carbon nanotube polymer composites with controlled morphology. Compos. Sci. Technol. 69(15–16), 2649–2656 (2009) H. Cebeci, R.G. de Villoria, A.J. Hart, B.L. Wardle, Multifunctional properties of high volume fraction aligned carbon nanotube polymer composites with controlled morphology. Compos. Sci. Technol. 69(15–16), 2649–2656 (2009)
151.
Zurück zum Zitat A. Hagfeldt, M. Gratzel, Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 95(1), 49–68 (1995) A. Hagfeldt, M. Gratzel, Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 95(1), 49–68 (1995)
153.
Zurück zum Zitat A.C. Fisher, L.M. Peter, E.A. Ponomarev, A.B. Walker, K.G.U. Wijayantha, Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanacrystalline TiO2 solar cells. J. Phys. Chem. B 104(5), 949–958 (2000) A.C. Fisher, L.M. Peter, E.A. Ponomarev, A.B. Walker, K.G.U. Wijayantha, Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanacrystalline TiO2 solar cells. J. Phys. Chem. B 104(5), 949–958 (2000)
154.
Zurück zum Zitat T. Oekermann, D. Zhang, T. Yoshida, H. Minoura, Electron transport and back reaction in nanocrystalline TiO2 films prepared by hydrothermal crystallization. J. Phys. Chem. B 108(7), 2227–2235 (2004) T. Oekermann, D. Zhang, T. Yoshida, H. Minoura, Electron transport and back reaction in nanocrystalline TiO2 films prepared by hydrothermal crystallization. J. Phys. Chem. B 108(7), 2227–2235 (2004)
156.
Zurück zum Zitat J. van de Lagemaat, A.J. Frank, Nonthermalized electron transport in dye-sensitized nanocrystalline TiO2 films: transient photocurrent and random-walk modeling studies. J. Phys. Chem. B 105(45), 11194–11205 (2001). doi:10.1021/jp0118468CrossRef J. van de Lagemaat, A.J. Frank, Nonthermalized electron transport in dye-sensitized nanocrystalline TiO2 films: transient photocurrent and random-walk modeling studies. J. Phys. Chem. B 105(45), 11194–11205 (2001). doi:10.​1021/​jp0118468CrossRef
157.
Zurück zum Zitat T.Y. Lee, P.S. Alegaonkar, J.B. Yoo, Fabrication of dye sensitized solar cell using TiO2 coated carbon nanotubes. Thin Solid Films 515(12), 5131–5135 (2007) T.Y. Lee, P.S. Alegaonkar, J.B. Yoo, Fabrication of dye sensitized solar cell using TiO2 coated carbon nanotubes. Thin Solid Films 515(12), 5131–5135 (2007)
158.
159.
Zurück zum Zitat K.T. Dembele, G.S. Selopal, C. Soldano, R. Nechache, J.C. Rimada, I. Concina, G. Sberveglieri, F. Rosei, A. Vomiero, Hybrid carbon nanotubes-TiO2 photoanodes for high efficiency dye-sensitized solar cells. J. Phys. Chem. C 117(28), 14510–14517 (2013) K.T. Dembele, G.S. Selopal, C. Soldano, R. Nechache, J.C. Rimada, I. Concina, G. Sberveglieri, F. Rosei, A. Vomiero, Hybrid carbon nanotubes-TiO2 photoanodes for high efficiency dye-sensitized solar cells. J. Phys. Chem. C 117(28), 14510–14517 (2013)
160.
Zurück zum Zitat Z. Peining, A.S. Nair, Y. Shengyuan, P. Shengjie, N.K. Elumalai, S. Ramakrishna, Rice grain-shaped TiO2–CNT composite—a functional material with a novel morphology for dye-sensitized solar cells. J. Photochem. Photobiol. A 231(1), 9–18 (2012). doi:10.1016/j.jphotochem.2012.01.002CrossRef Z. Peining, A.S. Nair, Y. Shengyuan, P. Shengjie, N.K. Elumalai, S. Ramakrishna, Rice grain-shaped TiO2–CNT composite—a functional material with a novel morphology for dye-sensitized solar cells. J. Photochem. Photobiol. A 231(1), 9–18 (2012). doi:10.​1016/​j.​jphotochem.​2012.​01.​002CrossRef
161.
