Skip to main content
Top
Published in: Wireless Networks 3/2020

20-09-2019

Opportunistic cooperative spectrum sharing and optimal receive combiner for cognitive MU-MIMO systems

Author: Hyukmin Son

Published in: Wireless Networks | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Cognitive multiple-input/multiple-output (MIMO) has been studied as a solution to improve spectrum utilization via dynamic spectrum sharing technology. In cognitive MIMO systems, it is most important to design a transceiver for minimizing interference from the cognitive base station (CBS) to primary users, and for maximizing the sum rate of cognitive users (CUs). In this paper, we first propose opportunistic cooperative spectrum sharing to improve the sum rate of the CR system through an increase of the achievable maximum number of serving CUs, while guaranteeing the quality of service of the primary system. Secondly, an optimal receive combiner (ORC) for the CR system is proposed to maximize the signal to interference plus noise ratio (SINR) of CUs. Utilizing the geometric analysis for a given MIMO channel, we propose a criterion for the beam-forming vector selection and then design the ORC scheme based on major factors that affect the SINR, i.e., multi-user interference among CUs, interference from the primary base station to CUs and the desired channel gain. Consequently, it is demonstrated that the ORC maximizes the sum rate of the cognitive MU-MIMO system.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
In the multi-user MIMO system with limited feedback, the quantization error in codebook-based zero-forcing beamforming generates the MUI. Similarly, in random unitary beamforming, the mismatch between the selected beam and the actual user channel leads to generation of the MUI.
 
2
According to the user selection in the OCSS algorithm, the variation of interference from the CBS to PUs is reduced. Thus, the lower-bound can be approximated as \({\mathbb{E}}[{\mathrm{P}}{\mathrm{-}}{\mathrm{SINR}}_k]\).
 
3
It is assumed that the target SINRs of PUs are identical in the primary system. Although each PU has a different target SINR in practice, \(\gamma _p\) can be set to the minimum or maximum target SINR among the PUs. The analysis based on \(\gamma _p\) is then interpreted as the upper or lower bounds of the performance.
 
4
Basically, we assume that \(N_R-N_p > 0\) in this paper. However, when \(N_R-N_p \le 0\), \({\mathbf{H}}_k\) can be projected on the right singular vectors corresponding to the relatively small singular values of the interference channel space. In this case, it can be presumed that the receive combiner is designed on the left singular vectors corresponding to the relatively small singular values of the interference channel space in order to minimize the IPI.
 
5
There exist infinite base vector sets to span B. Thus, we can make the different beam vector sets orthogonal to A. The regenerated beam vectors in RUB have been studied in [24] and [25].
 
6
\(\gamma _\xi\) is similarly used as \(\epsilon\) for the semi orthogonal user selection in [27]. It can be determined to maximize the performance of PUs through the simulation, as in Fig. 2 in [27]. However, we set \(\gamma _{\xi }\)=0.5 in Table 1 because \(\gamma _{\xi }\)=0.5 is the minimum value to guarantee \(||\overline{{\mathbf{h}}}_k^I{\mathbf{B}}||^2 \le ||\overline{{\mathbf{h}}}_k^I{\mathbf{A}}||^2\) where \(||\overline{{\mathbf{h}}}_k^I{\mathbf{A}}||^2+||\overline{{\mathbf{h}}}_k^I{\mathbf{B}}||^2=1\) for \(k\in {\mathcal{S}}\). This means that \(\overline{{\mathbf{h}}}_k^I\) is close to space \({\mathbf{A}}\) rather than to space \({\mathbf{B}}\).
 
