Skip to main content
Top
Published in: Wireless Personal Communications 2/2021

26-01-2021

Optimal Power Allocation and Harvesting Duration for NOMA Systems in the Presence of Nakagami Channels

Authors: Nadhir Ben Halima, Hatem Boujemaa

Published in: Wireless Personal Communications | Issue 2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we derive and optimize the total throughput of non orthogonal multiple access (NOMA) with energy harvesting. The source S harvests energy from radio frequency signal received from node A. The source uses the harvested energy to transmit data to N NOMA users classified using instantaneous or average power of channel gains. We optimize the powers allocated to NOMA users and harvesting duration to maximize the total throughput. We also derive packet waiting time and total delays for all NOMA users. We optimize powers allocated to NOMA users and harvesting duration to minimize a combination of total delays of all users. Our results are valid for Nakagami channels with arbitrary positions of users.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Li, Q. C., Niu, H., Papathanassiou, A. T., & Wu, G. (2014). 5G network capacity: Key elements and technologies. IEEE Vehicular Technology Magazine, 9(1), 71–78.CrossRef Li, Q. C., Niu, H., Papathanassiou, A. T., & Wu, G. (2014). 5G network capacity: Key elements and technologies. IEEE Vehicular Technology Magazine, 9(1), 71–78.CrossRef
2.
go back to reference Saito, Y., Benjebbour, A., Kishiyama, Y., & Nakamura, T. (2013). System- level performance evaluation of downlink non-orthogonal multiple access (NOMA). In Proceedings of IEEE International Symposium Personal, Indoor Mobile Radio Communications (PIMRC), pp. 611–615. Saito, Y., Benjebbour, A., Kishiyama, Y., & Nakamura, T. (2013). System- level performance evaluation of downlink non-orthogonal multiple access (NOMA). In Proceedings of IEEE International Symposium Personal, Indoor Mobile Radio Communications (PIMRC), pp. 611–615.
3.
go back to reference Ding, Z., Peng, M., & Poor, H. V. (2015). Cooperative non-orthogonal multiple access in 5G systems. IEEE Communications Letters, 19(8), 1462–1465.CrossRef Ding, Z., Peng, M., & Poor, H. V. (2015). Cooperative non-orthogonal multiple access in 5G systems. IEEE Communications Letters, 19(8), 1462–1465.CrossRef
4.
go back to reference Ding, Z., Dai, H., & Poor, H. V. (2016). Relay selection for cooperative NOMA. IEEE Communications Letters, 5(4), 416–419.CrossRef Ding, Z., Dai, H., & Poor, H. V. (2016). Relay selection for cooperative NOMA. IEEE Communications Letters, 5(4), 416–419.CrossRef
5.
go back to reference Men, J., & Ge, J. (2015). Non-orthogonal multiple access for multiple-antenna relaying networks. IEEE Communications Letters, 19(10), 1686–1689.CrossRef Men, J., & Ge, J. (2015). Non-orthogonal multiple access for multiple-antenna relaying networks. IEEE Communications Letters, 19(10), 1686–1689.CrossRef
6.
go back to reference Niu, Y., Gao, C., Li, Y., Su, L., & Jin, D. (2016). Exploiting multi-hop relaying to overcome blockage in directional mmwave small cells. Journal of Communications and Networks, 18(3), 364–374.CrossRef Niu, Y., Gao, C., Li, Y., Su, L., & Jin, D. (2016). Exploiting multi-hop relaying to overcome blockage in directional mmwave small cells. Journal of Communications and Networks, 18(3), 364–374.CrossRef
7.
go back to reference Kim, J. B., & Lee, I. H. (2015). Non-orthogonal multiple access in coordinated direct and relay transmission. IEEE Communications Letters, 19(11), 2037–2040.CrossRef Kim, J. B., & Lee, I. H. (2015). Non-orthogonal multiple access in coordinated direct and relay transmission. IEEE Communications Letters, 19(11), 2037–2040.CrossRef
