Skip to main content
Top
Published in: GeoInformatica 2/2020

25-07-2019

Online flu epidemiological deep modeling on disease contact network

Authors: Liang Zhao, Jiangzhuo Chen, Feng Chen, Fang Jin, Wei Wang, Chang-Tien Lu, Naren Ramakrishnan

Published in: GeoInformatica | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The surveillance and preventions of infectious disease epidemics such as influenza and Ebola are important and challenging issues. It is therefore crucial to characterize the disease progress and epidemics process efficiently and accurately. Computational epidemiology can model the progression of the disease and its underlying contact network, but as yet lacks the ability to process of real-time and fine-grained surveillance data. Social media, on the other hand, provides timely and detailed disease surveillance but is insensible to the underlying contact network and disease model. To address these challenges simultaneously, this paper proposes a novel semi-supervised neural network framework that integrates the strengths of computational epidemiology and social media mining techniques for influenza epidemiological modeling. Specifically, this framework learns social media users’ health states and intervention actions in real time, regularized by the underlying disease model and contact network. The learned knowledge from social media can then be fed into the computational epidemic model to improve the efficiency and accuracy of disease diffusion modeling. We propose an online optimization algorithm that iteratively processes the above interactive learning process. The extensive experimental results provided demonstrated that our approach can not only outperform competing methods by a substantial margin in forecasting disease outbreaks, but also characterize the individual-level disease progress and diffusion effectively and efficiently.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
Literature
1.
go back to reference Achrekar H, Gandhe A, Lazarus R, Yu S-H, Liu B (2011) Predicting flu trends using Twitter data. In: INFOCOM WKSHPS, pp 702–707 Achrekar H, Gandhe A, Lazarus R, Yu S-H, Liu B (2011) Predicting flu trends using Twitter data. In: INFOCOM WKSHPS, pp 702–707
2.
go back to reference Achrekar H, Gandhe A, Lazarus R, Yu S-H, Liu B (2013) Online social networks flu trend tracker: a novel sensory approach to predict flu trends. In: Biomedical engineering systems and technologies. Springer, pp 353–368 Achrekar H, Gandhe A, Lazarus R, Yu S-H, Liu B (2013) Online social networks flu trend tracker: a novel sensory approach to predict flu trends. In: Biomedical engineering systems and technologies. Springer, pp 353–368
3.
go back to reference Anderson RM, May RM (1979) Population biology of infectious diseases part i. Nature 280:361–7CrossRef Anderson RM, May RM (1979) Population biology of infectious diseases part i. Nature 280:361–7CrossRef
4.
go back to reference Barrett C, Beckman R, Khan M, Kumar V, Marathe M, Stretz P, Dutta T, Lewis B (2009) Generation and analysis of large synthetic social contact networks. In: WSC, pp 1003–1014 Barrett C, Beckman R, Khan M, Kumar V, Marathe M, Stretz P, Dutta T, Lewis B (2009) Generation and analysis of large synthetic social contact networks. In: WSC, pp 1003–1014
5.
go back to reference Barrett C, Bisset K, Eubank S, Feng X, Marathe M (2008) Episimdemics: an efficient algorithm for simulating the spread of infectious disease over large realistic social networks. In: ICS, pp 1–12 Barrett C, Bisset K, Eubank S, Feng X, Marathe M (2008) Episimdemics: an efficient algorithm for simulating the spread of infectious disease over large realistic social networks. In: ICS, pp 1–12
6.
go back to reference Barrett C, Beckman R, Khan M, Anil Kumar V, Marathe M, Stretz PE, Dutta T, Lewis B (2009) Generation and analysis of large synthetic social contact networks. In: Winter simulation conference. Winter simulation conference, pp 1003–1014 Barrett C, Beckman R, Khan M, Anil Kumar V, Marathe M, Stretz PE, Dutta T, Lewis B (2009) Generation and analysis of large synthetic social contact networks. In: Winter simulation conference. Winter simulation conference, pp 1003–1014
7.
go back to reference Bhatele A, Yeom J. -S., Jain N, Kuhlman CJ, Livnat Y, Bisset KR, Kale LV, Marathe MV (2017) Massively parallel simulations of spread of infectious diseases over realistic social networks. In: Proceedings of the 17th IEEE/ACM international symposium on cluster, cloud and grid computing. IEEE Press, pp 689–694 Bhatele A, Yeom J. -S., Jain N, Kuhlman CJ, Livnat Y, Bisset KR, Kale LV, Marathe MV (2017) Massively parallel simulations of spread of infectious diseases over realistic social networks. In: Proceedings of the 17th IEEE/ACM international symposium on cluster, cloud and grid computing. IEEE Press, pp 689–694
