Skip to main content
Top

2009 | OriginalPaper | Chapter

8. Optical Transmitter Design

Author : Mohammad Azadeh

Published in: Fiber Optics Engineering

Publisher: Springer US

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter we discuss design issues related to optical transmitters. An optical transmitter acts as the interface between the electrical and optical domains by converting electrical signals to optical signals. For digital transmitters, the optical output must conform to specifications such as optical power, extinction ratio, rise and fall time, and jitter. In analog transmitters, the optical output must faithfully regenerate the input in terms of linearity, bandwidth, phase delay, etc. It is the responsibility of the designer to ensure that the transmitter meets all the relevant requirements for the intended application of the design.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Part of the reason for difficulty of ER control is that ER itself is a quantity hard to measure (and even define) beyond a limited accuracy. See Chapter 11 for further discussion of ER measurements.
 
Literature
[1]
go back to reference H. Stange, “Optical subassemblies,” in Handbook of Fiber Optic Data Communication , Edited by C. DeCusatis, 2nd Ed., Academic Press, New York, 2002 H. Stange, “Optical subassemblies,” in Handbook of Fiber Optic Data Communication , Edited by C. DeCusatis, 2nd Ed., Academic Press, New York, 2002
[2]
go back to reference D. Kim, J. Shim, Y. C. Keh, and M. Park, “Design and fabrication of a transmitter optical subassembly (TOSA) in 10-Gb/s small-form-factor pluggable (XFP) transceiver,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 12, pp. 776–782, 2006CrossRef D. Kim, J. Shim, Y. C. Keh, and M. Park, “Design and fabrication of a transmitter optical subassembly (TOSA) in 10-Gb/s small-form-factor pluggable (XFP) transceiver,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 12, pp. 776–782, 2006CrossRef
[3]
go back to reference M. S. Cohen et al., “Low-cost fabrication of optical subassemblies,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part B: Advanced Packaging, Vol. 20, pp. 256–263, 1997CrossRef M. S. Cohen et al., “Low-cost fabrication of optical subassemblies,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part B: Advanced Packaging, Vol. 20, pp. 256–263, 1997CrossRef
[4]
go back to reference T. Shih et al., “High-performance and low-cost 10-Gb/s bidirectional optical subassembly modules,” Journal of Lightwave Technology, Vol. 25, pp. 3488–3494, 2007CrossRef T. Shih et al., “High-performance and low-cost 10-Gb/s bidirectional optical subassembly modules,” Journal of Lightwave Technology, Vol. 25, pp. 3488–3494, 2007CrossRef
[5]
go back to reference L. Coldren and S. W Corzine, Diode Lasers and Photonic Integrated Circuits , John Wiley & Sons, New York, 1995 L. Coldren and S. W Corzine, Diode Lasers and Photonic Integrated Circuits , John Wiley & Sons, New York, 1995
[6]
go back to reference Y. Yoshida et al., “Analysis of characteristic temperature for InGaAsP BH laser with p-n-p-n blocking layers using two-dimensional device simulator ,” IEEE Journal of Quantum Electronics, Vol. 34, pp. 1257–1262, 1998CrossRef Y. Yoshida et al., “Analysis of characteristic temperature for InGaAsP BH laser with p-n-p-n blocking layers using two-dimensional device simulator ,” IEEE Journal of Quantum Electronics, Vol. 34, pp. 1257–1262, 1998CrossRef
[7]
go back to reference T. Higashi, T. Yamamoto, S. Ogita, and M. Kobayashi, “Experimental analysis of characteristic temperature in quantum-well semiconductor lasers,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 3, pp. 513–521, 1997CrossRef T. Higashi, T. Yamamoto, S. Ogita, and M. Kobayashi, “Experimental analysis of characteristic temperature in quantum-well semiconductor lasers,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 3, pp. 513–521, 1997CrossRef
[8]
go back to reference D. M. Gvozdic and A. Schlachetzki, “Influence of temperature and optical confinement on threshold current of an InGaAs/InP quantum wire laser,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 9, pp. 732–735, 2003CrossRef D. M. Gvozdic and A. Schlachetzki, “Influence of temperature and optical confinement on threshold current of an InGaAs/InP quantum wire laser,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 9, pp. 732–735, 2003CrossRef
