Skip to main content
Erschienen in: Electrical Engineering 1/2020

22.11.2019 | Original Paper

Open-circuit fault-tolerance in multilevel inverters with reduced component count

verfasst von: Niraj Kumar Dewangan, Tapan Prakash, Jitendra Kumar Tandekar, Krishna Kumar Gupta

Erschienen in: Electrical Engineering | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

High component count and subsequent effects on volume and reliability have been the major concerns for practical applications of multilevel inverters (MIs). Recent emergence of the so-called reduced component count MIs (RCC-MIs) has been driven by the attempts to reduce the number of power switches for multilevel power conversion. In many of such topologies, the aspect of fault tolerance has not been given full consideration. In this work, some of the recently proposed RCC-MI topologies have been considered and analyzed in the light of imparting fault tolerance capability in the case of open-switch failure of any one of the power switches. In an RCC-MI, the occurrence of an open-circuit fault in a power switch would often lead to shut down due to the lack of redundant switching states. To overcome these occurrences, an optimal addition of power switches is described in this work so that the desired redundant states can be synthesized. The modified RCC-MI topologies so obtained have been analyzed under the normal and faulty conditions and computer simulations have been carried out using MATLAB/Simulink, and corresponding results have been presented. The results so obtained are experimentally validated to prove the feasibility of the proposed fault-tolerant topologies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Gupta KK, Bhatnagar P (2017) Multilevel inverters: conventional and emerging topologies and their control. Academic Press, Cambridge, pp 43–68 Gupta KK, Bhatnagar P (2017) Multilevel inverters: conventional and emerging topologies and their control. Academic Press, Cambridge, pp 43–68
2.
Zurück zum Zitat Dwivedi SK, Jain S, Gupta KK, Chaturvedi P (2018) Modeling and control of power electronics converter systems for power quality improvement. Academic Press, Cambridge, pp 121–148 Dwivedi SK, Jain S, Gupta KK, Chaturvedi P (2018) Modeling and control of power electronics converter systems for power quality improvement. Academic Press, Cambridge, pp 121–148
3.
Zurück zum Zitat Akagi H (2017) Multilevel converters: fundamental circuits and systems. Proc IEEE 105(11):2048–2065CrossRef Akagi H (2017) Multilevel converters: fundamental circuits and systems. Proc IEEE 105(11):2048–2065CrossRef
4.
Zurück zum Zitat Kala P, Arora S (2017) A comprehensive study of classical and hybrid multilevel inverter topologies for renewable energy applications. Renew Sustain Energy Rev 76:905–931CrossRef Kala P, Arora S (2017) A comprehensive study of classical and hybrid multilevel inverter topologies for renewable energy applications. Renew Sustain Energy Rev 76:905–931CrossRef
5.
Zurück zum Zitat Babaei E, Laali S, Bayat Z (2015) A single phase cascaded multi-level inverter based on a new basic unit with reduced number of power switches. IEEE Trans Ind Electron 62(2):922–929CrossRef Babaei E, Laali S, Bayat Z (2015) A single phase cascaded multi-level inverter based on a new basic unit with reduced number of power switches. IEEE Trans Ind Electron 62(2):922–929CrossRef
6.
Zurück zum Zitat Gupta KK, Ranjan A, Bhatnagar P et al (2016) Multilevel inverter topologies with reduced device count: a review. IEEE Trans Power Electron 31(1):135–151CrossRef Gupta KK, Ranjan A, Bhatnagar P et al (2016) Multilevel inverter topologies with reduced device count: a review. IEEE Trans Power Electron 31(1):135–151CrossRef
7.
Zurück zum Zitat Agrawal R, Jain S (2017) Comparison of reduced part count multilevel inverters (RPC-MLIs) for integration to the grid. Electr Power Energy Syst 84:214–224CrossRef Agrawal R, Jain S (2017) Comparison of reduced part count multilevel inverters (RPC-MLIs) for integration to the grid. Electr Power Energy Syst 84:214–224CrossRef
8.
