Skip to main content
Top

2020 | OriginalPaper | Chapter

72. Optical Coupling Sensitivity Study of Luminescent PV Devices Using Monte Carlo Ray-Tracing Model

Authors : Mehran Rafiee, Subhash Chandra, Hind Ahmed, Keith Barnham, Sarah J. McCormack

Published in: Renewable Energy and Sustainable Buildings

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The optimization of optical coupling between photovoltaic (PV) solar cells and luminescent devices such as luminescent solar concentrators (LSC) and luminescent downshifting (LDS) layers is important and can affect their performance significantly. An LSC of 60 × 60 × 3 mm and LDS of 100 × 100 × 0.01 mm both doped with CdSe/ZnS quantum dots (QDs) and coupled to PV solar cells have been modelled. The performance and optical coupling sensitivity of these luminescent PV (LPV) devices were studied by changing the air gap thickness (G) between the luminescent layer and PV solar cell using a Monte Carlo Ray-Tracing (MCRT) algorithm. The host materials were epoxy and poly (methyl methacrylate) (PMMA) polymers for the LSC and LDS, respectively, with a refractive index of 1.5. LPV devices were irradiated by standard AM1.5 global solar radiation. The highest optical efficiency and solar concentration ratio obtained for the LSC device were 2.8% and 56% respectively. Both were decreased to 2.2% and 43% when G was increased from 0 to 0.5 mm. For G = 0.5–2 mm, the optical efficiency and solar concentration ratio decreased to 1.85% and 36%, respectively. In the LDS device, an optical efficiency of 82% was achieved when there was no air gap between the luminescent device and the PV solar cell. Efficiency dropped to 76% when G increased to 0.1 mm and further decreased to 66% for G = 2 mm. The total performance deduction (ΔP) was respectively 37% and 19% for LSC and LDS when G increased from 0 to 2 mm which showed that the LSC was more sensitive than the LDS to optical coupling.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Chandra S, Doran J, Mccormack S, Kennedy M, Chatten A (2012) Enhanced quantum dot emission for luminescent solar concentrators using plasmonic interaction. Sol Energy Mater Sol Cells 98:385–390CrossRef Chandra S, Doran J, Mccormack S, Kennedy M, Chatten A (2012) Enhanced quantum dot emission for luminescent solar concentrators using plasmonic interaction. Sol Energy Mater Sol Cells 98:385–390CrossRef
2.
go back to reference Chatten AJ, Farrell DJ, Bose R, Dixon A, Poelking C, Gödel KC, Mazzer M, Barnham, KW (2011) Luminescent and geometric concentrators for building integrated photovoltaics. Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE. IEEE, 000852-000857 Chatten AJ, Farrell DJ, Bose R, Dixon A, Poelking C, Gödel KC, Mazzer M, Barnham, KW (2011) Luminescent and geometric concentrators for building integrated photovoltaics. Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE. IEEE, 000852-000857
3.
go back to reference Chandra S, Ahmed H, Rafiee M, Mccormack SJ (2017) Plasmonic quantum dot solar concentrator. SPIE Photonics USA, 2017 Chandra S, Ahmed H, Rafiee M, Mccormack SJ (2017) Plasmonic quantum dot solar concentrator. SPIE Photonics USA, 2017
4.
go back to reference Ahmed H (2014) Materials characterization and plasmonic interaction in enhanced luminescent down-shifting layers for photovoltaic devices. PhD, Dublin Institute of Technology Ahmed H (2014) Materials characterization and plasmonic interaction in enhanced luminescent down-shifting layers for photovoltaic devices. PhD, Dublin Institute of Technology
5.
go back to reference Hovel H, Hodgson R, Woodall J (1979) The effect of fluorescent wavelength shifting on solar cell spectral response. Sol Energy Mater 2:19–29CrossRef Hovel H, Hodgson R, Woodall J (1979) The effect of fluorescent wavelength shifting on solar cell spectral response. Sol Energy Mater 2:19–29CrossRef
6.
go back to reference Aste N, Adhikari R, Del Pero C (2011) Photovoltaic technology for renewable electricity production: towards net zero energy buildings. 2011 International Conference on Clean Electrical Power (ICCEP). IEEE, p 446–450 Aste N, Adhikari R, Del Pero C (2011) Photovoltaic technology for renewable electricity production: towards net zero energy buildings. 2011 International Conference on Clean Electrical Power (ICCEP). IEEE, p 446–450
7.
go back to reference Debije MG, Verbunt PP (2012) Thirty years of luminescent solar concentrator research: solar energy for the built environment. Adv Energy Mater 2:12–35CrossRef Debije MG, Verbunt PP (2012) Thirty years of luminescent solar concentrator research: solar energy for the built environment. Adv Energy Mater 2:12–35CrossRef
8.
