Skip to main content
Top
Published in: Soft Computing 12/2016

23-07-2015 | Methodologies and Application

Optimal design of adaptive neuro-fuzzy inference system using genetic algorithm for electricity demand forecasting in Iranian industry

Author: Shahram Mollaiy-Berneti

Published in: Soft Computing | Issue 12/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Demand planning for industrial’s electricity consumption is an important factor to efficiently plan the generation and distribution of power utilities. However, this can only be possible if the demand is predicted accurately. Recent advancement in adaptive neuro-fuzzy inference system aimed at mapping input to output for highly non-linear processes such as energy management field, provide reliable approach to forecast energy demand. Despite the wide range of applications and flexibility of adaptive neuro-fuzzy inference system, complexity of the rule base is featured with certain limitations associated with combinatorial explosion of rules, parameters and data. This paper proposes a hybrid procedure, subtractive clustering technique coupled with genetic algorithm, to develop adaptive neuro-fuzzy inference system. Genetic algorithm finds the optimum value of cluster radius which guaranteed the minimum number of rules and error. The empirical data regarding the industrial’s electricity demand in Iran from 1967 to 2011 are investigated to demonstrate the applicability and merits of the present method. The performance of hybrid approach is found to be better than that of conventional adaptive neuro-fuzzy inference system based on gird partitioning, fuzzy c-means, and subtractive clustering in terms of both accuracy and the number of rules.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Akdemir B, Çetinkaya N (2012) Long-term load forecasting based on adaptive neural fuzzy inference system using real energy data. Energy Proc 14:794–799CrossRef Akdemir B, Çetinkaya N (2012) Long-term load forecasting based on adaptive neural fuzzy inference system using real energy data. Energy Proc 14:794–799CrossRef
go back to reference Al-Ghandoor A, Samhouri M, Al-Hinti I, Jaber J, Al-Rawashdeh M (2012) Projection of future transport energy demand of Jordan using adaptive neuro-fuzzy technique. Energy 38:128–135CrossRef Al-Ghandoor A, Samhouri M, Al-Hinti I, Jaber J, Al-Rawashdeh M (2012) Projection of future transport energy demand of Jordan using adaptive neuro-fuzzy technique. Energy 38:128–135CrossRef
go back to reference Aliyari M Sh, Teshnehlab M, Sedigh AK (2007) A novel hybrid learning algorithm for tuning ANFIS parameters using adaptive weighted PSO. In: Proceedings of the sixth IEEE international conference on fuzzy systems Aliyari M Sh, Teshnehlab M, Sedigh AK (2007) A novel hybrid learning algorithm for tuning ANFIS parameters using adaptive weighted PSO. In: Proceedings of the sixth IEEE international conference on fuzzy systems
go back to reference Al-Shobaki S, Mohsen M (2008) Modeling and forecasting of electrical power demands for capacity planning. Energy Convers Manag 49(11):3367–3375CrossRef Al-Shobaki S, Mohsen M (2008) Modeling and forecasting of electrical power demands for capacity planning. Energy Convers Manag 49(11):3367–3375CrossRef
go back to reference Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Plenum Press, New YorkCrossRefMATH Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Plenum Press, New YorkCrossRefMATH
go back to reference Cárdenas JJ, Romeral L, Garcia A, Andrade F (2012) Load forecasting framework of electricity consumptions for an intelligent energy management system in the user-side. Expert Syst Appl 39(5):5557–5565CrossRef Cárdenas JJ, Romeral L, Garcia A, Andrade F (2012) Load forecasting framework of electricity consumptions for an intelligent energy management system in the user-side. Expert Syst Appl 39(5):5557–5565CrossRef
go back to reference Chen Y, Yang B, Abraham A, Peng L (2007) Automatic design of hierarchical Takagi–Sugeno type fuzzy systems using evolutionary algorithms. IEEE Trans Fuzzy Syst 15(3):385–397CrossRef Chen Y, Yang B, Abraham A, Peng L (2007) Automatic design of hierarchical Takagi–Sugeno type fuzzy systems using evolutionary algorithms. IEEE Trans Fuzzy Syst 15(3):385–397CrossRef
go back to reference Cheng CH, Wei LY (2010) One step-ahead ANFIS time series model for forecasting electricity loads. Optim Eng 2:303–317CrossRefMATH Cheng CH, Wei LY (2010) One step-ahead ANFIS time series model for forecasting electricity loads. Optim Eng 2:303–317CrossRefMATH
go back to reference Chiu S (1994) Fuzzy model identification based on cluster estimation. J Intell Fuzzy Syst 2(3):267–278 Chiu S (1994) Fuzzy model identification based on cluster estimation. J Intell Fuzzy Syst 2(3):267–278
