Skip to main content
Top
Published in: Structural and Multidisciplinary Optimization 6/2014

01-12-2014 | INDUSTRIAL APPLICATION

Optimal design of commercial vehicle systems using analytical target cascading

Authors: Namwoo Kang, Michael Kokkolaras, Panos Y. Papalambros, Seungwon Yoo, Wookjin Na, Jongchan Park, Dieter Featherman

Published in: Structural and Multidisciplinary Optimization | Issue 6/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper presents an industrial application of the analytical target cascading methodology to optimal design of commercial vehicle systems. The design problems concern the suspension of a heavy-duty truck and the body structure of a small bus. The results provide valuable insights in the feasibility of system-level design targets and the adequacy of subproblem design spaces during product development.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
This is the case for both design examples and all levels presented in this paper.
 
2
2On an Intel i7 CPU 860@2.80GHz and 8.00GB RAM, one systemlevel function evaluation (i.e., Radioss simulation) takes 5 seconds on average, and the subproblem solution required 40 function evaluations on average; at the subsystem level, one Optistruct problem solution required 20 seconds on average. Consequently, one ATC iteration requires roughly 4 minutes.
 
3
On an Intel i7 CPU 860@2.80GHz and 8.00GB RAM, one system-level function evaluation (i.e., Radioss simulation) takes 7 minutes on average, and the subproblem solution required 50 function evaluations on average; at the subsystem level one function evaluation takes 12 seconds on average, and each of the two subproblems required 800 function evaluations on average; at the component level, computational cost is negligible. Consequently, one ATC iteration requires roughly half a day.
 
