Skip to main content
Top

2017 | OriginalPaper | Chapter

Optical Characterization of Graphene and Its Derivatives: An Experimentalist’s Perspective

Authors : Dinh-Tuan Nguyen, Ya-Ping Hsieh, Mario Hofmann

Published in: Carbon-related Materials in Recognition of Nobel Lectures by Prof. Akira Suzuki in ICCE

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Carbon produces a wealth of different materials ranging from organic molecules to diamond crystals. One common challenge for the synthesis, application, and understanding of these materials is their characterization.
Graphene, a monoatomic layer of graphite, exemplifies the achievable diversity in properties of carbon materials and can serve as a model system for the analysis of complex molecules. Modifications, such as addition of heteroatoms, presence of edges, or interaction with adsorbates, significantly modify fundamental properties of graphene and allow inference to structure-property relations.
This contribution will demonstrate the ideal suitability of optical analysis techniques to provide complementary information on thus modified graphene. Even subtle changes in the mechanical, electronic, and chemical structure can be characterized by widely available and nondestructive optical spectroscopy methods.
We first provide an introduction of the available optical characterization techniques. Then, the ability of those techniques to elucidate changes of mechanical, electronic, and chemical properties of graphene will be described. To satisfy requirements from experimentalists, emphasis will be put on ease of access and quantitative relations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. Kotha, K. Lahiri, D. Kashinath, Recent applications of the Suzuki-Miyaura cross-coupling reaction in organic synthesis. Tetrahedron 58, 9633–9695 (2002)CrossRef S. Kotha, K. Lahiri, D. Kashinath, Recent applications of the Suzuki-Miyaura cross-coupling reaction in organic synthesis. Tetrahedron 58, 9633–9695 (2002)CrossRef
2.
go back to reference V. Georgakilas, M. Otyepka, A.B. Bourlinos, V. Chandra, N. Kim, K.C. Kemp, P. Hobza, R. Zboril, K.S. Kim, Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112, 6156–6214 (2012)CrossRef V. Georgakilas, M. Otyepka, A.B. Bourlinos, V. Chandra, N. Kim, K.C. Kemp, P. Hobza, R. Zboril, K.S. Kim, Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112, 6156–6214 (2012)CrossRef
3.
go back to reference R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science 320, 1308–1308 (2008)CrossRef R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science 320, 1308–1308 (2008)CrossRef
4.
go back to reference J.M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M.G. Spencer, D. Veksler, Y. Chen, Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible. Appl. Phys. Lett. 93, 131905 (2008)CrossRef J.M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M.G. Spencer, D. Veksler, Y. Chen, Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible. Appl. Phys. Lett. 93, 131905 (2008)CrossRef
5.
go back to reference V.G. Kravets, A.N. Grigorenko, R.R. Nair, P. Blake, S. Anissimova, K.S. Novoselov, A.K. Geim, Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption. Phys. Rev. B 81, 155413 (2010)CrossRef V.G. Kravets, A.N. Grigorenko, R.R. Nair, P. Blake, S. Anissimova, K.S. Novoselov, A.K. Geim, Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption. Phys. Rev. B 81, 155413 (2010)CrossRef
6.
go back to reference Z. Shou-En, Y. Shengjun, G.C.A.M. Janssen, Optical transmittance of multilayer graphene. EPL (Europhys Lett.) 108, 17007 (2014)CrossRef Z. Shou-En, Y. Shengjun, G.C.A.M. Janssen, Optical transmittance of multilayer graphene. EPL (Europhys Lett.) 108, 17007 (2014)CrossRef
7.
go back to reference H. Yan, F. Xia, W. Zhu, M. Freitag, C. Dimitrakopoulos, A.A. Bol, G. Tulevski, P. Avouris, Infrared spectroscopy of wafer-scale graphene. ACS Nano 5, 9854–9860 (2011)CrossRef H. Yan, F. Xia, W. Zhu, M. Freitag, C. Dimitrakopoulos, A.A. Bol, G. Tulevski, P. Avouris, Infrared spectroscopy of wafer-scale graphene. ACS Nano 5, 9854–9860 (2011)CrossRef
8.
go back to reference K.F. Mak, F.H. da Jornada, K. He, J. Deslippe, N. Petrone, J. Hone, J. Shan, S.G. Louie, T.F. Heinz, Tuning many-body interactions in graphene: the effects of doping on excitons and carrier lifetimes. Phys. Rev. Lett. 112, 207401 (2014)CrossRef K.F. Mak, F.H. da Jornada, K. He, J. Deslippe, N. Petrone, J. Hone, J. Shan, S.G. Louie, T.F. Heinz, Tuning many-body interactions in graphene: the effects of doping on excitons and carrier lifetimes. Phys. Rev. Lett. 112, 207401 (2014)CrossRef
9.
go back to reference A. Matković, M. Chhikara, M. Milićević, U. Ralević, B. Vasić, D. Jovanović, M.R. Belić, G. Bratina, R. Gajić, Influence of a gold substrate on the optical properties of graphene. J. Appl. Phys. 117, 015305 (2015)CrossRef A. Matković, M. Chhikara, M. Milićević, U. Ralević, B. Vasić, D. Jovanović, M.R. Belić, G. Bratina, R. Gajić, Influence of a gold substrate on the optical properties of graphene. J. Appl. Phys. 117, 015305 (2015)CrossRef
10.
go back to reference C. Lee, N. Leconte, J. Kim, D. Cho, I.-W. Lyo, E.J. Choi, Optical spectroscopy study on the effect of hydrogen adsorption on graphene. Carbon 103, 109–114 (2016)CrossRef C. Lee, N. Leconte, J. Kim, D. Cho, I.-W. Lyo, E.J. Choi, Optical spectroscopy study on the effect of hydrogen adsorption on graphene. Carbon 103, 109–114 (2016)CrossRef
11.