8.
go back to reference Zhong, C., & Zhang, Z. (2016). Non-orthogonal multiple access with co- operative full-duplex relaying. IEEE Communications Letters, 20(12), 2478–2481.CrossRef Zhong, C., & Zhang, Z. (2016). Non-orthogonal multiple access with co- operative full-duplex relaying. IEEE Communications Letters, 20(12), 2478–2481.CrossRef
9.
go back to reference Liu, Y., Ding, Z., Elkashlan, M., & Poor, H. V. (2016). Cooperative non-orthogonal multiple access with simultaneous wireless information and power transfer. IEEE Journal on Selected Areas in Communications, 34(4), 938–953.CrossRef Liu, Y., Ding, Z., Elkashlan, M., & Poor, H. V. (2016). Cooperative non-orthogonal multiple access with simultaneous wireless information and power transfer. IEEE Journal on Selected Areas in Communications, 34(4), 938–953.CrossRef
10.
go back to reference Varshney, L. (2008). Transporting information and energy simultaneously. In Proceedings of IEEE International Symposium on Information Theory (ISIT), Toronto, Canada, pp. 1612–1616. Varshney, L. (2008). Transporting information and energy simultaneously. In Proceedings of IEEE International Symposium on Information Theory (ISIT), Toronto, Canada, pp. 1612–1616.
11.
go back to reference Sun, H., Zhou, F., Hu, R. Q., & Hanzo, L. (2019). Robust beamforming design in a NOMA cognitive radio network relying on SWIPT. IEEE Journal on Selected Areas in Communications, 37(1), 142–155.CrossRef Sun, H., Zhou, F., Hu, R. Q., & Hanzo, L. (2019). Robust beamforming design in a NOMA cognitive radio network relying on SWIPT. IEEE Journal on Selected Areas in Communications, 37(1), 142–155.CrossRef
12.
go back to reference Liu, Y., Ding, Z., Elkashlan, M., & Yuan, J. (2016). Non-orthogonal multiple access in large-scale underlay cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(12), 10152–10157.CrossRef Liu, Y., Ding, Z., Elkashlan, M., & Yuan, J. (2016). Non-orthogonal multiple access in large-scale underlay cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(12), 10152–10157.CrossRef
13.
go back to reference Bhattacharjee, S., Acharya, T., & Bhattacharya, U. (2018). NOMA inspired multicasting in cognitive radio networks. IET Communications, 12(15), 1845–1853.CrossRef Bhattacharjee, S., Acharya, T., & Bhattacharya, U. (2018). NOMA inspired multicasting in cognitive radio networks. IET Communications, 12(15), 1845–1853.CrossRef
14.
go back to reference Zhou F., Chu Z., Sun, H., & Leung, V. C. M. (2018). Resource allocation for secure MISO-NOMA cognitive radios relying on SWIPT. In IEEE International Conference on Communications (ICC), pp. 1–6. Zhou F., Chu Z., Sun, H., & Leung, V. C. M. (2018). Resource allocation for secure MISO-NOMA cognitive radios relying on SWIPT. In IEEE International Conference on Communications (ICC), pp. 1–6.
15.
go back to reference Liu, M., Song, T., & Gui, G. (2018). Deep cognitive perspective: Resource allocation for NOMA based heterogeneous IoT with imperfect SIC. IEEE Internet of Things Journal, 6(2), 2885–2894.CrossRef Liu, M., Song, T., & Gui, G. (2018). Deep cognitive perspective: Resource allocation for NOMA based heterogeneous IoT with imperfect SIC. IEEE Internet of Things Journal, 6(2), 2885–2894.CrossRef
16.
go back to reference Xu, L., Zhou, Y., Wang, P., & Liu, W. (2018). Max–Min resource allocation for video transmission in NOMA-based cognitive wireless networks. IEEE Transactions on Communications, 66(11), 5804–5813.CrossRef Xu, L., Zhou, Y., Wang, P., & Liu, W. (2018). Max–Min resource allocation for video transmission in NOMA-based cognitive wireless networks. IEEE Transactions on Communications, 66(11), 5804–5813.CrossRef
17.