Literature
go back to reference Allison J, Walsh D, Kokkolaras M, Papalambros PY, Cartmell M (2006) Analytical target cascading in aircraft design. In: 44th AIAA Aerospace Sciences Meeting and Exhibit. Reno. AIAA- 2006-1325 Allison J, Walsh D, Kokkolaras M, Papalambros PY, Cartmell M (2006) Analytical target cascading in aircraft design. In: 44th AIAA Aerospace Sciences Meeting and Exhibit. Reno. AIAA- 2006-1325
go back to reference Blouin VY, Samuels HB, Fadel GM, Haque IU, Wagner JR (2004) Continuously variable transmission design for optimum vehicle performance by analytical target cascading. Int J Heavy Veh Syst 11(3–4):327–348CrossRef Blouin VY, Samuels HB, Fadel GM, Haque IU, Wagner JR (2004) Continuously variable transmission design for optimum vehicle performance by analytical target cascading. Int J Heavy Veh Syst 11(3–4):327–348CrossRef
go back to reference Choudhary R, Malkawi A, Papalambros PY (2005) Analytic target cascading in simulation-based building design. Autom Constr 14(4):551–568CrossRef Choudhary R, Malkawi A, Papalambros PY (2005) Analytic target cascading in simulation-based building design. Autom Constr 14(4):551–568CrossRef
go back to reference Han J, Papalambros PY (2010) A note on the convergence of analytical target cascading with infinite norms. ASME J Mech Des 132(3):034502 1–6CrossRef Han J, Papalambros PY (2010) A note on the convergence of analytical target cascading with infinite norms. ASME J Mech Des 132(3):034502 1–6CrossRef
go back to reference Kang N, Kokkolaras M, Papalambros PY (2013) Solving multiobjective optimization problem using quasi-separable MDO formulations and analytic target cascading. In: 10th World Congress on Structural and Multidisciplinary Optimization. Orlando Kang N, Kokkolaras M, Papalambros PY (2013) Solving multiobjective optimization problem using quasi-separable MDO formulations and analytic target cascading. In: 10th World Congress on Structural and Multidisciplinary Optimization. Orlando
go back to reference Kim HM(2001) Target cascading in optimal system design, Ph.D. Dissertation, Mechanical Engineering Dept., University of Michigan, Ann Arbor, MI Kim HM(2001) Target cascading in optimal system design, Ph.D. Dissertation, Mechanical Engineering Dept., University of Michigan, Ann Arbor, MI
go back to reference Kim HM, Kokkolaras M, Louca LS, Delagrammatikas GJ, Michelena NF, Filipi ZS, Papalambros PY, Stein JL, Assanis DN (2002) Target cascading in vehicle redesign: a class VI truck study. Int J Veh Des 29(3):199–225CrossRef Kim HM, Kokkolaras M, Louca LS, Delagrammatikas GJ, Michelena NF, Filipi ZS, Papalambros PY, Stein JL, Assanis DN (2002) Target cascading in vehicle redesign: a class VI truck study. Int J Veh Des 29(3):199–225CrossRef
go back to reference Kim HM,Michelena NF, Papalambros PY, Jiang T (2003a) Target cascading in optimal system design. ASME J Mech Des 125(3):474–480CrossRef Kim HM,Michelena NF, Papalambros PY, Jiang T (2003a) Target cascading in optimal system design. ASME J Mech Des 125(3):474–480CrossRef
go back to reference Kim HM, Rideout DG, Papalambros PY, Stein JL (2003b) Analytical target cascading in automotive vehicle design. ASME J Mech Des 125:481–489CrossRef Kim HM, Rideout DG, Papalambros PY, Stein JL (2003b) Analytical target cascading in automotive vehicle design. ASME J Mech Des 125:481–489CrossRef
go back to reference Kokkolaras M, Louca LS, Delagrammatikas GJ, Michelena NF, Filipi ZS, Papalambros PY, Stein JL, Assanis DN (2004) Simulation-based optimal design of heavy trucks by model-based decomposition: an extensive analytical target cascading case study. Int J Heavy Veh Syst 11(3-4):403–433CrossRef Kokkolaras M, Louca LS, Delagrammatikas GJ, Michelena NF, Filipi ZS, Papalambros PY, Stein JL, Assanis DN (2004) Simulation-based optimal design of heavy trucks by model-based decomposition: an extensive analytical target cascading case study. Int J Heavy Veh Syst 11(3-4):403–433CrossRef
go back to reference Lassiter JB, Wiecek MM, Andrighetti KR (2005) Lagrangian coordination and analytical target cascading: solving ATC-decomposed problems with Lagrangian duality. Optim Eng 6(3):361381CrossRefMathSciNet Lassiter JB, Wiecek MM, Andrighetti KR (2005) Lagrangian coordination and analytical target cascading: solving ATC-decomposed problems with Lagrangian duality. Optim Eng 6(3):361381CrossRefMathSciNet
go back to reference Li Z, Kokkolaras M, Papalambros P, Hu SJ (2008a) Product and process tolerance allocation in multi-station compliant assembly using analytical target cascading. ASME J Mech Des 130(9):091701 1–9CrossRef Li Z, Kokkolaras M, Papalambros P, Hu SJ (2008a) Product and process tolerance allocation in multi-station compliant assembly using analytical target cascading. ASME J Mech Des 130(9):091701 1–9CrossRef
go back to reference Li Y., Lu Z., Michalek J. J. (2008b) Diagonal quadratic approximation for parallelization of analytical target cascading. ASME J Mech Des 130(5):051402 111CrossRef Li Y., Lu Z., Michalek J. J. (2008b) Diagonal quadratic approximation for parallelization of analytical target cascading. ASME J Mech Des 130(5):051402 111CrossRef
go back to reference Michelena N, Park H, Papalambros PY (2003) Convergence properties of analytical target cascading. AIAA J 41(5):897–905CrossRef Michelena N, Park H, Papalambros PY (2003) Convergence properties of analytical target cascading. AIAA J 41(5):897–905CrossRef
go back to reference Tosserams S, Etman LFP, Papalambros PY, Rooda JE (2006) An augmented Lagrangian relaxation for analytical target cascading using the alternating directions method of multipliers. StructMultidiscip Optim 31(3):176–189CrossRefMATHMathSciNet Tosserams S, Etman LFP, Papalambros PY, Rooda JE (2006) An augmented Lagrangian relaxation for analytical target cascading using the alternating directions method of multipliers. StructMultidiscip Optim 31(3):176–189CrossRefMATHMathSciNet
go back to reference Tosserams S, Kokkolaras M, Etman LFP, Rooda JE (2010) A nonhierarchical formulation of analytical target cascading. ASME J Mech Des 132:051002 1–12CrossRef Tosserams S, Kokkolaras M, Etman LFP, Rooda JE (2010) A nonhierarchical formulation of analytical target cascading. ASME J Mech Des 132:051002 1–12CrossRef
go back to reference Wang W, Blouin VY, Gardenghi MK, Fadel GM, Wiecek MM, Sloop BC (2013) Cutting plane methods for analytical target cascading with augmented Lagrangian coordination. ASME J Mech Desi 135(10):104502 1–6 Wang W, Blouin VY, Gardenghi MK, Fadel GM, Wiecek MM, Sloop BC (2013) Cutting plane methods for analytical target cascading with augmented Lagrangian coordination. ASME J Mech Desi 135(10):104502 1–6
Metadata
Title
Optimal design of commercial vehicle systems using analytical target cascading
Authors
Namwoo Kang
Michael Kokkolaras
Panos Y. Papalambros
Seungwon Yoo
Wookjin Na
Jongchan Park
Dieter Featherman
Publication date
01-12-2014
Publisher
Springer Berlin Heidelberg
Published in
Structural and Multidisciplinary Optimization / Issue 6/2014
Print ISSN: 1615-147X
Electronic ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-014-1097-8

Other articles of this Issue 6/2014

Structural and Multidisciplinary Optimization 6/2014 Go to the issue

Premium Partners