Zurück zum Zitat L.J. Yang, W.W.F. Leung, Electrospun TiO2 nanorods with carbon nanotubes for efficient electron collection in dye-sensitized solar cells. Adv. Mater. 25(12), 1792–1795 (2013) L.J. Yang, W.W.F. Leung, Electrospun TiO2 nanorods with carbon nanotubes for efficient electron collection in dye-sensitized solar cells. Adv. Mater. 25(12), 1792–1795 (2013)
163.
Zurück zum Zitat K. Suzuki, M. Yamaguchi, M. Kumagai, S. Yanagida, Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells. Chem. Lett. 32(1), 28–29 (2003). doi:10.1246/cl.2003.28CrossRef K. Suzuki, M. Yamaguchi, M. Kumagai, S. Yanagida, Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells. Chem. Lett. 32(1), 28–29 (2003). doi:10.​1246/​cl.​2003.​28CrossRef
165.
Zurück zum Zitat S.H. Seo, S.Y. Kim, B.K. Koo, S.I. Cha, D.Y. Lee, Influence of electrolyte composition on the photovoltaic performance and stability of dye-sensitized solar cells with multiwalled carbon nanotube catalysts. Langmuir 26(12), 10341–10346 (2010) S.H. Seo, S.Y. Kim, B.K. Koo, S.I. Cha, D.Y. Lee, Influence of electrolyte composition on the photovoltaic performance and stability of dye-sensitized solar cells with multiwalled carbon nanotube catalysts. Langmuir 26(12), 10341–10346 (2010)
166.
Zurück zum Zitat J. Velten, A.J. Mozer, D. Li, D. Officer, G. Wallace, R. Baughman, A. Zakhidov, Carbon nanotube/graphene nanocomposite as efficient counter electrodes in dye-sensitized solar cells. Nanotechnology 23(8), 085201 (2012) J. Velten, A.J. Mozer, D. Li, D. Officer, G. Wallace, R. Baughman, A. Zakhidov, Carbon nanotube/graphene nanocomposite as efficient counter electrodes in dye-sensitized solar cells. Nanotechnology 23(8), 085201 (2012)
167.
Zurück zum Zitat H. Anwar, A.E. George, I.G. Hill, Vertically-aligned carbon nanotube counter electrodes for dye-sensitized solar cells. Sol. Energy 88, 129–136 (2013) H. Anwar, A.E. George, I.G. Hill, Vertically-aligned carbon nanotube counter electrodes for dye-sensitized solar cells. Sol. Energy 88, 129–136 (2013)
168.
Zurück zum Zitat G.-R. Li, F. Wang, Q.-W. Jiang, X.-P. Gao, P.-W. Shen, Carbon nanotubes with titanium nitride as a low-cost counter-electrode material for dye-sensitized solar cells. Angew. Chem. Int. Ed. 49(21), 3653–3656 (2010). doi:10.1002/anie.201000659CrossRef G.-R. Li, F. Wang, Q.-W. Jiang, X.-P. Gao, P.-W. Shen, Carbon nanotubes with titanium nitride as a low-cost counter-electrode material for dye-sensitized solar cells. Angew. Chem. Int. Ed. 49(21), 3653–3656 (2010). doi:10.​1002/​anie.​201000659CrossRef
169.
Zurück zum Zitat Q.W. Jiang, G.R. Li, X.P. Gao, Highly ordered TiN nanotube arrays as counter electrodes for dye-sensitized solar cells. Chem. Commun. 44, 6720–6722 (2009) Q.W. Jiang, G.R. Li, X.P. Gao, Highly ordered TiN nanotube arrays as counter electrodes for dye-sensitized solar cells. Chem. Commun. 44, 6720–6722 (2009)
Metadaten
Titel
One-Dimensional Nano-structured Solar Cells
verfasst von
H. Karaağaç
E. Peksu
E. U. Arici
M. Saif Islam
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-25340-4_15

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.