Zurück zum Zitat Ebrahimi J, Babaei E, Gharehpetian GB (2012) A new multilevel converter topology with reduced number of power electronic components. IEEE Trans Ind Electron 59(2):655–667CrossRef Ebrahimi J, Babaei E, Gharehpetian GB (2012) A new multilevel converter topology with reduced number of power electronic components. IEEE Trans Ind Electron 59(2):655–667CrossRef
9.
Zurück zum Zitat Gupta KK, Jain S (2014) A novel multilevel inverter based on switched DC sources. IEEE Trans Ind Electron 61(7):3269–3278CrossRef Gupta KK, Jain S (2014) A novel multilevel inverter based on switched DC sources. IEEE Trans Ind Electron 61(7):3269–3278CrossRef
10.
Zurück zum Zitat Mokhberdoran A, Ajami A (2014) Symmetric and asymmetric design and implementation of new cascaded multilevel inverter topology. IEEE Trans Power Electron 29(12):6712–6724CrossRef Mokhberdoran A, Ajami A (2014) Symmetric and asymmetric design and implementation of new cascaded multilevel inverter topology. IEEE Trans Power Electron 29(12):6712–6724CrossRef
11.
Zurück zum Zitat Odeh CI, Obe ES, Ojo O (2016) Topology for cascaded multilevel inverter. IET Power Electron 9(5):921–929CrossRef Odeh CI, Obe ES, Ojo O (2016) Topology for cascaded multilevel inverter. IET Power Electron 9(5):921–929CrossRef
12.
Zurück zum Zitat Gautam SP, Sahu LK, Gupta S (2016) Reduction in number of devices for symmetrical and asymmetrical multilevel inverters. IET Power Electron 9(4):698–709CrossRef Gautam SP, Sahu LK, Gupta S (2016) Reduction in number of devices for symmetrical and asymmetrical multilevel inverters. IET Power Electron 9(4):698–709CrossRef
13.
Zurück zum Zitat Oskuee MRJ, Karimi M, Ravadanegh SN et al (2015) An innovative scheme of symmetric multilevel voltage source inverter with lower number of circuit devices. IEEE Trans Ind Electron 62(11):6965–6973CrossRef Oskuee MRJ, Karimi M, Ravadanegh SN et al (2015) An innovative scheme of symmetric multilevel voltage source inverter with lower number of circuit devices. IEEE Trans Ind Electron 62(11):6965–6973CrossRef
14.
Zurück zum Zitat Babaei E, Alilu S, Laali S (2014) A new general topology for cascaded multilevel inverters with reduced number of components based on developed H-bridge. IEEE Trans Ind Electron 61(8):3932–3939CrossRef Babaei E, Alilu S, Laali S (2014) A new general topology for cascaded multilevel inverters with reduced number of components based on developed H-bridge. IEEE Trans Ind Electron 61(8):3932–3939CrossRef
15.
Zurück zum Zitat Babaei E (2008) A cascade multilevel converter topology with reduced number of switches. IEEE Trans Power Electron 23(6):2657–2664CrossRef Babaei E (2008) A cascade multilevel converter topology with reduced number of switches. IEEE Trans Power Electron 23(6):2657–2664CrossRef
16.
Zurück zum Zitat Kamani PL, Mulla MA (2016) A new multilevel inverter topology with reduced device count and blocking voltage. In: IEEE 16th international conference on environment electrical engineering (EEEIC), Florence, 2016, pp 1–6 Kamani PL, Mulla MA (2016) A new multilevel inverter topology with reduced device count and blocking voltage. In: IEEE 16th international conference on environment electrical engineering (EEEIC), Florence, 2016, pp 1–6
17.
Zurück zum Zitat Zhang W, Xu D, Enjeti PN et al (2014) Survey on fault-tolerant techniques for power electronic converters. IEEE Trans Power Electron 29(12):6319–6331CrossRef Zhang W, Xu D, Enjeti PN et al (2014) Survey on fault-tolerant techniques for power electronic converters. IEEE Trans Power Electron 29(12):6319–6331CrossRef
18.
Zurück zum Zitat Choi UM, Blaabjerg F, Lee KB (2015) Reliability improvement of a T-type three-level inverter with fault-tolerant control strategy. IEEE Trans Power Electron 30(5):2660–2673CrossRef Choi UM, Blaabjerg F, Lee KB (2015) Reliability improvement of a T-type three-level inverter with fault-tolerant control strategy. IEEE Trans Power Electron 30(5):2660–2673CrossRef
19.
Zurück zum Zitat Choi UM, Blaabjerg F, Lee KB (2015) Study and handling methods of power IGBT module failures in power electronic converter systems. IEEE Trans Power Electron 30(5):2517–2533CrossRef Choi UM, Blaabjerg F, Lee KB (2015) Study and handling methods of power IGBT module failures in power electronic converter systems. IEEE Trans Power Electron 30(5):2517–2533CrossRef