go back to reference DeJong K (1988) Learning with genetic algorithms: an overview. Mach Learn 3:121–138 DeJong K (1988) Learning with genetic algorithms: an overview. Mach Learn 3:121–138
go back to reference Demirli K, Cheng SX, Muthukumaran P (2003) Subtractive clustering based modeling of job sequencing with parametric search. Fuzzy Sets Syst 137:235–270CrossRefMATHMathSciNet Demirli K, Cheng SX, Muthukumaran P (2003) Subtractive clustering based modeling of job sequencing with parametric search. Fuzzy Sets Syst 137:235–270CrossRefMATHMathSciNet
go back to reference Demuth BH, Beale M, Hagan MT (2007) Neural network toolbox 5 user’s guide. The MathWorks Incorporation, Natick Demuth BH, Beale M, Hagan MT (2007) Neural network toolbox 5 user’s guide. The MathWorks Incorporation, Natick
go back to reference Ekonomou L (2010) Greek long-term energy consumption prediction using artificial neural networks. Energy 35(2):512–517CrossRef Ekonomou L (2010) Greek long-term energy consumption prediction using artificial neural networks. Energy 35(2):512–517CrossRef
go back to reference Fadare DA (2009) Modelling of solar energy potential in Nigeria using an artificial neural network model. Appl Energy 86(9):1410–1422CrossRef Fadare DA (2009) Modelling of solar energy potential in Nigeria using an artificial neural network model. Appl Energy 86(9):1410–1422CrossRef
go back to reference Fogel DB (1995) Evolutionary computation: toward a new philosophy of machine intelligence. IEEE Press, New YorkMATH Fogel DB (1995) Evolutionary computation: toward a new philosophy of machine intelligence. IEEE Press, New YorkMATH
go back to reference Geem ZW, Roper WE (2009) Energy demand estimation of South Korea using artificial neural network. Energy Policy 37(10):4049–4054CrossRef Geem ZW, Roper WE (2009) Energy demand estimation of South Korea using artificial neural network. Energy Policy 37(10):4049–4054CrossRef
go back to reference Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, ReadingMATH Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, ReadingMATH
go back to reference Ho WH, Tsai JT, Lin BT, Chou JH (2009) Adaptive network-based fuzzy inference system for prediction of surface roughness in end milling process using hybrid Taguchi-genetic learning algorithm. Expert Syst Appl 36:3216–3222CrossRef Ho WH, Tsai JT, Lin BT, Chou JH (2009) Adaptive network-based fuzzy inference system for prediction of surface roughness in end milling process using hybrid Taguchi-genetic learning algorithm. Expert Syst Appl 36:3216–3222CrossRef
go back to reference Hong WC (2009) Electric load forecasting by support vector model. Appl Math Model 33:2444–2454CrossRefMATH Hong WC (2009) Electric load forecasting by support vector model. Appl Math Model 33:2444–2454CrossRefMATH
go back to reference Jang JSR (1993) ANFIS: adaptive network-based fuzzy inference systems. IEEE Trans Syst Man Cybern 23(3):665–685CrossRef Jang JSR (1993) ANFIS: adaptive network-based fuzzy inference systems. IEEE Trans Syst Man Cybern 23(3):665–685CrossRef
go back to reference Jang JSR (1996) Input selection for ANFIS Learning. In: Proceedings of IEEE international conference on fuzzy systems, New Orleans Jang JSR (1996) Input selection for ANFIS Learning. In: Proceedings of IEEE international conference on fuzzy systems, New Orleans
go back to reference Jang JSR, Gulley N (2000) Fuzzy logic toolbox: user’s guide. The Math Works Inc., Prentice-Hall Jang JSR, Gulley N (2000) Fuzzy logic toolbox: user’s guide. The Math Works Inc., Prentice-Hall
go back to reference Kumar U, Jain VK (2010) Time series models (grey-Markov, grey model with rolling mechanism and singular spectrum analysis) to forecast energy consumption in India. Energy 35(4):1709–1716CrossRefMathSciNet Kumar U, Jain VK (2010) Time series models (grey-Markov, grey model with rolling mechanism and singular spectrum analysis) to forecast energy consumption in India. Energy 35(4):1709–1716CrossRefMathSciNet
go back to reference Limanond T, Jomnonkwao S, Srikaew A (2011) Projection of future transport energy demand of Thailand. Energy Policy 33(5):2754–2763CrossRef Limanond T, Jomnonkwao S, Srikaew A (2011) Projection of future transport energy demand of Thailand. Energy Policy 33(5):2754–2763CrossRef
go back to reference Liu PY, Li HX (2004) Fuzzy neural network theory and application. World Scientific, Singapore, River EdgeCrossRefMATH Liu PY, Li HX (2004) Fuzzy neural network theory and application. World Scientific, Singapore, River EdgeCrossRefMATH