8.
go back to reference Bishop CM, et al. (2006) Pattern recognition and machine learning, vol 4. Springer, New York Bishop CM, et al. (2006) Pattern recognition and machine learning, vol 4. Springer, New York
9.
go back to reference Bisset K, Chen J, Feng X, Kumar VSA, Marathe M (2009) Epifast: a fast algorithm for large scale realistic epidemic simulations on distributed memory systems. In: ICS, pp 430–439 Bisset K, Chen J, Feng X, Kumar VSA, Marathe M (2009) Epifast: a fast algorithm for large scale realistic epidemic simulations on distributed memory systems. In: ICS, pp 430–439
10.
go back to reference Bisset KR, Chen J, Feng X, Kumar V, Marathe M (2009) Epifast: a fast algorithm for large scale realistic epidemic simulations on distributed memory systems. In: ICS. ACM, pp 430–439 Bisset KR, Chen J, Feng X, Kumar V, Marathe M (2009) Epifast: a fast algorithm for large scale realistic epidemic simulations on distributed memory systems. In: ICS. ACM, pp 430–439
11.
go back to reference Brennan S, Sadilek A, Kautz H (2013) Towards understanding global spread of disease from everyday interpersonal interactions. In: IJCAI. AAAI Press, pp 2783–2789 Brennan S, Sadilek A, Kautz H (2013) Towards understanding global spread of disease from everyday interpersonal interactions. In: IJCAI. AAAI Press, pp 2783–2789
13.
go back to reference Chen L, Hossain KT, Butler P, Ramakrishnan N, Prakash BA (2014) Flu gone viral: syndromic surveillance of flu on Twitter using temporal topic models. In: ICDM. IEEE, pp 2783–2789 Chen L, Hossain KT, Butler P, Ramakrishnan N, Prakash BA (2014) Flu gone viral: syndromic surveillance of flu on Twitter using temporal topic models. In: ICDM. IEEE, pp 2783–2789
14.
go back to reference Choisy M, Guégan J-F, Rohani P (2007) Mathematical modeling of infectious diseases dynamics. Encyclopedia of infectious diseases: modern methodologies, pp 379–404 Choisy M, Guégan J-F, Rohani P (2007) Mathematical modeling of infectious diseases dynamics. Encyclopedia of infectious diseases: modern methodologies, pp 379–404
15.
go back to reference Collier N, Son NT, Nguyen NM (2011) Omg u got flu? analysis of shared health messages for bio-surveillance. J Biomedical Semantics 2(S-5):S9CrossRef Collier N, Son NT, Nguyen NM (2011) Omg u got flu? analysis of shared health messages for bio-surveillance. J Biomedical Semantics 2(S-5):S9CrossRef
16.
go back to reference Craft ME, Volz E, Packer C, Meyers LA (2011) Disease transmission in territorial populations: the small-world network of serengeti lions. J R Soc Interface 8 (59):776–786CrossRef Craft ME, Volz E, Packer C, Meyers LA (2011) Disease transmission in territorial populations: the small-world network of serengeti lions. J R Soc Interface 8 (59):776–786CrossRef
17.
go back to reference Culotta A (2010) Towards detecting influenza epidemics by analyzing Twitter messages. In: Proceedings of the First Workshop on Social Media Analytics. ACM, pp 115–122 Culotta A (2010) Towards detecting influenza epidemics by analyzing Twitter messages. In: Proceedings of the First Workshop on Social Media Analytics. ACM, pp 115–122
18.
go back to reference Dredze M, Paul MJ, Bergsma S, Tran H (2013) Carmen: a Twitter geolocation system with applications to public health. In: AAAI workshop on expanding the boundaries of HIAI. Citeseer, pp 20–24 Dredze M, Paul MJ, Bergsma S, Tran H (2013) Carmen: a Twitter geolocation system with applications to public health. In: AAAI workshop on expanding the boundaries of HIAI. Citeseer, pp 20–24
19.
go back to reference Gao Y, Zhao L (2018) Incomplete label multi-task ordinal regression for spatial event scale forecasting. In: AAAI conference on artificial intelligence Gao Y, Zhao L (2018) Incomplete label multi-task ordinal regression for spatial event scale forecasting. In: AAAI conference on artificial intelligence
20.
go back to reference Gough K (1977) The estimation of latent and infectious periods. Biometrika 64 (3):559–565CrossRef Gough K (1977) The estimation of latent and infectious periods. Biometrika 64 (3):559–565CrossRef
21.
go back to reference Groendyke C, Welch D, Hunter DR (2012) A network-based analysis of the 1861 hagelloch measles data. Biometrics 68(3):755–765CrossRef Groendyke C, Welch D, Hunter DR (2012) A network-based analysis of the 1861 hagelloch measles data. Biometrics 68(3):755–765CrossRef