go back to reference J.I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, J.M.D. Tascón, Graphene oxide dispersions in organic solvents. Langmuir 24, 10560–10564 (2008)CrossRef J.I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, J.M.D. Tascón, Graphene oxide dispersions in organic solvents. Langmuir 24, 10560–10564 (2008)CrossRef
12.
go back to reference D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat Nano 3, 101–105 (2008)CrossRef D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat Nano 3, 101–105 (2008)CrossRef
13.
go back to reference J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, S. Guo, Reduction of graphene oxide vial-ascorbic acid. Chem. Commun. 46, 1112–1114 (2010)CrossRef J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, S. Guo, Reduction of graphene oxide vial-ascorbic acid. Chem. Commun. 46, 1112–1114 (2010)CrossRef
14.
go back to reference N. Kurantowicz, E. Sawosz, S. Jaworski, M. Kutwin, B. Strojny, M. Wierzbicki, J. Szeliga, A. Hotowy, L. Lipińska, R. Koziński, J. Jagiełło, A. Chwalibog, Interaction of graphene family materials with Listeria monocytogenes and Salmonella enterica. Nanoscale Res. Lett. 10, 1–12 (2015)CrossRef N. Kurantowicz, E. Sawosz, S. Jaworski, M. Kutwin, B. Strojny, M. Wierzbicki, J. Szeliga, A. Hotowy, L. Lipińska, R. Koziński, J. Jagiełło, A. Chwalibog, Interaction of graphene family materials with Listeria monocytogenes and Salmonella enterica. Nanoscale Res. Lett. 10, 1–12 (2015)CrossRef
15.
go back to reference P. Larkin, Chapter 3: Instrumentation and sampling methods, in Infrared and Raman Spectroscopy, (Elsevier, Oxford, 2011), pp. 27–54CrossRef P. Larkin, Chapter 3: Instrumentation and sampling methods, in Infrared and Raman Spectroscopy, (Elsevier, Oxford, 2011), pp. 27–54CrossRef
16.
go back to reference H.-L. Guo, X.-F. Wang, Q.-Y. Qian, F.-B. Wang, X.-H. Xia, A green approach to the synthesis of graphene nanosheets. ACS Nano 3, 2653–2659 (2009)CrossRef H.-L. Guo, X.-F. Wang, Q.-Y. Qian, F.-B. Wang, X.-H. Xia, A green approach to the synthesis of graphene nanosheets. ACS Nano 3, 2653–2659 (2009)CrossRef
17.
go back to reference J. O’reilly, R. Mosher, Functional groups in carbon black by FTIR spectroscopy. Carbon 21, 47–51 (1983)CrossRef J. O’reilly, R. Mosher, Functional groups in carbon black by FTIR spectroscopy. Carbon 21, 47–51 (1983)CrossRef
18.
go back to reference C. Hontoria-Lucas, A.J. López-Peinado, J.D.D. López-González, M.L. Rojas-Cervantes, R.M. Martín-Aranda, Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization. Carbon 33, 1585–1592 (1995)CrossRef C. Hontoria-Lucas, A.J. López-Peinado, J.D.D. López-González, M.L. Rojas-Cervantes, R.M. Martín-Aranda, Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization. Carbon 33, 1585–1592 (1995)CrossRef
19.
go back to reference C. Zhang, D.M. Dabbs, L.-M. Liu, I.A. Aksay, R. Car, A. Selloni, Combined effects of functional groups, lattice defects, and edges in the infrared spectra of graphene oxide. J. Phys. Chem. C 119, 18167–18176 (2015)CrossRef C. Zhang, D.M. Dabbs, L.-M. Liu, I.A. Aksay, R. Car, A. Selloni, Combined effects of functional groups, lattice defects, and edges in the infrared spectra of graphene oxide. J. Phys. Chem. C 119, 18167–18176 (2015)CrossRef
20.
go back to reference A. Kaniyoor, T.T. Baby, S. Ramaprabhu, Graphene synthesis via hydrogen induced low temperature exfoliation of graphite oxide. J. Mater. Chem. 20, 8467–8469 (2010)CrossRef A. Kaniyoor, T.T. Baby, S. Ramaprabhu, Graphene synthesis via hydrogen induced low temperature exfoliation of graphite oxide. J. Mater. Chem. 20, 8467–8469 (2010)CrossRef
21.
go back to reference S. Eigler, C. Dotzer, A. Hirsch, M. Enzelberger, P. Müller, Formation and decomposition of CO2 intercalated graphene oxide. Chem. Mater. 24, 1276–1282 (2012)CrossRef S. Eigler, C. Dotzer, A. Hirsch, M. Enzelberger, P. Müller, Formation and decomposition of CO2 intercalated graphene oxide. Chem. Mater. 24, 1276–1282 (2012)CrossRef
22.
go back to reference X. Wang, W. Wang, Y. Liu, M. Ren, H. Xiao, X. Liu, Characterization of conformation and locations of C–F bonds in graphene derivative by polarized ATR-FTIR. Anal. Chem. 88, 3926–3934 (2016)CrossRef X. Wang, W. Wang, Y. Liu, M. Ren, H. Xiao, X. Liu, Characterization of conformation and locations of C–F bonds in graphene derivative by polarized ATR-FTIR. Anal. Chem. 88, 3926–3934 (2016)CrossRef
23.
go back to reference Y. Si, E.T. Samulski, Synthesis of water soluble graphene. Nano Lett. 8, 1679–1682 (2008)CrossRef Y. Si, E.T. Samulski, Synthesis of water soluble graphene. Nano Lett. 8, 1679–1682 (2008)CrossRef
24.