go back to reference MATLAB (2010) MATLAB Fuzzy logic toolbox reference manual, Version 7.10.0. The MathWorks Incorporation, Natick MATLAB (2010) MATLAB Fuzzy logic toolbox reference manual, Version 7.10.0. The MathWorks Incorporation, Natick
go back to reference Ministry of Energy (2013) Energy balance-sheet 2011. Energy report and statistics, Tehran, Iran [in Farsi] Ministry of Energy (2013) Energy balance-sheet 2011. Energy report and statistics, Tehran, Iran [in Farsi]
go back to reference Mollaiy-Berneti S (2013) A hybrid approach based on the combination of adaptive neuro-fuzzy inference system and imperialist competitive algorithm: oil flow rate of the wells prediction case study. Int J Comput Intell Syst 6(2):198–208CrossRef Mollaiy-Berneti S (2013) A hybrid approach based on the combination of adaptive neuro-fuzzy inference system and imperialist competitive algorithm: oil flow rate of the wells prediction case study. Int J Comput Intell Syst 6(2):198–208CrossRef
go back to reference Oliveira MV, Schirru R (2009) Applying particle swarm optimization algorithm for tuning a neuro-fuzzy inference system for sensor monitoring. Prog Nucl Energy 51:177–183CrossRef Oliveira MV, Schirru R (2009) Applying particle swarm optimization algorithm for tuning a neuro-fuzzy inference system for sensor monitoring. Prog Nucl Energy 51:177–183CrossRef
go back to reference Tavanir holding company (2012) Statistical report on 45 years activities of Iran electric power industry, Deputy of human resources and research, management of information technology and statistics Tavanir holding company (2012) Statistical report on 45 years activities of Iran electric power industry, Deputy of human resources and research, management of information technology and statistics
go back to reference Wang L, Yen J (1999) Extracting fuzzy rules for system modeling using a hybrid of genetic algorithms and Kalman filter. Fuzzy Sets Syst 101:353–362CrossRefMathSciNet Wang L, Yen J (1999) Extracting fuzzy rules for system modeling using a hybrid of genetic algorithms and Kalman filter. Fuzzy Sets Syst 101:353–362CrossRefMathSciNet
go back to reference Xia C, Wang J, McMenemy K (2010) Short, medium and long term load forecasting model and virtual load forecaster based on radial basis function neural networks. Int J Electr Power Energy Syst 32:743–750CrossRef Xia C, Wang J, McMenemy K (2010) Short, medium and long term load forecasting model and virtual load forecaster based on radial basis function neural networks. Int J Electr Power Energy Syst 32:743–750CrossRef
go back to reference Yager R, Filev D (1994) Generation of fuzzy rules by mountain clustering. J Intell Fuzzy Syst 2(3):209–219 Yager R, Filev D (1994) Generation of fuzzy rules by mountain clustering. J Intell Fuzzy Syst 2(3):209–219
go back to reference Ying LC, Pan MC (2008) Using adaptive network based fuzzy inference system to forecast regional electricity loads. Energy Convers Manag 49(2):205–211CrossRef Ying LC, Pan MC (2008) Using adaptive network based fuzzy inference system to forecast regional electricity loads. Energy Convers Manag 49(2):205–211CrossRef
go back to reference Zahedi G, Azizi S, Bahadori A, Elkamel A, Alwi SRW (2013) Electricity demand estimation using an adaptive neuro-fuzzy network: a case study from the Ontario province-Canada. Energy 49:323–328CrossRef Zahedi G, Azizi S, Bahadori A, Elkamel A, Alwi SRW (2013) Electricity demand estimation using an adaptive neuro-fuzzy network: a case study from the Ontario province-Canada. Energy 49:323–328CrossRef
go back to reference Zhang X, Mao Y (2009) The relationship between energy consumption and economic growth in china based on ANFIS, In: International workshop on intelligent systems and applications, ISA, Wuhan Zhang X, Mao Y (2009) The relationship between energy consumption and economic growth in china based on ANFIS, In: International workshop on intelligent systems and applications, ISA, Wuhan
go back to reference Zhang M, Mu H, Li G, Ning Y (2009) Forecasting the transport energy demand based on PLSR method in China. Energy 34(9):1396–1400CrossRef Zhang M, Mu H, Li G, Ning Y (2009) Forecasting the transport energy demand based on PLSR method in China. Energy 34(9):1396–1400CrossRef
Metadata
Title
Optimal design of adaptive neuro-fuzzy inference system using genetic algorithm for electricity demand forecasting in Iranian industry
Author
Shahram Mollaiy-Berneti
Publication date
23-07-2015
Publisher
Springer Berlin Heidelberg
Published in
Soft Computing / Issue 12/2016
Print ISSN: 1432-7643
Electronic ISSN: 1433-7479
DOI
https://doi.org/10.1007/s00500-015-1777-3

Other articles of this Issue 12/2016

Soft Computing 12/2016 Go to the issue

Premium Partner