Skip to main content
Erschienen in: GeoInformatica 2/2020

25.07.2019

Online flu epidemiological deep modeling on disease contact network

verfasst von: Liang Zhao, Jiangzhuo Chen, Feng Chen, Fang Jin, Wei Wang, Chang-Tien Lu, Naren Ramakrishnan

Erschienen in: GeoInformatica | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The surveillance and preventions of infectious disease epidemics such as influenza and Ebola are important and challenging issues. It is therefore crucial to characterize the disease progress and epidemics process efficiently and accurately. Computational epidemiology can model the progression of the disease and its underlying contact network, but as yet lacks the ability to process of real-time and fine-grained surveillance data. Social media, on the other hand, provides timely and detailed disease surveillance but is insensible to the underlying contact network and disease model. To address these challenges simultaneously, this paper proposes a novel semi-supervised neural network framework that integrates the strengths of computational epidemiology and social media mining techniques for influenza epidemiological modeling. Specifically, this framework learns social media users’ health states and intervention actions in real time, regularized by the underlying disease model and contact network. The learned knowledge from social media can then be fed into the computational epidemic model to improve the efficiency and accuracy of disease diffusion modeling. We propose an online optimization algorithm that iteratively processes the above interactive learning process. The extensive experimental results provided demonstrated that our approach can not only outperform competing methods by a substantial margin in forecasting disease outbreaks, but also characterize the individual-level disease progress and diffusion effectively and efficiently.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
Literatur
1.
Zurück zum Zitat Achrekar H, Gandhe A, Lazarus R, Yu S-H, Liu B (2011) Predicting flu trends using Twitter data. In: INFOCOM WKSHPS, pp 702–707 Achrekar H, Gandhe A, Lazarus R, Yu S-H, Liu B (2011) Predicting flu trends using Twitter data. In: INFOCOM WKSHPS, pp 702–707
2.
Zurück zum Zitat Achrekar H, Gandhe A, Lazarus R, Yu S-H, Liu B (2013) Online social networks flu trend tracker: a novel sensory approach to predict flu trends. In: Biomedical engineering systems and technologies. Springer, pp 353–368 Achrekar H, Gandhe A, Lazarus R, Yu S-H, Liu B (2013) Online social networks flu trend tracker: a novel sensory approach to predict flu trends. In: Biomedical engineering systems and technologies. Springer, pp 353–368
3.
Zurück zum Zitat Anderson RM, May RM (1979) Population biology of infectious diseases part i. Nature 280:361–7CrossRef Anderson RM, May RM (1979) Population biology of infectious diseases part i. Nature 280:361–7CrossRef
4.
Zurück zum Zitat Barrett C, Beckman R, Khan M, Kumar V, Marathe M, Stretz P, Dutta T, Lewis B (2009) Generation and analysis of large synthetic social contact networks. In: WSC, pp 1003–1014 Barrett C, Beckman R, Khan M, Kumar V, Marathe M, Stretz P, Dutta T, Lewis B (2009) Generation and analysis of large synthetic social contact networks. In: WSC, pp 1003–1014
5.
Zurück zum Zitat Barrett C, Bisset K, Eubank S, Feng X, Marathe M (2008) Episimdemics: an efficient algorithm for simulating the spread of infectious disease over large realistic social networks. In: ICS, pp 1–12 Barrett C, Bisset K, Eubank S, Feng X, Marathe M (2008) Episimdemics: an efficient algorithm for simulating the spread of infectious disease over large realistic social networks. In: ICS, pp 1–12
6.
Zurück zum Zitat Barrett C, Beckman R, Khan M, Anil Kumar V, Marathe M, Stretz PE, Dutta T, Lewis B (2009) Generation and analysis of large synthetic social contact networks. In: Winter simulation conference. Winter simulation conference, pp 1003–1014 Barrett C, Beckman R, Khan M, Anil Kumar V, Marathe M, Stretz PE, Dutta T, Lewis B (2009) Generation and analysis of large synthetic social contact networks. In: Winter simulation conference. Winter simulation conference, pp 1003–1014
7.
Zurück zum Zitat Bhatele A, Yeom J. -S., Jain N, Kuhlman CJ, Livnat Y, Bisset KR, Kale LV, Marathe MV (2017) Massively parallel simulations of spread of infectious diseases over realistic social networks. In: Proceedings of the 17th IEEE/ACM international symposium on cluster, cloud and grid computing. IEEE Press, pp 689–694 Bhatele A, Yeom J. -S., Jain N, Kuhlman CJ, Livnat Y, Bisset KR, Kale LV, Marathe MV (2017) Massively parallel simulations of spread of infectious diseases over realistic social networks. In: Proceedings of the 17th IEEE/ACM international symposium on cluster, cloud and grid computing. IEEE Press, pp 689–694
