Skip to main content
Top

2022 | OriginalPaper | Chapter

8. Optical Frequency Comb Generation Mechanism and Application

Authors : Jianjun Zhang, Jing Li

Published in: Satellite Photoelectric Sensing Technology

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The optical frequency comb has been widely studied by researchers as one of the 2005 Nobel Prize in Physics. The performance of the optical frequency comb in the frequency domain is such that the spacing between each of its frequency components is equal, in the form of a comb we use every day. Due to its unique frequency distribution, the optical frequency comb provides us with a bridge between optical and RF. The optical frequency comb converts the unknown optical frequency information into radio frequency information, analyzes and controls the unknown parameters by analyzing the radio frequency information. Applications include optical frequency measurement, high-quality optical clock source generation, gas molecular measurement, ultra-fast optical signal processing and photon arbitrary waveform generation.
The main contents of this chapter are:
(1) Optical frequency comb generation method
  • Optical frequency comb generation is based on mode-locked laser
  • It is a single modulator method
  • This method is based on cascade of intensity modulation and phase modulation
  • Optical frequency comb generation of optical cavity is based on phase modulation
  • Generation of optical frequency comb is based on self-phase modulation in optical fiber
  • It is also based on micro resonator cavity
(2) Experiments to generate broadband flat optical frequency combs with high frequency intervals
  • Generation of broadband flat optical frequency comb is based on RFS
  • Principle of an RFS-based optical frequency comb
(3) Generation technology of bi-coherent optical frequency comb based on time lens method
  • Principle of optical frequency comb generated by time lens method
  • Experimental device for generating coherent optical frequency combs

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S.A. Diddams, D.J. Jones, J. Ye et al., Direct link between microwave and optical frequencies with a 300THz femtosecond laser comb. Phys. Rev. Lett. 84(22), 5102-5105P (2000)CrossRef S.A. Diddams, D.J. Jones, J. Ye et al., Direct link between microwave and optical frequencies with a 300THz femtosecond laser comb. Phys. Rev. Lett. 84(22), 5102-5105P (2000)CrossRef
2.
go back to reference S.A. Diddams, T. Udem, J.C. Bergquist et al., An optical clock based on a single trapped 199hg+ Ion. Science 293(5531), 825-828P (2001)CrossRef S.A. Diddams, T. Udem, J.C. Bergquist et al., An optical clock based on a single trapped 199hg+ Ion. Science 293(5531), 825-828P (2001)CrossRef
3.
go back to reference M.J. Thorpe, K.D. Moll, R.J. Jones et al., Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science 311(5767), 1595-1599P (2006)CrossRef M.J. Thorpe, K.D. Moll, R.J. Jones et al., Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science 311(5767), 1595-1599P (2006)CrossRef
4.
go back to reference S.A. Diddams, L. Hollberg, V. Mbele, Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature 445(7128), 627-630P (2007)CrossRef S.A. Diddams, L. Hollberg, V. Mbele, Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature 445(7128), 627-630P (2007)CrossRef
5.
go back to reference Y.V. Baklanov, V.P. Chebotayev, Narrow resonances of two-photon absorption of super-narrow pulses in a gas. Appl. Phys. 12(1), 97-99P (1977)CrossRef Y.V. Baklanov, V.P. Chebotayev, Narrow resonances of two-photon absorption of super-narrow pulses in a gas. Appl. Phys. 12(1), 97-99P (1977)CrossRef
6.
go back to reference R. Wu, V.R. Supradeepa, C.M. Long et al., Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms. Opt. Lett. 35(19), 3234-3236P (2010)CrossRef R. Wu, V.R. Supradeepa, C.M. Long et al., Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms. Opt. Lett. 35(19), 3234-3236P (2010)CrossRef
7.
go back to reference M. Kourogi, K. Nakagawa, M. Ohtsu, Wide-span optical frequency comb generator for accurate optical frequency difference measurement. IEEE J. Quantum Electron. 29(10), 2693-2701P (1993)CrossRef M. Kourogi, K. Nakagawa, M. Ohtsu, Wide-span optical frequency comb generator for accurate optical frequency difference measurement. IEEE J. Quantum Electron. 29(10), 2693-2701P (1993)CrossRef
8.
go back to reference K. Imai, M. Kourogi, M. Ohtsu, 30 THz span optical frequency comb generation by self-phase modulation in an optical fiber. IEEE J. Quantum Electron. 34(1), 54-60P (1993)CrossRef K. Imai, M. Kourogi, M. Ohtsu, 30 THz span optical frequency comb generation by self-phase modulation in an optical fiber. IEEE J. Quantum Electron. 34(1), 54-60P (1993)CrossRef
9.
go back to reference Del’Haye P., Schliesser A., Arcizet O., et al, Optical frequency comb generation from a monolithic microresonator, Nature, 2007, 450: 1214–1217P. Del’Haye P., Schliesser A., Arcizet O., et al, Optical frequency comb generation from a monolithic microresonator, Nature, 2007, 450: 1214–1217P.
Metadata
Title
Optical Frequency Comb Generation Mechanism and Application
Authors
Jianjun Zhang
Jing Li
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-89843-4_8