go back to reference S. Konwer, J.P. Gogoi, A. Kalita, S.K. Dolui, Synthesis of expanded graphite filled polyaniline composites and evaluation of their electrical and electrochemical properties. J. Mater. Sci. Mater. Electron. 22, 1154–1161 (2011)CrossRef S. Konwer, J.P. Gogoi, A. Kalita, S.K. Dolui, Synthesis of expanded graphite filled polyaniline composites and evaluation of their electrical and electrochemical properties. J. Mater. Sci. Mater. Electron. 22, 1154–1161 (2011)CrossRef
25.
go back to reference I. Milosevic, N. Kepcija, E. Dobardzic, M. Mohr, J. Maultzsch, C. Thomsen, M. Damnjanovic, Symmetry-based analysis of the electron-phonon interaction in graphene. Physica Status Solidi B-Basic Solid State Phys. 246, 2606–2609 (2009)CrossRef I. Milosevic, N. Kepcija, E. Dobardzic, M. Mohr, J. Maultzsch, C. Thomsen, M. Damnjanovic, Symmetry-based analysis of the electron-phonon interaction in graphene. Physica Status Solidi B-Basic Solid State Phys. 246, 2606–2609 (2009)CrossRef
26.
go back to reference S. Reich, C. Thomsen, Raman spectroscopy of graphite. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 362, 2271–2288 (2004)CrossRef S. Reich, C. Thomsen, Raman spectroscopy of graphite. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 362, 2271–2288 (2004)CrossRef
27.
go back to reference J.F. Rodriguez-Nieva, E.B. Barros, R. Saito, M.S. Dresselhaus, Disorder-induced double resonant Raman process in graphene. Phys. Rev. B 90, 235410 (2014)CrossRef J.F. Rodriguez-Nieva, E.B. Barros, R. Saito, M.S. Dresselhaus, Disorder-induced double resonant Raman process in graphene. Phys. Rev. B 90, 235410 (2014)CrossRef
28.
go back to reference A.C. Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235–246 (2013)CrossRef A.C. Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235–246 (2013)CrossRef
29.
go back to reference F. Schedin, E. Lidorikis, A. Lombardo, V.G. Kravets, A.K. Geim, A.N. Grigorenko, K.S. Novoselov, A.C. Ferrari, Surface-enhanced Raman spectroscopy of graphene. ACS Nano 4, 5617–5626 (2010)CrossRef F. Schedin, E. Lidorikis, A. Lombardo, V.G. Kravets, A.K. Geim, A.N. Grigorenko, K.S. Novoselov, A.C. Ferrari, Surface-enhanced Raman spectroscopy of graphene. ACS Nano 4, 5617–5626 (2010)CrossRef
30.
go back to reference D.Y. Joh, L.H. Herman, S.-Y. Ju, J. Kinder, M.A. Segal, J.N. Johnson, G.K.L. Chan, J. Park, On-chip Rayleigh imaging and spectroscopy of carbon nanotubes. Nano Lett. 11, 1–7 (2011)CrossRef D.Y. Joh, L.H. Herman, S.-Y. Ju, J. Kinder, M.A. Segal, J.N. Johnson, G.K.L. Chan, J. Park, On-chip Rayleigh imaging and spectroscopy of carbon nanotubes. Nano Lett. 11, 1–7 (2011)CrossRef
31.
go back to reference C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. Novoselov, A. Ferrari, Rayleigh imaging of graphene and graphene layers. Nano Lett. 7, 2711–2717 (2007)CrossRef C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. Novoselov, A. Ferrari, Rayleigh imaging of graphene and graphene layers. Nano Lett. 7, 2711–2717 (2007)CrossRef
32.
go back to reference Z. Ni, H. Wang, J. Kasim, H. Fan, T. Yu, Y. Wu, Y. Feng, Z. Shen, Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett. 7, 2758–2763 (2007)CrossRef Z. Ni, H. Wang, J. Kasim, H. Fan, T. Yu, Y. Wu, Y. Feng, Z. Shen, Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett. 7, 2758–2763 (2007)CrossRef
33.
go back to reference L. Gao, W. Ren, F. Li, H.-M. Cheng, Total color difference for rapid and accurate identification of graphene. ACS Nano 2, 1625–1633 (2008)CrossRef L. Gao, W. Ren, F. Li, H.-M. Cheng, Total color difference for rapid and accurate identification of graphene. ACS Nano 2, 1625–1633 (2008)CrossRef
34.
go back to reference J. Kim, L.J. Cote, F. Kim, J.X. Huang, Visualizing graphene based sheets by fluorescence quenching microscopy. J. Am. Chem. Soc. 132, 260–267 (2010)CrossRef J. Kim, L.J. Cote, F. Kim, J.X. Huang, Visualizing graphene based sheets by fluorescence quenching microscopy. J. Am. Chem. Soc. 132, 260–267 (2010)CrossRef
35.
go back to reference J.Z. Shang, L. Ma, J.W. Li, W. Ai, T. Yu, G.G. Gurzadyan, Femtosecond pump-probe spectroscopy of graphene oxide in water. J. Phys. D-Appl. Phys. 47, 173106 (2014) J.Z. Shang, L. Ma, J.W. Li, W. Ai, T. Yu, G.G. Gurzadyan, Femtosecond pump-probe spectroscopy of graphene oxide in water. J. Phys. D-Appl. Phys. 47, 173106 (2014)
36.
go back to reference C. Schriever, S. Lochbrunner, E. Riedle, D.J. Nesbitt, Ultrasensitive ultraviolet-visible 20 fs absorption spectroscopy of low vapor pressure molecules in the gas phase. Rev. Sci. Instrum. 79, 013107 (2008)CrossRef C. Schriever, S. Lochbrunner, E. Riedle, D.J. Nesbitt, Ultrasensitive ultraviolet-visible 20 fs absorption spectroscopy of low vapor pressure molecules in the gas phase. Rev. Sci. Instrum. 79, 013107 (2008)CrossRef
37.
