Skip to main content
Top
Published in: Electrical Engineering 1/2020

22-11-2019 | Original Paper

Open-circuit fault-tolerance in multilevel inverters with reduced component count

Authors: Niraj Kumar Dewangan, Tapan Prakash, Jitendra Kumar Tandekar, Krishna Kumar Gupta

Published in: Electrical Engineering | Issue 1/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

High component count and subsequent effects on volume and reliability have been the major concerns for practical applications of multilevel inverters (MIs). Recent emergence of the so-called reduced component count MIs (RCC-MIs) has been driven by the attempts to reduce the number of power switches for multilevel power conversion. In many of such topologies, the aspect of fault tolerance has not been given full consideration. In this work, some of the recently proposed RCC-MI topologies have been considered and analyzed in the light of imparting fault tolerance capability in the case of open-switch failure of any one of the power switches. In an RCC-MI, the occurrence of an open-circuit fault in a power switch would often lead to shut down due to the lack of redundant switching states. To overcome these occurrences, an optimal addition of power switches is described in this work so that the desired redundant states can be synthesized. The modified RCC-MI topologies so obtained have been analyzed under the normal and faulty conditions and computer simulations have been carried out using MATLAB/Simulink, and corresponding results have been presented. The results so obtained are experimentally validated to prove the feasibility of the proposed fault-tolerant topologies.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Gupta KK, Bhatnagar P (2017) Multilevel inverters: conventional and emerging topologies and their control. Academic Press, Cambridge, pp 43–68 Gupta KK, Bhatnagar P (2017) Multilevel inverters: conventional and emerging topologies and their control. Academic Press, Cambridge, pp 43–68
2.
go back to reference Dwivedi SK, Jain S, Gupta KK, Chaturvedi P (2018) Modeling and control of power electronics converter systems for power quality improvement. Academic Press, Cambridge, pp 121–148 Dwivedi SK, Jain S, Gupta KK, Chaturvedi P (2018) Modeling and control of power electronics converter systems for power quality improvement. Academic Press, Cambridge, pp 121–148
3.
go back to reference Akagi H (2017) Multilevel converters: fundamental circuits and systems. Proc IEEE 105(11):2048–2065CrossRef Akagi H (2017) Multilevel converters: fundamental circuits and systems. Proc IEEE 105(11):2048–2065CrossRef
4.
go back to reference Kala P, Arora S (2017) A comprehensive study of classical and hybrid multilevel inverter topologies for renewable energy applications. Renew Sustain Energy Rev 76:905–931CrossRef Kala P, Arora S (2017) A comprehensive study of classical and hybrid multilevel inverter topologies for renewable energy applications. Renew Sustain Energy Rev 76:905–931CrossRef
5.
go back to reference Babaei E, Laali S, Bayat Z (2015) A single phase cascaded multi-level inverter based on a new basic unit with reduced number of power switches. IEEE Trans Ind Electron 62(2):922–929CrossRef Babaei E, Laali S, Bayat Z (2015) A single phase cascaded multi-level inverter based on a new basic unit with reduced number of power switches. IEEE Trans Ind Electron 62(2):922–929CrossRef
6.
go back to reference Gupta KK, Ranjan A, Bhatnagar P et al (2016) Multilevel inverter topologies with reduced device count: a review. IEEE Trans Power Electron 31(1):135–151CrossRef Gupta KK, Ranjan A, Bhatnagar P et al (2016) Multilevel inverter topologies with reduced device count: a review. IEEE Trans Power Electron 31(1):135–151CrossRef
7.
go back to reference Agrawal R, Jain S (2017) Comparison of reduced part count multilevel inverters (RPC-MLIs) for integration to the grid. Electr Power Energy Syst 84:214–224CrossRef Agrawal R, Jain S (2017) Comparison of reduced part count multilevel inverters (RPC-MLIs) for integration to the grid. Electr Power Energy Syst 84:214–224CrossRef
8.