8.
Zurück zum Zitat Bishop CM, et al. (2006) Pattern recognition and machine learning, vol 4. Springer, New York Bishop CM, et al. (2006) Pattern recognition and machine learning, vol 4. Springer, New York
9.
Zurück zum Zitat Bisset K, Chen J, Feng X, Kumar VSA, Marathe M (2009) Epifast: a fast algorithm for large scale realistic epidemic simulations on distributed memory systems. In: ICS, pp 430–439 Bisset K, Chen J, Feng X, Kumar VSA, Marathe M (2009) Epifast: a fast algorithm for large scale realistic epidemic simulations on distributed memory systems. In: ICS, pp 430–439
10.
Zurück zum Zitat Bisset KR, Chen J, Feng X, Kumar V, Marathe M (2009) Epifast: a fast algorithm for large scale realistic epidemic simulations on distributed memory systems. In: ICS. ACM, pp 430–439 Bisset KR, Chen J, Feng X, Kumar V, Marathe M (2009) Epifast: a fast algorithm for large scale realistic epidemic simulations on distributed memory systems. In: ICS. ACM, pp 430–439
11.
Zurück zum Zitat Brennan S, Sadilek A, Kautz H (2013) Towards understanding global spread of disease from everyday interpersonal interactions. In: IJCAI. AAAI Press, pp 2783–2789 Brennan S, Sadilek A, Kautz H (2013) Towards understanding global spread of disease from everyday interpersonal interactions. In: IJCAI. AAAI Press, pp 2783–2789
13.
Zurück zum Zitat Chen L, Hossain KT, Butler P, Ramakrishnan N, Prakash BA (2014) Flu gone viral: syndromic surveillance of flu on Twitter using temporal topic models. In: ICDM. IEEE, pp 2783–2789 Chen L, Hossain KT, Butler P, Ramakrishnan N, Prakash BA (2014) Flu gone viral: syndromic surveillance of flu on Twitter using temporal topic models. In: ICDM. IEEE, pp 2783–2789
14.
Zurück zum Zitat Choisy M, Guégan J-F, Rohani P (2007) Mathematical modeling of infectious diseases dynamics. Encyclopedia of infectious diseases: modern methodologies, pp 379–404 Choisy M, Guégan J-F, Rohani P (2007) Mathematical modeling of infectious diseases dynamics. Encyclopedia of infectious diseases: modern methodologies, pp 379–404
15.
Zurück zum Zitat Collier N, Son NT, Nguyen NM (2011) Omg u got flu? analysis of shared health messages for bio-surveillance. J Biomedical Semantics 2(S-5):S9CrossRef Collier N, Son NT, Nguyen NM (2011) Omg u got flu? analysis of shared health messages for bio-surveillance. J Biomedical Semantics 2(S-5):S9CrossRef
16.
Zurück zum Zitat Craft ME, Volz E, Packer C, Meyers LA (2011) Disease transmission in territorial populations: the small-world network of serengeti lions. J R Soc Interface 8 (59):776–786CrossRef Craft ME, Volz E, Packer C, Meyers LA (2011) Disease transmission in territorial populations: the small-world network of serengeti lions. J R Soc Interface 8 (59):776–786CrossRef
17.
Zurück zum Zitat Culotta A (2010) Towards detecting influenza epidemics by analyzing Twitter messages. In: Proceedings of the First Workshop on Social Media Analytics. ACM, pp 115–122 Culotta A (2010) Towards detecting influenza epidemics by analyzing Twitter messages. In: Proceedings of the First Workshop on Social Media Analytics. ACM, pp 115–122
18.
Zurück zum Zitat Dredze M, Paul MJ, Bergsma S, Tran H (2013) Carmen: a Twitter geolocation system with applications to public health. In: AAAI workshop on expanding the boundaries of HIAI. Citeseer, pp 20–24 Dredze M, Paul MJ, Bergsma S, Tran H (2013) Carmen: a Twitter geolocation system with applications to public health. In: AAAI workshop on expanding the boundaries of HIAI. Citeseer, pp 20–24
19.
Zurück zum Zitat Gao Y, Zhao L (2018) Incomplete label multi-task ordinal regression for spatial event scale forecasting. In: AAAI conference on artificial intelligence Gao Y, Zhao L (2018) Incomplete label multi-task ordinal regression for spatial event scale forecasting. In: AAAI conference on artificial intelligence
20.
Zurück zum Zitat Gough K (1977) The estimation of latent and infectious periods. Biometrika 64 (3):559–565CrossRef Gough K (1977) The estimation of latent and infectious periods. Biometrika 64 (3):559–565CrossRef
21.
Zurück zum Zitat Groendyke C, Welch D, Hunter DR (2012) A network-based analysis of the 1861 hagelloch measles data. Biometrics 68(3):755–765CrossRef Groendyke C, Welch D, Hunter DR (2012) A network-based analysis of the 1861 hagelloch measles data. Biometrics 68(3):755–765CrossRef