go back to reference D.J. Renteria, L.D. Nika, A.A. Balandin, Graphene thermal properties: applications in thermal management and energy storage. Appl. Sci. 4, 525–547 (2014)CrossRef D.J. Renteria, L.D. Nika, A.A. Balandin, Graphene thermal properties: applications in thermal management and energy storage. Appl. Sci. 4, 525–547 (2014)CrossRef
38.
go back to reference N. Rotenberg, L. Kuipers, Mapping nanoscale light fields. Nat. Photonics 8, 919–926 (2014)CrossRef N. Rotenberg, L. Kuipers, Mapping nanoscale light fields. Nat. Photonics 8, 919–926 (2014)CrossRef
39.
go back to reference A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)CrossRef A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)CrossRef
40.
go back to reference L. Lindsay, W. Li, J. Carrete, N. Mingo, D.A. Broido, T.L. Reinecke, Phonon thermal transport in strained and unstrained graphene from first principles. Phys. Rev. B 89, 155426 (2014)CrossRef L. Lindsay, W. Li, J. Carrete, N. Mingo, D.A. Broido, T.L. Reinecke, Phonon thermal transport in strained and unstrained graphene from first principles. Phys. Rev. B 89, 155426 (2014)CrossRef
41.
go back to reference A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S.K. Saha, U.V. Waghmare, K.S. Novoselov, H.R. Krishnamurthy, A.K. Geim, A.C. Ferrari, A.K. Sood, Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 3, 210–215 (2008)CrossRef A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S.K. Saha, U.V. Waghmare, K.S. Novoselov, H.R. Krishnamurthy, A.K. Geim, A.C. Ferrari, A.K. Sood, Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 3, 210–215 (2008)CrossRef
42.
go back to reference T.G.A. Verhagen, K. Drogowska, M. Kalbac, J. Vejpravova, Temperature-induced strain and doping in monolayer and bilayer isotopically labeled graphene. Phys. Rev. B 92, 125437 (2015)CrossRef T.G.A. Verhagen, K. Drogowska, M. Kalbac, J. Vejpravova, Temperature-induced strain and doping in monolayer and bilayer isotopically labeled graphene. Phys. Rev. B 92, 125437 (2015)CrossRef
43.
go back to reference S. Pisana, M. Lazzeri, C. Casiraghi, K.S. Novoselov, A.K. Geim, A.C. Ferrari, F. Mauri, Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. Nat. Mater. 6, 198–201 (2007)CrossRef S. Pisana, M. Lazzeri, C. Casiraghi, K.S. Novoselov, A.K. Geim, A.C. Ferrari, F. Mauri, Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. Nat. Mater. 6, 198–201 (2007)CrossRef
44.
go back to reference J.E. Lee, G. Ahn, J. Shim, Y.S. Lee, S. Ryu, Optical separation of mechanical strain from charge doping in graphene. Nat. Commun. 3, 1024 (2012)CrossRef J.E. Lee, G. Ahn, J. Shim, Y.S. Lee, S. Ryu, Optical separation of mechanical strain from charge doping in graphene. Nat. Commun. 3, 1024 (2012)CrossRef
45.
go back to reference M. Bruna, A.K. Ott, M. Ijas, D. Yoon, U. Sassi, A.C. Ferrari, Doping dependence of the Raman spectrum of defected graphene. ACS Nano 8, 7432–7441 (2014)CrossRef M. Bruna, A.K. Ott, M. Ijas, D. Yoon, U. Sassi, A.C. Ferrari, Doping dependence of the Raman spectrum of defected graphene. ACS Nano 8, 7432–7441 (2014)CrossRef
46.
go back to reference Y.F. Hao, Y.Y. Wang, L. Wang, Z.H. Ni, Z.Q. Wang, R. Wang, C.K. Koo, Z.X. Shen, J.T.L. Thong, Probing layer number and stacking order of few-layer graphene by Raman spectroscopy. Small 6, 195–200 (2010)CrossRef Y.F. Hao, Y.Y. Wang, L. Wang, Z.H. Ni, Z.Q. Wang, R. Wang, C.K. Koo, Z.X. Shen, J.T.L. Thong, Probing layer number and stacking order of few-layer graphene by Raman spectroscopy. Small 6, 195–200 (2010)CrossRef
47.
go back to reference K.F. Mak, L. Ju, F. Wang, T.F. Heinz, Optical spectroscopy of graphene: from the far infrared to the ultraviolet. Solid State Commun. 152, 1341–1349 (2012)CrossRef K.F. Mak, L. Ju, F. Wang, T.F. Heinz, Optical spectroscopy of graphene: from the far infrared to the ultraviolet. Solid State Commun. 152, 1341–1349 (2012)CrossRef
48.
go back to reference C.W. Luo, P.S. Tseng, H.J. Chen, K.H. Wu, L.J. Li, Dirac fermion relaxation and energy loss rate near the Fermi surface in monolayer and multilayer graphene. Nanoscale 6, 8575–8578 (2014)CrossRef C.W. Luo, P.S. Tseng, H.J. Chen, K.H. Wu, L.J. Li, Dirac fermion relaxation and energy loss rate near the Fermi surface in monolayer and multilayer graphene. Nanoscale 6, 8575–8578 (2014)CrossRef
49.
go back to reference E. del Corro, L. Kavan, M. Kalbac, O. Frank, Strain assessment in graphene through the Raman 2D’ mode. J. Phys. Chem. C 119, 25651–25656 (2015)CrossRef E. del Corro, L. Kavan, M. Kalbac, O. Frank, Strain assessment in graphene through the Raman 2D’ mode. J. Phys. Chem. C 119, 25651–25656 (2015)CrossRef
50.
go back to reference N. Ferralis, Probing mechanical properties of graphene with Raman spectroscopy. J. Mater. Sci. 45, 5135–5149 (2010)CrossRef N. Ferralis, Probing mechanical properties of graphene with Raman spectroscopy. J. Mater. Sci. 45, 5135–5149 (2010)CrossRef
51.