[9]
go back to reference R. Sobiestianskas et al., “Experimental study on the intrinsic response, optical and electrical parameters of 1.55-μm DFB BH laser diodes during aging tests,” IEEE Transactions on Device and materials, Vol. 5, pp. 659–664, 2005CrossRef R. Sobiestianskas et al., “Experimental study on the intrinsic response, optical and electrical parameters of 1.55-μm DFB BH laser diodes during aging tests,” IEEE Transactions on Device and materials, Vol. 5, pp. 659–664, 2005CrossRef
[10]
go back to reference J. W. Tomm et al., “Monitoring of aging properties of AlGaAs high-power laser arrays,” Journal of Applied Physics, Vol. 81, pp. 2059–2063, 1997CrossRef J. W. Tomm et al., “Monitoring of aging properties of AlGaAs high-power laser arrays,” Journal of Applied Physics, Vol. 81, pp. 2059–2063, 1997CrossRef
[11]
go back to reference L. Day-Uei et al., “A 3.8-Gb/s CMOS laser driver with automatic power control using thermistors,” IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2546–2549, 2007 L. Day-Uei et al., “A 3.8-Gb/s CMOS laser driver with automatic power control using thermistors,” IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2546–2549, 2007
[12]
go back to reference Application note, “Selecting and using thermistors for temperature control,” ILX Lightwave. Available from www.ilx.com Application note, “Selecting and using thermistors for temperature control,” ILX Lightwave. Available from www.​ilx.​com
[13]
go back to reference W. R. Smith, “Mathematical modeling of thermal runaway in semiconductor laser operation,” Journal of Applied Physics, Vol. 87, pp. 8276–8285, 2000CrossRef W. R. Smith, “Mathematical modeling of thermal runaway in semiconductor laser operation,” Journal of Applied Physics, Vol. 87, pp. 8276–8285, 2000CrossRef
[14]
go back to reference R. Schatza and C. G. Bethea, “Steady state model for facet heating leading to thermal runaway in semiconductor lasers,” Journal of Applied Physics, Vol. 76, pp. 2509–2521, 1994CrossRef R. Schatza and C. G. Bethea, “Steady state model for facet heating leading to thermal runaway in semiconductor lasers,” Journal of Applied Physics, Vol. 76, pp. 2509–2521, 1994CrossRef
[15]
go back to reference P. G. Eliseev, “Optical strength of semiconductor laser materials,” Progress in Quantum Electronics, Vol. 20, pp. 1–82, 1996CrossRef P. G. Eliseev, “Optical strength of semiconductor laser materials,” Progress in Quantum Electronics, Vol. 20, pp. 1–82, 1996CrossRef
[16]
go back to reference S. Galal and B. Razavi, “10-Gb/s limiting amplifier and laser/modulator driver in 0.18-μm CMOS technology,” IEEE Journal of Solid-State Circuits, Vol. 38, pp. 2138–2146, 2003CrossRef S. Galal and B. Razavi, “10-Gb/s limiting amplifier and laser/modulator driver in 0.18-μm CMOS technology,” IEEE Journal of Solid-State Circuits, Vol. 38, pp. 2138–2146, 2003CrossRef
[17]
go back to reference R. Schmid et al., “SiGe driver circuit with high output with high output amplitude operating up to 23-Gb/s,” Journal of Solid-State Circuits, Vol. 34, pp. 886–891, 1999CrossRef R. Schmid et al., “SiGe driver circuit with high output with high output amplitude operating up to 23-Gb/s,” Journal of Solid-State Circuits, Vol. 34, pp. 886–891, 1999CrossRef
[18]
go back to reference J. W. Fattaruso and B. Sheahan, “A 3-V 4.25-Gb/s laser driver with 0.4-V output voltage compliance,” IEEE Journal of Solid-State Circuits, Vol. 41, pp. 1930–1937, 2006CrossRef J. W. Fattaruso and B. Sheahan, “A 3-V 4.25-Gb/s laser driver with 0.4-V output voltage compliance,” IEEE Journal of Solid-State Circuits, Vol. 41, pp. 1930–1937, 2006CrossRef
[19]
go back to reference H. M. Rein et al., “A versatile Si-bipolar driver circuit with high output voltage swing for external and direct laser modulation in 10-Gb/s optical fiber links,” Journal of Solid-State Circuits, Vol. 29, pp. 1014–1021, 1994CrossRef H. M. Rein et al., “A versatile Si-bipolar driver circuit with high output voltage swing for external and direct laser modulation in 10-Gb/s optical fiber links,” Journal of Solid-State Circuits, Vol. 29, pp. 1014–1021, 1994CrossRef
[20]