go back to reference Ebrahimi J, Babaei E, Gharehpetian GB (2012) A new multilevel converter topology with reduced number of power electronic components. IEEE Trans Ind Electron 59(2):655–667CrossRef Ebrahimi J, Babaei E, Gharehpetian GB (2012) A new multilevel converter topology with reduced number of power electronic components. IEEE Trans Ind Electron 59(2):655–667CrossRef
9.
go back to reference Gupta KK, Jain S (2014) A novel multilevel inverter based on switched DC sources. IEEE Trans Ind Electron 61(7):3269–3278CrossRef Gupta KK, Jain S (2014) A novel multilevel inverter based on switched DC sources. IEEE Trans Ind Electron 61(7):3269–3278CrossRef
10.
go back to reference Mokhberdoran A, Ajami A (2014) Symmetric and asymmetric design and implementation of new cascaded multilevel inverter topology. IEEE Trans Power Electron 29(12):6712–6724CrossRef Mokhberdoran A, Ajami A (2014) Symmetric and asymmetric design and implementation of new cascaded multilevel inverter topology. IEEE Trans Power Electron 29(12):6712–6724CrossRef
11.
go back to reference Odeh CI, Obe ES, Ojo O (2016) Topology for cascaded multilevel inverter. IET Power Electron 9(5):921–929CrossRef Odeh CI, Obe ES, Ojo O (2016) Topology for cascaded multilevel inverter. IET Power Electron 9(5):921–929CrossRef
12.
go back to reference Gautam SP, Sahu LK, Gupta S (2016) Reduction in number of devices for symmetrical and asymmetrical multilevel inverters. IET Power Electron 9(4):698–709CrossRef Gautam SP, Sahu LK, Gupta S (2016) Reduction in number of devices for symmetrical and asymmetrical multilevel inverters. IET Power Electron 9(4):698–709CrossRef
13.
go back to reference Oskuee MRJ, Karimi M, Ravadanegh SN et al (2015) An innovative scheme of symmetric multilevel voltage source inverter with lower number of circuit devices. IEEE Trans Ind Electron 62(11):6965–6973CrossRef Oskuee MRJ, Karimi M, Ravadanegh SN et al (2015) An innovative scheme of symmetric multilevel voltage source inverter with lower number of circuit devices. IEEE Trans Ind Electron 62(11):6965–6973CrossRef
14.
go back to reference Babaei E, Alilu S, Laali S (2014) A new general topology for cascaded multilevel inverters with reduced number of components based on developed H-bridge. IEEE Trans Ind Electron 61(8):3932–3939CrossRef Babaei E, Alilu S, Laali S (2014) A new general topology for cascaded multilevel inverters with reduced number of components based on developed H-bridge. IEEE Trans Ind Electron 61(8):3932–3939CrossRef
15.
go back to reference Babaei E (2008) A cascade multilevel converter topology with reduced number of switches. IEEE Trans Power Electron 23(6):2657–2664CrossRef Babaei E (2008) A cascade multilevel converter topology with reduced number of switches. IEEE Trans Power Electron 23(6):2657–2664CrossRef
16.
go back to reference Kamani PL, Mulla MA (2016) A new multilevel inverter topology with reduced device count and blocking voltage. In: IEEE 16th international conference on environment electrical engineering (EEEIC), Florence, 2016, pp 1–6 Kamani PL, Mulla MA (2016) A new multilevel inverter topology with reduced device count and blocking voltage. In: IEEE 16th international conference on environment electrical engineering (EEEIC), Florence, 2016, pp 1–6
17.
go back to reference Zhang W, Xu D, Enjeti PN et al (2014) Survey on fault-tolerant techniques for power electronic converters. IEEE Trans Power Electron 29(12):6319–6331CrossRef Zhang W, Xu D, Enjeti PN et al (2014) Survey on fault-tolerant techniques for power electronic converters. IEEE Trans Power Electron 29(12):6319–6331CrossRef
18.
go back to reference Choi UM, Blaabjerg F, Lee KB (2015) Reliability improvement of a T-type three-level inverter with fault-tolerant control strategy. IEEE Trans Power Electron 30(5):2660–2673CrossRef Choi UM, Blaabjerg F, Lee KB (2015) Reliability improvement of a T-type three-level inverter with fault-tolerant control strategy. IEEE Trans Power Electron 30(5):2660–2673CrossRef
19.
go back to reference Choi UM, Blaabjerg F, Lee KB (2015) Study and handling methods of power IGBT module failures in power electronic converter systems. IEEE Trans Power Electron 30(5):2517–2533CrossRef Choi UM, Blaabjerg F, Lee KB (2015) Study and handling methods of power IGBT module failures in power electronic converter systems. IEEE Trans Power Electron 30(5):2517–2533CrossRef