go back to reference T.M.G. Mohiuddin, A. Lombardo, R.R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D.M. Basko, C. Galiotis, N. Marzari, K.S. Novoselov, A.K. Geim, A.C. Ferrari, Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Gruneisen parameters, and sample orientation. Phys. Rev. B. 79 (2009) T.M.G. Mohiuddin, A. Lombardo, R.R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D.M. Basko, C. Galiotis, N. Marzari, K.S. Novoselov, A.K. Geim, A.C. Ferrari, Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Gruneisen parameters, and sample orientation. Phys. Rev. B. 79 (2009)
52.
go back to reference C.W. Wang, M.D. Frogley, G. Cinque, L.Q. Liu, A.H. Barber, Molecular force transfer mechanisms in graphene oxide paper evaluated using atomic force microscopy and in situ synchrotron micro FT-IR spectroscopy. Nanoscale 6, 14404–14411 (2014)CrossRef C.W. Wang, M.D. Frogley, G. Cinque, L.Q. Liu, A.H. Barber, Molecular force transfer mechanisms in graphene oxide paper evaluated using atomic force microscopy and in situ synchrotron micro FT-IR spectroscopy. Nanoscale 6, 14404–14411 (2014)CrossRef
53.
go back to reference B. Partoens, F.M. Peeters, From graphene to graphite: electronic structure around the $K$ point. Phys. Rev. B 74, 075404 (2006)CrossRef B. Partoens, F.M. Peeters, From graphene to graphite: electronic structure around the $K$ point. Phys. Rev. B 74, 075404 (2006)CrossRef
54.
go back to reference J.R. Kyle, A. Guvenc, W. Wang, M. Ghazinejad, J. Lin, S. Guo, C.S. Ozkan, M. Ozkan, Centimeter-scale high-resolution metrology of entire CVD-grown graphene sheets. Small 7, 2599–2606 (2011)CrossRef J.R. Kyle, A. Guvenc, W. Wang, M. Ghazinejad, J. Lin, S. Guo, C.S. Ozkan, M. Ozkan, Centimeter-scale high-resolution metrology of entire CVD-grown graphene sheets. Small 7, 2599–2606 (2011)CrossRef
55.
go back to reference W. Li, S. Moon, M. Wojcik, K. Xu, Direct optical visualization of graphene and its nanoscale defects on transparent substrates. Nano Lett. 16, 5027–5031 (2016)CrossRef W. Li, S. Moon, M. Wojcik, K. Xu, Direct optical visualization of graphene and its nanoscale defects on transparent substrates. Nano Lett. 16, 5027–5031 (2016)CrossRef
56.
go back to reference A.C. Ferrari, Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007)CrossRef A.C. Ferrari, Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007)CrossRef
57.
go back to reference R. Rao, R. Podila, R. Tsuchikawa, J. Katoch, D. Tishler, A.M. Rao, M. Ishigami, Effects of layer stacking on the combination Raman modes in graphene. ACS Nano 5, 1594–1599 (2011)CrossRef R. Rao, R. Podila, R. Tsuchikawa, J. Katoch, D. Tishler, A.M. Rao, M. Ishigami, Effects of layer stacking on the combination Raman modes in graphene. ACS Nano 5, 1594–1599 (2011)CrossRef
58.
go back to reference C. Cong, T. Yu, R. Saito, G.F. Dresselhaus, M.S. Dresselhaus, Second-order overtone and combination Raman modes of graphene layers in the range of 1690−2150 cm−1. ACS Nano 5, 1600–1605 (2011)CrossRef C. Cong, T. Yu, R. Saito, G.F. Dresselhaus, M.S. Dresselhaus, Second-order overtone and combination Raman modes of graphene layers in the range of 1690−2150 cm−1. ACS Nano 5, 1600–1605 (2011)CrossRef
59.
go back to reference J. dos Santos, N.M.R. Peres, A.H. Castro, Graphene bilayer with a twist: electronic structure. Phys. Rev. Lett. 99, 4 (2007) J. dos Santos, N.M.R. Peres, A.H. Castro, Graphene bilayer with a twist: electronic structure. Phys. Rev. Lett. 99, 4 (2007)
60.
go back to reference K. Kim, S. Coh, L.Z. Tan, W. Regan, J.M. Yuk, E. Chatterjee, M. Crommie, M.L. Cohen, S.G. Louie, A. Zettl, Raman spectroscopy study of rotated double-layer graphene: misorientation-angle dependence of electronic structure. Phys. Rev. Lett. 108, 246103 (2012)CrossRef K. Kim, S. Coh, L.Z. Tan, W. Regan, J.M. Yuk, E. Chatterjee, M. Crommie, M.L. Cohen, S.G. Louie, A. Zettl, Raman spectroscopy study of rotated double-layer graphene: misorientation-angle dependence of electronic structure. Phys. Rev. Lett. 108, 246103 (2012)CrossRef
61.
go back to reference V. Carozo, C.M. Almeida, E.H. Ferreira, L.G. Cançado, C.A. Achete, A. Jorio, Raman signature of graphene superlattices. Nano Lett. 11, 4527–4534 (2011)CrossRef V. Carozo, C.M. Almeida, E.H. Ferreira, L.G. Cançado, C.A. Achete, A. Jorio, Raman signature of graphene superlattices. Nano Lett. 11, 4527–4534 (2011)CrossRef
62.
go back to reference R.W. Havener, H. Zhuang, L. Brown, R.G. Hennig, J. Park, Angle-resolved Raman imaging of interlayer rotations and interactions in twisted bilayer graphene. Nano Lett. 12, 3162–3167 (2012)CrossRef R.W. Havener, H. Zhuang, L. Brown, R.G. Hennig, J. Park, Angle-resolved Raman imaging of interlayer rotations and interactions in twisted bilayer graphene. Nano Lett. 12, 3162–3167 (2012)CrossRef
63.