go back to reference Manglayev, T., Kizilirmak, R., Caglar, K., & Yau, H. (2018). GPU accelerated successive interference cancellation for NOMA uplink with user clustering. Wireless Personal Communications, 103, 2391–2400.CrossRef Manglayev, T., Kizilirmak, R., Caglar, K., & Yau, H. (2018). GPU accelerated successive interference cancellation for NOMA uplink with user clustering. Wireless Personal Communications, 103, 2391–2400.CrossRef
18.
go back to reference Panda, S. (2020). Joint user patterning and power control optimization of MIMO-NOMA systems. Wireless Personal Communications, 112, 2557–2573.CrossRef Panda, S. (2020). Joint user patterning and power control optimization of MIMO-NOMA systems. Wireless Personal Communications, 112, 2557–2573.CrossRef
19.
go back to reference Le, T. A., & Kong, H. Y. (2020). Effects of hardware impairment on the cooperative NOMA EH relaying network over Nakagami-m fading channels. Wireless Personal Communications, Online Published November. Le, T. A., & Kong, H. Y. (2020). Effects of hardware impairment on the cooperative NOMA EH relaying network over Nakagami-m fading channels. Wireless Personal Communications, Online Published November.
20.
go back to reference Reddy, B. S. K. (2020). Experimental validation of non-orthogonal multiple access (NOMA) technique using software defined radio. Wireless Personal Communications, Online Published November. Reddy, B. S. K. (2020). Experimental validation of non-orthogonal multiple access (NOMA) technique using software defined radio. Wireless Personal Communications, Online Published November.
21.
go back to reference Withers, C. S., & Nadarajah, S. (2013). On the product of gamma random variables. Quality & Quantity, 47, 545–552.CrossRef Withers, C. S., & Nadarajah, S. (2013). On the product of gamma random variables. Quality & Quantity, 47, 545–552.CrossRef
22.
go back to reference Xi, Y., Burr, A., Wei, J. B., & Grace, D. (2011). A general upper bound to evaluate packet error rate over quasi-static fading channels. IEEE Transactions on Wireless Communications, 10(5), 1373–1377.CrossRef Xi, Y., Burr, A., Wei, J. B., & Grace, D. (2011). A general upper bound to evaluate packet error rate over quasi-static fading channels. IEEE Transactions on Wireless Communications, 10(5), 1373–1377.CrossRef
23.
go back to reference Proakis, J. (2007). Digital communications (5th ed.). New York: Mac Graw-Hill.MATH Proakis, J. (2007). Digital communications (5th ed.). New York: Mac Graw-Hill.MATH
24.
go back to reference Vaughan, R. J., & Venables, W. N. (1972). Permanent expressions for order statistics densities. Journal of the Royal Statistical Society: Series B (Methodological), 34, 308–310.MathSciNetMATH Vaughan, R. J., & Venables, W. N. (1972). Permanent expressions for order statistics densities. Journal of the Royal Statistical Society: Series B (Methodological), 34, 308–310.MathSciNetMATH
25.
go back to reference Chan, W. C., Lu, T. C., & Chen, R. J. (1997). Pollaczek–Khinchin formula for the M/G/1 queue in discrete time with vacations. IEE Proceedings-Computers and Digital Techniques, 144(4), 222–226.CrossRef Chan, W. C., Lu, T. C., & Chen, R. J. (1997). Pollaczek–Khinchin formula for the M/G/1 queue in discrete time with vacations. IEE Proceedings-Computers and Digital Techniques, 144(4), 222–226.CrossRef
Metadata
Title
Optimal Power Allocation and Harvesting Duration for NOMA Systems in the Presence of Nakagami Channels
Authors
Nadhir Ben Halima
Hatem Boujemaa
Publication date
26-01-2021
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 2/2021
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-08116-9

Other articles of this Issue 2/2021

Wireless Personal Communications 2/2021 Go to the issue