22.
go back to reference Hirose H, Wang L (2012) Prediction of infectious disease spread using Twitter: a case of influenza. In: PAAP. IEEE, pp 100–105 Hirose H, Wang L (2012) Prediction of infectious disease spread using Twitter: a case of influenza. In: PAAP. IEEE, pp 100–105
23.
go back to reference Krieck M, Dreesman J, Otrusina L, Denecke K (2011) A new age of public health: Identifying disease outbreaks by analyzing tweets. In: Websci Krieck M, Dreesman J, Otrusina L, Denecke K (2011) A new age of public health: Identifying disease outbreaks by analyzing tweets. In: Websci
24.
go back to reference Lamb A, Paul MJ, Dredze M (2013) Separating fact from fear: tracking flu infections on Twitter. In: HLT-NAACL, pp 789–795 Lamb A, Paul MJ, Dredze M (2013) Separating fact from fear: tracking flu infections on Twitter. In: HLT-NAACL, pp 789–795
25.
go back to reference Murray JD (2002) Mathematical biology i: an introduction, vol 17 of interdisciplinary applied mathematics Murray JD (2002) Mathematical biology i: an introduction, vol 17 of interdisciplinary applied mathematics
27.
go back to reference Paul MJ, Dredze M (2012) A model for mining public health topics from Twitter. Health 11:16–6 Paul MJ, Dredze M (2012) A model for mining public health topics from Twitter. Health 11:16–6
28.
go back to reference Presanis AM, De Angelis D, Hagy A, Reed C, Riley S, Cooper BS, Finelli L, Biedrzycki P, Lipsitch M, et al. (2009) The severity of pandemic H1N1 influenza in the united states, from april to July 2009: a Bayesian analysis. PLoS Med 6(12):e1000207CrossRef Presanis AM, De Angelis D, Hagy A, Reed C, Riley S, Cooper BS, Finelli L, Biedrzycki P, Lipsitch M, et al. (2009) The severity of pandemic H1N1 influenza in the united states, from april to July 2009: a Bayesian analysis. PLoS Med 6(12):e1000207CrossRef
29.
go back to reference Vynnycky E, White RG (2010) An introduction to infectious disease modelling. Oxford University Press, Oxford Vynnycky E, White RG (2010) An introduction to infectious disease modelling. Oxford University Press, Oxford
30.
go back to reference Wang J, Zhao L (2018) Multi-instance domain adaptation for vaccine adverse event detection. In: Proceedings of the 2018 World Wide Web conference on World Wide Web. International World Wide Web conferences steering committee, pp 97–106 Wang J, Zhao L (2018) Multi-instance domain adaptation for vaccine adverse event detection. In: Proceedings of the 2018 World Wide Web conference on World Wide Web. International World Wide Web conferences steering committee, pp 97–106
31.
go back to reference Wang J, Zhao L, Ye Y, Zhang Y (2018) Adverse event detection by integrating twitter data and vaers. Journal of Biomedical Semantics 9(1):19CrossRef Wang J, Zhao L, Ye Y, Zhang Y (2018) Adverse event detection by integrating twitter data and vaers. Journal of Biomedical Semantics 9(1):19CrossRef
35.
go back to reference Zhao L, Chen F, Lu C-T, Ramakrishnan N (2015) Spatiotemporal event forecasting in social media. In: SDM, vol 15. SIAM, pp 963–971 Zhao L, Chen F, Lu C-T, Ramakrishnan N (2015) Spatiotemporal event forecasting in social media. In: SDM, vol 15. SIAM, pp 963–971
36.
go back to reference Zhao L, Chen F, Lu C-T, Ramakrishnan N (2016) Multi-resolution spatial event forecasting in social media. In: 2016 IEEE 16Th international conference on data mining (ICDM). IEEE, pp 689–698 Zhao L, Chen F, Lu C-T, Ramakrishnan N (2016) Multi-resolution spatial event forecasting in social media. In: 2016 IEEE 16Th international conference on data mining (ICDM). IEEE, pp 689–698
37.
go back to reference Zhao L, Ye J, Chen F, Lu C-T, Ramakrishnan N (2016) Hierarchical incomplete multi-source feature learning for spatiotemporal event forecasting. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 2085–2094 Zhao L, Ye J, Chen F, Lu C-T, Ramakrishnan N (2016) Hierarchical incomplete multi-source feature learning for spatiotemporal event forecasting. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 2085–2094
Metadata
Title
Online flu epidemiological deep modeling on disease contact network
Authors
Liang Zhao
Jiangzhuo Chen
Feng Chen
Fang Jin
Wei Wang
Chang-Tien Lu
Naren Ramakrishnan
Publication date
25-07-2019
Publisher
Springer US
Published in
GeoInformatica / Issue 2/2020
Print ISSN: 1384-6175
Electronic ISSN: 1573-7624
DOI
https://doi.org/10.1007/s10707-019-00376-9

Other articles of this Issue 2/2020

GeoInformatica 2/2020 Go to the issue