20.
Zurück zum Zitat Ghazanfari A, Abdel-Rady Y, Mohamed I (2016) A resilient framework for fault-tolerant operation of modular multilevel converters. IEEE Trans Ind Electron 63(5):2669–2678CrossRef Ghazanfari A, Abdel-Rady Y, Mohamed I (2016) A resilient framework for fault-tolerant operation of modular multilevel converters. IEEE Trans Ind Electron 63(5):2669–2678CrossRef
21.
Zurück zum Zitat Rao AM, Sivakumar K (2015) A fault-tolerant single-phase five-level inverter for grid-independent PV systems. IEEE Trans Ind Electron 62(12):7569–7577CrossRef Rao AM, Sivakumar K (2015) A fault-tolerant single-phase five-level inverter for grid-independent PV systems. IEEE Trans Ind Electron 62(12):7569–7577CrossRef
22.
Zurück zum Zitat Amini J, Moallem M (2016) A fault-diagnosis and fault-tolerant control scheme for flying capacitor multilevel inverters. IEEE Trans Ind Electron 64(3):1818–1826CrossRef Amini J, Moallem M (2016) A fault-diagnosis and fault-tolerant control scheme for flying capacitor multilevel inverters. IEEE Trans Ind Electron 64(3):1818–1826CrossRef
23.
Zurück zum Zitat Rodriguez J, Lai J-S, Peng FZ (2002) Multilevel inverters: a survey of topologies, controls, and applications. IEEE Trans Ind Electron 49(4):724–738CrossRef Rodriguez J, Lai J-S, Peng FZ (2002) Multilevel inverters: a survey of topologies, controls, and applications. IEEE Trans Ind Electron 49(4):724–738CrossRef
24.
Zurück zum Zitat Lezana P, Pou J, Meynard TA et al (2010) Survey on fault operation on multilevel inverters. IEEE Trans Ind Electron 57(7):2207–2218CrossRef Lezana P, Pou J, Meynard TA et al (2010) Survey on fault operation on multilevel inverters. IEEE Trans Ind Electron 57(7):2207–2218CrossRef
25.
Zurück zum Zitat Song Y, Wang B (2013) Survey on reliability of power electronic systems. IEEE Trans Power Electron 28(1):591–604CrossRef Song Y, Wang B (2013) Survey on reliability of power electronic systems. IEEE Trans Power Electron 28(1):591–604CrossRef
26.
Zurück zum Zitat Choupan R, Golshannavaz S, Nazarpour D et al (2019) A new structure for multilevel inverters with fault-tolerant capability against open circuit faults. Electr Power Syst Res 168:105–116CrossRef Choupan R, Golshannavaz S, Nazarpour D et al (2019) A new structure for multilevel inverters with fault-tolerant capability against open circuit faults. Electr Power Syst Res 168:105–116CrossRef
27.
Zurück zum Zitat Lee SS (2018) A single-phase single-source 7-level inverter with triple voltage boosting gain. IEEE Access 6:30005–30011CrossRef Lee SS (2018) A single-phase single-source 7-level inverter with triple voltage boosting gain. IEEE Access 6:30005–30011CrossRef
28.
Zurück zum Zitat Hsieh C, Liang T, Chen S et al (2016) Design and implementation of a novel multilevel DC–AC inverter. IEEE Trans Ind Appl 52(3):2436–2443CrossRef Hsieh C, Liang T, Chen S et al (2016) Design and implementation of a novel multilevel DC–AC inverter. IEEE Trans Ind Appl 52(3):2436–2443CrossRef
29.
Zurück zum Zitat Sun X, Wang B, Zhou Y et al (2016) A single dc source cascaded seven-level inverter integrating switched-capacitor techniques. IEEE Trans Ind Electron 63(11):7184–7194CrossRef Sun X, Wang B, Zhou Y et al (2016) A single dc source cascaded seven-level inverter integrating switched-capacitor techniques. IEEE Trans Ind Electron 63(11):7184–7194CrossRef
30.
Zurück zum Zitat Choi J, Kang F (2015) Seven-level PWM inverter employing series-connected capacitors paralleled to a single DC voltage source. IEEE Trans Ind Electron 62(6):3448–3459 Choi J, Kang F (2015) Seven-level PWM inverter employing series-connected capacitors paralleled to a single DC voltage source. IEEE Trans Ind Electron 62(6):3448–3459
Metadaten
Titel
Open-circuit fault-tolerance in multilevel inverters with reduced component count
verfasst von
Niraj Kumar Dewangan
Tapan Prakash
Jitendra Kumar Tandekar
Krishna Kumar Gupta
Publikationsdatum
22.11.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering / Ausgabe 1/2020
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-019-00884-9

Weitere Artikel der Ausgabe 1/2020

Electrical Engineering 1/2020 Zur Ausgabe

Neuer Inhalt