go back to reference J.-B. Wu, X. Zhang, M. Ijäs, W.-P. Han, X.-F. Qiao, X.-L. Li, D.-S. Jiang, A.C. Ferrari, P.-H. Tan, Resonant Raman spectroscopy of twisted multilayer graphene. Nat. Commun. 5, 5309 (2014)CrossRef J.-B. Wu, X. Zhang, M. Ijäs, W.-P. Han, X.-F. Qiao, X.-L. Li, D.-S. Jiang, A.C. Ferrari, P.-H. Tan, Resonant Raman spectroscopy of twisted multilayer graphene. Nat. Commun. 5, 5309 (2014)CrossRef
64.
go back to reference C.J. Tabert, E.J. Nicol, Optical conductivity of twisted bilayer graphene. Phys. Rev. B 87, 121402 (2013)CrossRef C.J. Tabert, E.J. Nicol, Optical conductivity of twisted bilayer graphene. Phys. Rev. B 87, 121402 (2013)CrossRef
65.
go back to reference A.A. Avetisyan, B. Partoens, F.M. Peeters, Stacking order dependent electric field tuning of the band gap in graphene multilayers. Phys. Rev. B 81, 115432 (2010)CrossRef A.A. Avetisyan, B. Partoens, F.M. Peeters, Stacking order dependent electric field tuning of the band gap in graphene multilayers. Phys. Rev. B 81, 115432 (2010)CrossRef
66.
go back to reference C.H. Lui, Z. Li, Z. Chen, P.V. Klimov, L.E. Brus, T.F. Heinz, Imaging stacking order in few-layer graphene. Nano Lett. 11, 164–169 (2011)CrossRef C.H. Lui, Z. Li, Z. Chen, P.V. Klimov, L.E. Brus, T.F. Heinz, Imaging stacking order in few-layer graphene. Nano Lett. 11, 164–169 (2011)CrossRef
67.
go back to reference C. Cong, T. Yu, K. Sato, J. Shang, R. Saito, G.F. Dresselhaus, M.S. Dresselhaus, Raman characterization of ABA-and ABC-stacked trilayer graphene. ACS Nano 5, 8760–8768 (2011)CrossRef C. Cong, T. Yu, K. Sato, J. Shang, R. Saito, G.F. Dresselhaus, M.S. Dresselhaus, Raman characterization of ABA-and ABC-stacked trilayer graphene. ACS Nano 5, 8760–8768 (2011)CrossRef
68.
go back to reference K.F. Mak, J. Shan, T.F. Heinz, Electronic structure of few-layer graphene: experimental demonstration of strong dependence on stacking sequence. Phys. Rev. Lett. 104, 176404 (2010)CrossRef K.F. Mak, J. Shan, T.F. Heinz, Electronic structure of few-layer graphene: experimental demonstration of strong dependence on stacking sequence. Phys. Rev. Lett. 104, 176404 (2010)CrossRef
69.
go back to reference M.M. Lucchese, F. Stavale, E.H.M. Ferreira, C. Vilani, M.V.O. Moutinho, R.B. Capaz, C.A. Achete, A. Jorio, Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 48, 1592–1597 (2010)CrossRef M.M. Lucchese, F. Stavale, E.H.M. Ferreira, C. Vilani, M.V.O. Moutinho, R.B. Capaz, C.A. Achete, A. Jorio, Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 48, 1592–1597 (2010)CrossRef
70.
go back to reference L.G. Cancado, A. Jorio, E.H.M. Ferreira, F. Stavale, C.A. Achete, R.B. Capaz, M.V.O. Moutinho, A. Lombardo, T.S. Kulmala, A.C. Ferrari, Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11, 3190–3196 (2011)CrossRef L.G. Cancado, A. Jorio, E.H.M. Ferreira, F. Stavale, C.A. Achete, R.B. Capaz, M.V.O. Moutinho, A. Lombardo, T.S. Kulmala, A.C. Ferrari, Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11, 3190–3196 (2011)CrossRef
71.
go back to reference A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K.S. Novoselov, C. Casiraghi, Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett. 12, 3925–3930 (2012)CrossRef A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K.S. Novoselov, C. Casiraghi, Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett. 12, 3925–3930 (2012)CrossRef
72.
go back to reference R. Beams, L.G. Cancado, L. Novotny, Raman characterization of defects and dopants in graphene. J. Phys.Condens. Matter 27, 083002 (2015)CrossRef R. Beams, L.G. Cancado, L. Novotny, Raman characterization of defects and dopants in graphene. J. Phys.Condens. Matter 27, 083002 (2015)CrossRef
73.
go back to reference A.A.K. King, B.R. Davies, N. Noorbehesht, P. Newman, T.L. Church, A.T. Harris, J.M. Razal, A.I. Minett, A new Raman metric for the characterisation of graphene oxide and its derivatives. Sci. Report. 6, 19491 (2016) A.A.K. King, B.R. Davies, N. Noorbehesht, P. Newman, T.L. Church, A.T. Harris, J.M. Razal, A.I. Minett, A new Raman metric for the characterisation of graphene oxide and its derivatives. Sci. Report. 6, 19491 (2016)
74.
go back to reference B. Li, T. He, Z. Wang, Z. Cheng, Y. Liu, T. Chen, W. Lai, X. Wang, X. Liu, Chemical reactivity of C-F bonds attached to graphene with diamines depending on their nature and location. Phys. Chem. Chem. Phys. 18, 17495–17505 (2016)CrossRef B. Li, T. He, Z. Wang, Z. Cheng, Y. Liu, T. Chen, W. Lai, X. Wang, X. Liu, Chemical reactivity of C-F bonds attached to graphene with diamines depending on their nature and location. Phys. Chem. Chem. Phys. 18, 17495–17505 (2016)CrossRef
75.