20.
go back to reference Ghazanfari A, Abdel-Rady Y, Mohamed I (2016) A resilient framework for fault-tolerant operation of modular multilevel converters. IEEE Trans Ind Electron 63(5):2669–2678CrossRef Ghazanfari A, Abdel-Rady Y, Mohamed I (2016) A resilient framework for fault-tolerant operation of modular multilevel converters. IEEE Trans Ind Electron 63(5):2669–2678CrossRef
21.
go back to reference Rao AM, Sivakumar K (2015) A fault-tolerant single-phase five-level inverter for grid-independent PV systems. IEEE Trans Ind Electron 62(12):7569–7577CrossRef Rao AM, Sivakumar K (2015) A fault-tolerant single-phase five-level inverter for grid-independent PV systems. IEEE Trans Ind Electron 62(12):7569–7577CrossRef
22.
go back to reference Amini J, Moallem M (2016) A fault-diagnosis and fault-tolerant control scheme for flying capacitor multilevel inverters. IEEE Trans Ind Electron 64(3):1818–1826CrossRef Amini J, Moallem M (2016) A fault-diagnosis and fault-tolerant control scheme for flying capacitor multilevel inverters. IEEE Trans Ind Electron 64(3):1818–1826CrossRef
23.
go back to reference Rodriguez J, Lai J-S, Peng FZ (2002) Multilevel inverters: a survey of topologies, controls, and applications. IEEE Trans Ind Electron 49(4):724–738CrossRef Rodriguez J, Lai J-S, Peng FZ (2002) Multilevel inverters: a survey of topologies, controls, and applications. IEEE Trans Ind Electron 49(4):724–738CrossRef
24.
go back to reference Lezana P, Pou J, Meynard TA et al (2010) Survey on fault operation on multilevel inverters. IEEE Trans Ind Electron 57(7):2207–2218CrossRef Lezana P, Pou J, Meynard TA et al (2010) Survey on fault operation on multilevel inverters. IEEE Trans Ind Electron 57(7):2207–2218CrossRef
25.
go back to reference Song Y, Wang B (2013) Survey on reliability of power electronic systems. IEEE Trans Power Electron 28(1):591–604CrossRef Song Y, Wang B (2013) Survey on reliability of power electronic systems. IEEE Trans Power Electron 28(1):591–604CrossRef
26.
go back to reference Choupan R, Golshannavaz S, Nazarpour D et al (2019) A new structure for multilevel inverters with fault-tolerant capability against open circuit faults. Electr Power Syst Res 168:105–116CrossRef Choupan R, Golshannavaz S, Nazarpour D et al (2019) A new structure for multilevel inverters with fault-tolerant capability against open circuit faults. Electr Power Syst Res 168:105–116CrossRef
27.
go back to reference Lee SS (2018) A single-phase single-source 7-level inverter with triple voltage boosting gain. IEEE Access 6:30005–30011CrossRef Lee SS (2018) A single-phase single-source 7-level inverter with triple voltage boosting gain. IEEE Access 6:30005–30011CrossRef
28.
go back to reference Hsieh C, Liang T, Chen S et al (2016) Design and implementation of a novel multilevel DC–AC inverter. IEEE Trans Ind Appl 52(3):2436–2443CrossRef Hsieh C, Liang T, Chen S et al (2016) Design and implementation of a novel multilevel DC–AC inverter. IEEE Trans Ind Appl 52(3):2436–2443CrossRef
29.
go back to reference Sun X, Wang B, Zhou Y et al (2016) A single dc source cascaded seven-level inverter integrating switched-capacitor techniques. IEEE Trans Ind Electron 63(11):7184–7194CrossRef Sun X, Wang B, Zhou Y et al (2016) A single dc source cascaded seven-level inverter integrating switched-capacitor techniques. IEEE Trans Ind Electron 63(11):7184–7194CrossRef
30.
go back to reference Choi J, Kang F (2015) Seven-level PWM inverter employing series-connected capacitors paralleled to a single DC voltage source. IEEE Trans Ind Electron 62(6):3448–3459 Choi J, Kang F (2015) Seven-level PWM inverter employing series-connected capacitors paralleled to a single DC voltage source. IEEE Trans Ind Electron 62(6):3448–3459
Metadata
Title
Open-circuit fault-tolerance in multilevel inverters with reduced component count
Authors
Niraj Kumar Dewangan
Tapan Prakash
Jitendra Kumar Tandekar
Krishna Kumar Gupta
Publication date
22-11-2019
Publisher
Springer Berlin Heidelberg
Published in
Electrical Engineering / Issue 1/2020
Print ISSN: 0948-7921
Electronic ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-019-00884-9

Other articles of this Issue 1/2020

Electrical Engineering 1/2020 Go to the issue