go back to reference HFDN-18, application note, “The MAX3865 laser driver with automatic modulation control,” Maxim, 2008. Avilable from www.maxim-ic.com HFDN-18, application note, “The MAX3865 laser driver with automatic modulation control,” Maxim, 2008. Avilable from www.​maxim-ic.​com
[21]
go back to reference L. Chen et al., “All-optical mm-wave generation by using direct-modulation DFB laser and external modulator,” Microwave and Optical Technology Letters, Vol. 49, pp. 1265–1267, 2007CrossRef L. Chen et al., “All-optical mm-wave generation by using direct-modulation DFB laser and external modulator,” Microwave and Optical Technology Letters, Vol. 49, pp. 1265–1267, 2007CrossRef
[22]
go back to reference J. X. Ma et al., “Optical mm-wave generation by using external modulator based on optical carrier suppression,” Optics Communications, Vol. 268, pp. 51–57, 2006CrossRef J. X. Ma et al., “Optical mm-wave generation by using external modulator based on optical carrier suppression,” Optics Communications, Vol. 268, pp. 51–57, 2006CrossRef
[23]
go back to reference S. Hisatake et al., “Generation of flat power-envelope terahertz-wide modulation sidebands from a continuous-wave laser based on an external electro-optic phase modulator,” Optics Letters, Vol. 30, pp. 777–779, 2005CrossRef S. Hisatake et al., “Generation of flat power-envelope terahertz-wide modulation sidebands from a continuous-wave laser based on an external electro-optic phase modulator,” Optics Letters, Vol. 30, pp. 777–779, 2005CrossRef
[24]
go back to reference H. Yang et al., “Measurement for waveform and chirping of optical pulses generated by directly modulated DFB laser and external EA modulator,” Optics and Laser Technology, Vol. 37, pp. 55–60, 2005 H. Yang et al., “Measurement for waveform and chirping of optical pulses generated by directly modulated DFB laser and external EA modulator,” Optics and Laser Technology, Vol. 37, pp. 55–60, 2005
[25]
go back to reference S. H. Park et al., “Burst-mode optical transmitter with DC-coupled burst-enable signal for 2.5-Gb/s GPON system,” Microelectronics Journal, Vol. 39, pp. 112–116, 2008CrossRef S. H. Park et al., “Burst-mode optical transmitter with DC-coupled burst-enable signal for 2.5-Gb/s GPON system,” Microelectronics Journal, Vol. 39, pp. 112–116, 2008CrossRef
[26]
go back to reference Y. H. Oh et al., “A CMOS burst-mode optical transmitter for 1.25 Gb/s Ethernet PON applications,” IEEE Transactions on Circuits and Systems II-Express Briefs, Vol. 52, pp. 780–783, 2005CrossRef Y. H. Oh et al., “A CMOS burst-mode optical transmitter for 1.25 Gb/s Ethernet PON applications,” IEEE Transactions on Circuits and Systems II-Express Briefs, Vol. 52, pp. 780–783, 2005CrossRef
[27]
go back to reference D. Verhulst et al., “A fast and intelligent automatic power control for a GPON burst-mode optical transmitter,” IEEE Photonics Technology Letters, Vol. 17, pp. 2439–2441, 2005CrossRef D. Verhulst et al., “A fast and intelligent automatic power control for a GPON burst-mode optical transmitter,” IEEE Photonics Technology Letters, Vol. 17, pp. 2439–2441, 2005CrossRef
[28]
go back to reference J. Bauwelinck et al., “DC-coupled burst-mode transmitter for 1.25 Gbit/s upstream PON,” Electronics Letters, Vol. 40, pp. 501–502, 2004CrossRef J. Bauwelinck et al., “DC-coupled burst-mode transmitter for 1.25 Gbit/s upstream PON,” Electronics Letters, Vol. 40, pp. 501–502, 2004CrossRef
[29]
go back to reference B. Young, Digital Signal Integrity , Prentice Hall, Englewood Cliffs, NJ, 2001 B. Young, Digital Signal Integrity , Prentice Hall, Englewood Cliffs, NJ, 2001
[30]
go back to reference H. W. Ott, Noise Reduction Techniques in Electronic Systems , 2nd Ed., Wiley, New York, 1988 H. W. Ott, Noise Reduction Techniques in Electronic Systems , 2nd Ed., Wiley, New York, 1988
[31]
go back to reference M. I. Montrose, EMC and the Printed Circuit Board Design: Theory and Layout Made Simple , IEEE Press, Piseataway, NJ, 1998CrossRef M. I. Montrose, EMC and the Printed Circuit Board Design: Theory and Layout Made Simple , IEEE Press, Piseataway, NJ, 1998CrossRef
Metadata
Title
Optical Transmitter Design
Author
Mohammad Azadeh
Copyright Year
2009
Publisher
Springer US
DOI
https://doi.org/10.1007/978-1-4419-0304-4_8