go back to reference Pagliaro M, Ciriminna R, Palmisano G (2010) BIPV: merging the photovoltaic with the construction industry. Prog Photovolt Res Appl 18:61–72CrossRef Pagliaro M, Ciriminna R, Palmisano G (2010) BIPV: merging the photovoltaic with the construction industry. Prog Photovolt Res Appl 18:61–72CrossRef
9.
go back to reference Ahmed H, Doran J, Mccormack S (2016) Increased short-circuit current density and external quantum efficiency of silicon and dye sensitised solar cells through plasmonic luminescent down-shifting layers. Sol Energy 126:146–155CrossRef Ahmed H, Doran J, Mccormack S (2016) Increased short-circuit current density and external quantum efficiency of silicon and dye sensitised solar cells through plasmonic luminescent down-shifting layers. Sol Energy 126:146–155CrossRef
10.
go back to reference Ahmed H, Mccormack S, Doran J (2016) External quantum efficiency improvement with luminescent downshifting layers: experimental and modelling. Int J Spectrosc 2016:8543475CrossRef Ahmed H, Mccormack S, Doran J (2016) External quantum efficiency improvement with luminescent downshifting layers: experimental and modelling. Int J Spectrosc 2016:8543475CrossRef
11.
go back to reference AHMED H, MCCORMACK S, DORAN J (2017) Plasmonic luminescent down shifting layers for the enhancement of CdTe mini-modules performance. Sol Energy 141:242–248CrossRef AHMED H, MCCORMACK S, DORAN J (2017) Plasmonic luminescent down shifting layers for the enhancement of CdTe mini-modules performance. Sol Energy 141:242–248CrossRef
12.
go back to reference Aste N, Tagliabue LC, Palladino P, Testa D (2015) Integration of a luminescent solar concentrator: effects on daylight, correlated color temperature, illuminance level and color rendering index. Sol Energy 114:174–182CrossRef Aste N, Tagliabue LC, Palladino P, Testa D (2015) Integration of a luminescent solar concentrator: effects on daylight, correlated color temperature, illuminance level and color rendering index. Sol Energy 114:174–182CrossRef
13.
go back to reference Chandra S (2013) Approach to plasmonic luminescent solar concentration. PhD, Dublin Institute of Technology Chandra S (2013) Approach to plasmonic luminescent solar concentration. PhD, Dublin Institute of Technology
14.
go back to reference Gajic M, Lisi F, Kirkwood N, Smith TA, Mulvaney P, Rosengarten G (2017) Circular luminescent solar concentrators. Sol Energy 150:30–37CrossRef Gajic M, Lisi F, Kirkwood N, Smith TA, Mulvaney P, Rosengarten G (2017) Circular luminescent solar concentrators. Sol Energy 150:30–37CrossRef
15.
go back to reference Kocsis L, Herman P, Eke A (2006) The modified Beer–Lambert law revisited. Phys Med Biol 51:N91CrossRef Kocsis L, Herman P, Eke A (2006) The modified Beer–Lambert law revisited. Phys Med Biol 51:N91CrossRef
16.
go back to reference Glassner AS (Ed.) (1989) An introduction to ray tracing. Elsevier. Glassner AS (Ed.) (1989) An introduction to ray tracing. Elsevier.
17.
go back to reference Weber W, Lambe J (1976) Luminescent greenhouse collector for solar radiation. Appl Opt 15:2299–2300CrossRef Weber W, Lambe J (1976) Luminescent greenhouse collector for solar radiation. Appl Opt 15:2299–2300CrossRef
18.
go back to reference Jacques SL, Wang L (1995) Monte Carlo modeling of light transport in tissues. In: Welch AJ, Van Gemert MJC (eds) Optical-thermal response of laser-irradiated tissue. Springer, Boston, MA Jacques SL, Wang L (1995) Monte Carlo modeling of light transport in tissues. In: Welch AJ, Van Gemert MJC (eds) Optical-thermal response of laser-irradiated tissue. Springer, Boston, MA
19.
go back to reference Joy DC (1995) Monte Carlo modeling for electron microscopy and microanalysis. Oxford University Press, New York Joy DC (1995) Monte Carlo modeling for electron microscopy and microanalysis. Oxford University Press, New York
20.
go back to reference Şahin D, Ilan B (2013) Radiative transport theory for light propagation in luminescent media. JOSA A 30:813–820CrossRef Şahin D, Ilan B (2013) Radiative transport theory for light propagation in luminescent media. JOSA A 30:813–820CrossRef
21.
go back to reference Şahin D, Ilan B, Kelley DF (2011) Monte-Carlo simulations of light propagation in luminescent solar concentrators based on semiconductor nanoparticles. J Appl Phys 110:033108CrossRef Şahin D, Ilan B, Kelley DF (2011) Monte-Carlo simulations of light propagation in luminescent solar concentrators based on semiconductor nanoparticles. J Appl Phys 110:033108CrossRef
Metadata
Title
Optical Coupling Sensitivity Study of Luminescent PV Devices Using Monte Carlo Ray-Tracing Model
Authors
Mehran Rafiee
Subhash Chandra
Hind Ahmed
Keith Barnham
Sarah J. McCormack
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-18488-9_72