Literature
1.
go back to reference Commission, F. C. (2002). Spectrum Policy Task Force. Report on ET McHenry no. 02-135, November 2002. Commission, F. C. (2002). Spectrum Policy Task Force. Report on ET McHenry no. 02-135, November 2002.
2.
go back to reference Weiss, T. A., & Jondral, F. K. (2004). Spectrum pooling: An innovative strategy for the enhancement of spectrum efficiency. IEEE Communications Magazine, 42, S8–14.CrossRef Weiss, T. A., & Jondral, F. K. (2004). Spectrum pooling: An innovative strategy for the enhancement of spectrum efficiency. IEEE Communications Magazine, 42, S8–14.CrossRef
3.
go back to reference Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23, 201–220.CrossRef Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23, 201–220.CrossRef
4.
go back to reference Akyildiz, I. F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2008). A survey on spectrum management in cognitive radio networks. IEEE Communications Magazine, 46, 40–48.CrossRef Akyildiz, I. F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2008). A survey on spectrum management in cognitive radio networks. IEEE Communications Magazine, 46, 40–48.CrossRef
5.
go back to reference Zhang, G., Zhang, H., Han, Z., & Karagiannidis, G. K. (2019). Spectrum allocation and power control in full-duplex ultra-dense heterogeneous networks. IEEE Transactions on Communications, 67, 4365–4380.CrossRef Zhang, G., Zhang, H., Han, Z., & Karagiannidis, G. K. (2019). Spectrum allocation and power control in full-duplex ultra-dense heterogeneous networks. IEEE Transactions on Communications, 67, 4365–4380.CrossRef
6.
go back to reference Zhao, Q., & Sadler, B. M. (2007). A survey of dynamic spectrum access. IEEE Signal Processing Magazine, 24, 79–89.CrossRef Zhao, Q., & Sadler, B. M. (2007). A survey of dynamic spectrum access. IEEE Signal Processing Magazine, 24, 79–89.CrossRef
7.
go back to reference Zhang, L., Liang, Y.-C., Xin, Y., & Poor, H. V. (2009). Robust cognitive beamforming with partial channel state information. IEEE Transactions on Wireless Communications, 8, 4143–4153.CrossRef Zhang, L., Liang, Y.-C., Xin, Y., & Poor, H. V. (2009). Robust cognitive beamforming with partial channel state information. IEEE Transactions on Wireless Communications, 8, 4143–4153.CrossRef
8.
go back to reference Zheng, G., Ma, S., Wong, K.-K., & Ng, T.-S. (2010). Robust beamforming in cognitive radio. IEEE Transactions on Wireless Communications, 9, 570–576.CrossRef Zheng, G., Ma, S., Wong, K.-K., & Ng, T.-S. (2010). Robust beamforming in cognitive radio. IEEE Transactions on Wireless Communications, 9, 570–576.CrossRef
9.
go back to reference Gharavol, E. A., Liang, Y.-C., & Mouthaan, K. (2010). Robust downlink beamforming in multiuser MISO cognitive radio networks with imperfect channel-state information. IEEE Transactions on Wireless Communications, 59, 2852–2860. Gharavol, E. A., Liang, Y.-C., & Mouthaan, K. (2010). Robust downlink beamforming in multiuser MISO cognitive radio networks with imperfect channel-state information. IEEE Transactions on Wireless Communications, 59, 2852–2860.
10.
go back to reference Kwon, Y., Kim, H., Yoo, J., & Chung, J. (2008). Orthogonal beamforming methodology in cognitive radio networks. In International conference on cognitive radio oriented wireless networks and communications (pp. 1–5). Kwon, Y., Kim, H., Yoo, J., & Chung, J. (2008). Orthogonal beamforming methodology in cognitive radio networks. In International conference on cognitive radio oriented wireless networks and communications (pp. 1–5).
11.
go back to reference Zhang, R., & Liang, Y.-C. (2008). Exploiting multi-antennas for opportunistic spectrum sharing in cognitive radio networks. IEEE Journal of Selected Topics in Signal Processing, 2, 88–102.CrossRef Zhang, R., & Liang, Y.-C. (2008). Exploiting multi-antennas for opportunistic spectrum sharing in cognitive radio networks. IEEE Journal of Selected Topics in Signal Processing, 2, 88–102.CrossRef
12.
go back to reference Hamdi, K., Zhang, W., & Letaief, K. B. (2009). Opportunistic spectrum sharing in cognitive MIMO wireless networks. IEEE Transactions on Wireless Communications, 8, 4098–4108.CrossRef Hamdi, K., Zhang, W., & Letaief, K. B. (2009). Opportunistic spectrum sharing in cognitive MIMO wireless networks. IEEE Transactions on Wireless Communications, 8, 4098–4108.CrossRef
13.
go back to reference Yiu, S., Chae, C.-B., Yang, K., & Calin, D. (2012). Uncoordinated beamforming for cognitive networks. IEEE Transactions on Wireless Communications, 60, 1390–1397.CrossRef Yiu, S., Chae, C.-B., Yang, K., & Calin, D. (2012). Uncoordinated beamforming for cognitive networks. IEEE Transactions on Wireless Communications, 60, 1390–1397.CrossRef
14.
go back to reference Yi, H. (2010). Null space based secondary joint transceiver scheme for cognitive radio MIMO networks using second-order statistics. In IEEE international conference on communications (ICC) (pp. 1–5). Yi, H. (2010). Null space based secondary joint transceiver scheme for cognitive radio MIMO networks using second-order statistics. In IEEE international conference on communications (ICC) (pp. 1–5).
15.