22.
Zurück zum Zitat Hirose H, Wang L (2012) Prediction of infectious disease spread using Twitter: a case of influenza. In: PAAP. IEEE, pp 100–105 Hirose H, Wang L (2012) Prediction of infectious disease spread using Twitter: a case of influenza. In: PAAP. IEEE, pp 100–105
23.
Zurück zum Zitat Krieck M, Dreesman J, Otrusina L, Denecke K (2011) A new age of public health: Identifying disease outbreaks by analyzing tweets. In: Websci Krieck M, Dreesman J, Otrusina L, Denecke K (2011) A new age of public health: Identifying disease outbreaks by analyzing tweets. In: Websci
24.
Zurück zum Zitat Lamb A, Paul MJ, Dredze M (2013) Separating fact from fear: tracking flu infections on Twitter. In: HLT-NAACL, pp 789–795 Lamb A, Paul MJ, Dredze M (2013) Separating fact from fear: tracking flu infections on Twitter. In: HLT-NAACL, pp 789–795
25.
Zurück zum Zitat Murray JD (2002) Mathematical biology i: an introduction, vol 17 of interdisciplinary applied mathematics Murray JD (2002) Mathematical biology i: an introduction, vol 17 of interdisciplinary applied mathematics
27.
Zurück zum Zitat Paul MJ, Dredze M (2012) A model for mining public health topics from Twitter. Health 11:16–6 Paul MJ, Dredze M (2012) A model for mining public health topics from Twitter. Health 11:16–6
28.
Zurück zum Zitat Presanis AM, De Angelis D, Hagy A, Reed C, Riley S, Cooper BS, Finelli L, Biedrzycki P, Lipsitch M, et al. (2009) The severity of pandemic H1N1 influenza in the united states, from april to July 2009: a Bayesian analysis. PLoS Med 6(12):e1000207CrossRef Presanis AM, De Angelis D, Hagy A, Reed C, Riley S, Cooper BS, Finelli L, Biedrzycki P, Lipsitch M, et al. (2009) The severity of pandemic H1N1 influenza in the united states, from april to July 2009: a Bayesian analysis. PLoS Med 6(12):e1000207CrossRef
29.
Zurück zum Zitat Vynnycky E, White RG (2010) An introduction to infectious disease modelling. Oxford University Press, Oxford Vynnycky E, White RG (2010) An introduction to infectious disease modelling. Oxford University Press, Oxford
30.
Zurück zum Zitat Wang J, Zhao L (2018) Multi-instance domain adaptation for vaccine adverse event detection. In: Proceedings of the 2018 World Wide Web conference on World Wide Web. International World Wide Web conferences steering committee, pp 97–106 Wang J, Zhao L (2018) Multi-instance domain adaptation for vaccine adverse event detection. In: Proceedings of the 2018 World Wide Web conference on World Wide Web. International World Wide Web conferences steering committee, pp 97–106
31.
Zurück zum Zitat Wang J, Zhao L, Ye Y, Zhang Y (2018) Adverse event detection by integrating twitter data and vaers. Journal of Biomedical Semantics 9(1):19CrossRef Wang J, Zhao L, Ye Y, Zhang Y (2018) Adverse event detection by integrating twitter data and vaers. Journal of Biomedical Semantics 9(1):19CrossRef
35.
Zurück zum Zitat Zhao L, Chen F, Lu C-T, Ramakrishnan N (2015) Spatiotemporal event forecasting in social media. In: SDM, vol 15. SIAM, pp 963–971 Zhao L, Chen F, Lu C-T, Ramakrishnan N (2015) Spatiotemporal event forecasting in social media. In: SDM, vol 15. SIAM, pp 963–971
36.
Zurück zum Zitat Zhao L, Chen F, Lu C-T, Ramakrishnan N (2016) Multi-resolution spatial event forecasting in social media. In: 2016 IEEE 16Th international conference on data mining (ICDM). IEEE, pp 689–698 Zhao L, Chen F, Lu C-T, Ramakrishnan N (2016) Multi-resolution spatial event forecasting in social media. In: 2016 IEEE 16Th international conference on data mining (ICDM). IEEE, pp 689–698
37.
Zurück zum Zitat Zhao L, Ye J, Chen F, Lu C-T, Ramakrishnan N (2016) Hierarchical incomplete multi-source feature learning for spatiotemporal event forecasting. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 2085–2094 Zhao L, Ye J, Chen F, Lu C-T, Ramakrishnan N (2016) Hierarchical incomplete multi-source feature learning for spatiotemporal event forecasting. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 2085–2094
Metadaten
Titel
Online flu epidemiological deep modeling on disease contact network
verfasst von
Liang Zhao
Jiangzhuo Chen
Feng Chen
Fang Jin
Wei Wang
Chang-Tien Lu
Naren Ramakrishnan
Publikationsdatum
25.07.2019
Verlag
Springer US
Erschienen in
GeoInformatica / Ausgabe 2/2020
Print ISSN: 1384-6175
Elektronische ISSN: 1573-7624
DOI
https://doi.org/10.1007/s10707-019-00376-9

Weitere Artikel der Ausgabe 2/2020

GeoInformatica 2/2020 Zur Ausgabe