go back to reference Z. Gan, H. Xu, Y. Hao, Mechanism for excitation-dependent photoluminescence from graphene quantum dots and other graphene oxide derivates: consensus, debates and challenges. Nanoscale 8, 7794–7807 (2016)CrossRef Z. Gan, H. Xu, Y. Hao, Mechanism for excitation-dependent photoluminescence from graphene quantum dots and other graphene oxide derivates: consensus, debates and challenges. Nanoscale 8, 7794–7807 (2016)CrossRef
76.
go back to reference G. Eda, Y.Y. Lin, C. Mattevi, H. Yamaguchi, H.A. Chen, I.S. Chen, C.W. Chen, M. Chhowalla, Blue photoluminescence from chemically derived graphene oxide. Adv. Mater. 22, 505–509 (2010)CrossRef G. Eda, Y.Y. Lin, C. Mattevi, H. Yamaguchi, H.A. Chen, I.S. Chen, C.W. Chen, M. Chhowalla, Blue photoluminescence from chemically derived graphene oxide. Adv. Mater. 22, 505–509 (2010)CrossRef
77.
go back to reference L. Cao, M.J. Meziani, S. Sahu, Y.P. Sun, Photoluminescence properties of graphene versus other carbon nanomaterials. Acc. Chem. Res. 46, 171–180 (2013)CrossRef L. Cao, M.J. Meziani, S. Sahu, Y.P. Sun, Photoluminescence properties of graphene versus other carbon nanomaterials. Acc. Chem. Res. 46, 171–180 (2013)CrossRef
78.
go back to reference S.K. Pal, Versatile photoluminescence from graphene and its derivatives. Carbon 88, 86–112 (2015)CrossRef S.K. Pal, Versatile photoluminescence from graphene and its derivatives. Carbon 88, 86–112 (2015)CrossRef
79.
go back to reference C. Galande, A.D. Mohite, A.V. Naumov, W. Gao, L.J. Ci, A. Ajayan, H. Gao, A. Srivastava, R.B. Weisman, P.M. Ajayan, Quasi-molecular fluorescence from graphene oxide. Sci. Report. 1 (2011) C. Galande, A.D. Mohite, A.V. Naumov, W. Gao, L.J. Ci, A. Ajayan, H. Gao, A. Srivastava, R.B. Weisman, P.M. Ajayan, Quasi-molecular fluorescence from graphene oxide. Sci. Report. 1 (2011)
80.
go back to reference C.T. Chien, S.S. Li, W.J. Lai, Y.C. Yeh, H.A. Chen, I.S. Chen, L.C. Chen, K.H. Chen, T. Nemoto, S. Isoda, M.W. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, C.W. Chen, Tunable photoluminescence from graphene oxide. Angew. Chem.Int. Ed. 51, 6662–6666 (2012)CrossRef C.T. Chien, S.S. Li, W.J. Lai, Y.C. Yeh, H.A. Chen, I.S. Chen, L.C. Chen, K.H. Chen, T. Nemoto, S. Isoda, M.W. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, C.W. Chen, Tunable photoluminescence from graphene oxide. Angew. Chem.Int. Ed. 51, 6662–6666 (2012)CrossRef
81.
go back to reference M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 10, 751–758 (2010)CrossRef M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 10, 751–758 (2010)CrossRef
82.
go back to reference J. Maultzsch, H. Telg, S. Reich, C. Thomsen, Radial breathing mode of single-walled carbon nanotubes: optical transition energies and chiral-index assignment. Phys. Rev. B 72, 205438 (2005)CrossRef J. Maultzsch, H. Telg, S. Reich, C. Thomsen, Radial breathing mode of single-walled carbon nanotubes: optical transition energies and chiral-index assignment. Phys. Rev. B 72, 205438 (2005)CrossRef
83.
go back to reference S. Kim, D. Hee Shin, C.O. Kim, S. Seok Kang, S. Sin Joo, S.-H. Choi, S. Won Hwang, C. Sone, Size-dependence of Raman scattering from graphene quantum dots: interplay between shape and thickness. Appl. Phys. Lett. 102, 053108 (2013)CrossRef S. Kim, D. Hee Shin, C.O. Kim, S. Seok Kang, S. Sin Joo, S.-H. Choi, S. Won Hwang, C. Sone, Size-dependence of Raman scattering from graphene quantum dots: interplay between shape and thickness. Appl. Phys. Lett. 102, 053108 (2013)CrossRef
84.
go back to reference S. Ryu, J. Maultzsch, M.Y. Han, P. Kim, L.E. Brus, Raman spectroscopy of lithographically patterned graphene nanoribbons. ACS Nano 5, 4123–4130 (2011)CrossRef S. Ryu, J. Maultzsch, M.Y. Han, P. Kim, L.E. Brus, Raman spectroscopy of lithographically patterned graphene nanoribbons. ACS Nano 5, 4123–4130 (2011)CrossRef
85.
go back to reference Z.Q. Luo, T. Yu, Z.H. Ni, S.H. Lim, H.L. Hu, J.Z. Shang, L. Liu, Z.X. Shen, J.Y. Lin, Electronic structures and structural evolution of hydrogenated graphene probed by Raman spectroscopy. J. Phys. Chem. C 115, 1422–1427 (2011)CrossRef Z.Q. Luo, T. Yu, Z.H. Ni, S.H. Lim, H.L. Hu, J.Z. Shang, L. Liu, Z.X. Shen, J.Y. Lin, Electronic structures and structural evolution of hydrogenated graphene probed by Raman spectroscopy. J. Phys. Chem. C 115, 1422–1427 (2011)CrossRef
86.