go back to reference Bixio, L., Oliveri, G., Ottonello, M., Raffetto, M., & Regazzoni, C. S. (2008). Cognitive radios with multiple antennas exploiting spatial opportunities. IEEE Transactions on Signal Processing, 58, 4453–4459.MathSciNetCrossRef Bixio, L., Oliveri, G., Ottonello, M., Raffetto, M., & Regazzoni, C. S. (2008). Cognitive radios with multiple antennas exploiting spatial opportunities. IEEE Transactions on Signal Processing, 58, 4453–4459.MathSciNetCrossRef
16.
go back to reference Lee, K., Chae, C.-B., Heath, R. W., & Kang, J. (2011). MIMO transceiver designs for spatial sensing in cognitive radio networks. IEEE Transactions on Wireless Communications, 10, 3570–3576.CrossRef Lee, K., Chae, C.-B., Heath, R. W., & Kang, J. (2011). MIMO transceiver designs for spatial sensing in cognitive radio networks. IEEE Transactions on Wireless Communications, 10, 3570–3576.CrossRef
17.
go back to reference Du, H., Ratnarajah, T., Pesavento, M., & Papadias, C. B. (2012). Joint transceiver beamforming in mimo cognitive radio network via second-order cone programming. IEEE Transactions on Signal Processing, 60, 781–792.MathSciNetCrossRef Du, H., Ratnarajah, T., Pesavento, M., & Papadias, C. B. (2012). Joint transceiver beamforming in mimo cognitive radio network via second-order cone programming. IEEE Transactions on Signal Processing, 60, 781–792.MathSciNetCrossRef
18.
go back to reference Jindal, N. (2008). Antenna combining for the MIMO downlink channel. IEEE Transactions on Wireless Communications, 7, 3834–3844.CrossRef Jindal, N. (2008). Antenna combining for the MIMO downlink channel. IEEE Transactions on Wireless Communications, 7, 3834–3844.CrossRef
19.
go back to reference Love, D . J., Heath, J Robert W., & Strohmer, T. (2003). Grassmannian beamforming for multiple-input multiple-output wireless systems. IEEE Transactions on Information Theory, 49, 2735–2747.MathSciNetCrossRef Love, D . J., Heath, J  Robert W., & Strohmer, T. (2003). Grassmannian beamforming for multiple-input multiple-output wireless systems. IEEE Transactions on Information Theory, 49, 2735–2747.MathSciNetCrossRef
20.
go back to reference Son, H., Lee, S., & Lee, S. (2012). A multi-user MIMO downling receiver and quantizer design bassed in SINR optimization. IEEE Transactions on Communications, 60, 559–568.CrossRef Son, H., Lee, S., & Lee, S. (2012). A multi-user MIMO downling receiver and quantizer design bassed in SINR optimization. IEEE Transactions on Communications, 60, 559–568.CrossRef
21.
go back to reference Sharif, M., & Hassibi, B. (2005). On the capacity of MIMO broadcast channel with partial side information. IEEE Transactions on information Theory, 51, 506–522.MathSciNetCrossRef Sharif, M., & Hassibi, B. (2005). On the capacity of MIMO broadcast channel with partial side information. IEEE Transactions on information Theory, 51, 506–522.MathSciNetCrossRef
22.
go back to reference Au-Yeung, C. K., & Love, D. J. (2007). On the performance of random vector quantization limited feedback beamforming in a MISO system. IEEE Transactions on Wireless Communications, 6, 458–462.CrossRef Au-Yeung, C. K., & Love, D. J. (2007). On the performance of random vector quantization limited feedback beamforming in a MISO system. IEEE Transactions on Wireless Communications, 6, 458–462.CrossRef
23.
go back to reference Jindal, N. (2006). MIMO broadcast channels with finite-rate feedback. IEEE Transactions on Information Theory, 52, 5045–5060.MathSciNetCrossRef Jindal, N. (2006). MIMO broadcast channels with finite-rate feedback. IEEE Transactions on Information Theory, 52, 5045–5060.MathSciNetCrossRef
24.
go back to reference Son, H., & Lee, S. (2011). Iterative best beam selection for random unitary beamforming. IEEE Transactions on Communications, 59, 968–974.CrossRef Son, H., & Lee, S. (2011). Iterative best beam selection for random unitary beamforming. IEEE Transactions on Communications, 59, 968–974.CrossRef
25.
go back to reference Choi, W., Forenza, A., Andrews, J. G., & Heath, R. W. (2007). Opportunistic space-division multiple access with beam selection. IEEE Transactions on Communications, 55, 2371–2380.CrossRef Choi, W., Forenza, A., Andrews, J. G., & Heath, R. W. (2007). Opportunistic space-division multiple access with beam selection. IEEE Transactions on Communications, 55, 2371–2380.CrossRef
26.
go back to reference Horn, R. A., & Johnson, C. R. (1999). Matrix analysis. Cambridge: Cambridge University Press. Horn, R. A., & Johnson, C. R. (1999). Matrix analysis. Cambridge: Cambridge University Press.
27.
go back to reference Yoo, T., Jindal, N., & Goldsmith, A. (2007). Multi-antenna downlink channels with limited feedback and user selection. IEEE Journal on Selected Areas in Communications, 25, 1478–1491.CrossRef Yoo, T., Jindal, N., & Goldsmith, A. (2007). Multi-antenna downlink channels with limited feedback and user selection. IEEE Journal on Selected Areas in Communications, 25, 1478–1491.CrossRef
Metadata
Title
Opportunistic cooperative spectrum sharing and optimal receive combiner for cognitive MU-MIMO systems
Author
Hyukmin Son
Publication date
20-09-2019
Publisher
Springer US
Published in
Wireless Networks / Issue 3/2020
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-019-02145-w

Other articles of this Issue 3/2020

Wireless Networks 3/2020 Go to the issue