go back to reference I.A. Verzhbitskiy, M. De Corato, A. Ruini, E. Molinari, A. Narita, Y. Hu, M.G. Schwab, M. Bruna, D. Yoon, S. Milana, X. Feng, K. Mullen, A.C. Ferrari, C. Casiraghi, D. Prezzi, Raman fingerprints of atomically precise graphene nanoribbons. Nano Lett. 16, 3442–3447 (2016)CrossRef I.A. Verzhbitskiy, M. De Corato, A. Ruini, E. Molinari, A. Narita, Y. Hu, M.G. Schwab, M. Bruna, D. Yoon, S. Milana, X. Feng, K. Mullen, A.C. Ferrari, C. Casiraghi, D. Prezzi, Raman fingerprints of atomically precise graphene nanoribbons. Nano Lett. 16, 3442–3447 (2016)CrossRef
87.
go back to reference J.Z. Shang, L. Ma, J.W. Li, W. Ai, T. Yu, G.G. Gurzadyan, The origin of fluorescence from graphene oxide. Sci. Report. 2, 792 (2012)CrossRef J.Z. Shang, L. Ma, J.W. Li, W. Ai, T. Yu, G.G. Gurzadyan, The origin of fluorescence from graphene oxide. Sci. Report. 2, 792 (2012)CrossRef
88.
go back to reference J.A. Yan, M.Y. Chou, Oxidation functional groups on graphene: structural and electronic properties. Phys. Rev. B. 82 (2010) J.A. Yan, M.Y. Chou, Oxidation functional groups on graphene: structural and electronic properties. Phys. Rev. B. 82 (2010)
89.
go back to reference K.F. Mak, C.H. Lui, J. Shan, T.F. Heinz, Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy. Phys. Rev. Lett. 102, 256405 (2009)CrossRef K.F. Mak, C.H. Lui, J. Shan, T.F. Heinz, Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy. Phys. Rev. Lett. 102, 256405 (2009)CrossRef
90.
go back to reference R.R. Hartmann, J. Kono, M.E. Portnoi, Terahertz science and technology of carbon nanomaterials. Nanotechnology 25, 322001 (2014)CrossRef R.R. Hartmann, J. Kono, M.E. Portnoi, Terahertz science and technology of carbon nanomaterials. Nanotechnology 25, 322001 (2014)CrossRef
91.
go back to reference D. Sun, C. Divin, C. Berger, W.A. de Heer, P.N. First, T.B. Norris, Spectroscopic measurement of interlayer screening in multilayer epitaxial graphene. Phys. Rev. Lett. 104, 136802 (2010)CrossRef D. Sun, C. Divin, C. Berger, W.A. de Heer, P.N. First, T.B. Norris, Spectroscopic measurement of interlayer screening in multilayer epitaxial graphene. Phys. Rev. Lett. 104, 136802 (2010)CrossRef
92.
go back to reference G.X. Wang, B. Wang, J. Park, Y. Wang, B. Sun, J. Yao, Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation. Carbon 47, 3242–3246 (2009)CrossRef G.X. Wang, B. Wang, J. Park, Y. Wang, B. Sun, J. Yao, Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation. Carbon 47, 3242–3246 (2009)CrossRef
93.
go back to reference D.R. Lenski, M.S. Fuhrer, Raman and optical characterization of multilayer turbostratic graphene grown via chemical vapor deposition. J. Appl. Phys. 110, 013720–013720-4 (2011)CrossRef D.R. Lenski, M.S. Fuhrer, Raman and optical characterization of multilayer turbostratic graphene grown via chemical vapor deposition. J. Appl. Phys. 110, 013720–013720-4 (2011)CrossRef
94.
go back to reference R.W. Havener, C.J. Kim, L. Brown, J.W. Kevek, J.D. Sleppy, P.L. McEuen, J. Park, Hyperspectral imaging of structure and composition in atomically thin heterostructures. Nano Lett. 13, 3942–3946 (2013)CrossRef R.W. Havener, C.J. Kim, L. Brown, J.W. Kevek, J.D. Sleppy, P.L. McEuen, J. Park, Hyperspectral imaging of structure and composition in atomically thin heterostructures. Nano Lett. 13, 3942–3946 (2013)CrossRef
95.
go back to reference M. Hofmann, Y.P. Hsieh, K.W. Chang, H.G. Tsai, T.T. Chen, Dopant morphology as the factor limiting graphene conductivity. Sci. Report. 5, 17393 (2015) M. Hofmann, Y.P. Hsieh, K.W. Chang, H.G. Tsai, T.T. Chen, Dopant morphology as the factor limiting graphene conductivity. Sci. Report. 5, 17393 (2015)
96.
go back to reference A. Bosca, J. Pedros, J. Martinez, T. Palacios, F. Calle, Automatic graphene transfer system for improved material quality and efficiency. Sci. Report. 6, 21676 (2016) A. Bosca, J. Pedros, J. Martinez, T. Palacios, F. Calle, Automatic graphene transfer system for improved material quality and efficiency. Sci. Report. 6, 21676 (2016)
97.
go back to reference N.E. Leadbeater, R.J. Smith, Real-time monitoring of microwave-promoted Suzuki coupling reactions using in situ Raman spectroscopy. Org. Lett. 8, 4588–4591 (2006)CrossRef N.E. Leadbeater, R.J. Smith, Real-time monitoring of microwave-promoted Suzuki coupling reactions using in situ Raman spectroscopy. Org. Lett. 8, 4588–4591 (2006)CrossRef
98.
go back to reference J.R. Schmink, J.L. Holcomb, N.E. Leadbeater, Use of Raman spectroscopy as an in situ tool to obtain kinetic data for organic transformations. Chem. Eur. J. 14, 9943–9950 (2008)CrossRef J.R. Schmink, J.L. Holcomb, N.E. Leadbeater, Use of Raman spectroscopy as an in situ tool to obtain kinetic data for organic transformations. Chem. Eur. J. 14, 9943–9950 (2008)CrossRef
Metadata
Title
Optical Characterization of Graphene and Its Derivatives: An Experimentalist’s Perspective
Authors
Dinh-Tuan Nguyen
Ya-Ping Hsieh
Mario Hofmann
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-61651-3_2

Premium Partners