Skip to main content
Top
Published in: Wireless Personal Communications 2/2021

27-02-2021

Packet Squeezing of Random Access with 5G Real-Time Services for Internet of Things

Author: Tai-Kuo Woo

Published in: Wireless Personal Communications | Issue 2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Random Access techniques are many, most of which are designed for a limited number of mobile nodes. However, in a 5G Internet of Things environment, the design of random access must accommodate a very large number of devices which are heterogeneous in nature, and packets are in general short and come in a variety of lengths. Variable lengths of short packets may waste bandwidth if each packet transmits at the beginning of a time slot. In this paper, packet squeezing allows for a packet to make a selection between aligning to the beginning and aligning to the ending of a time slot. Two or more nodes transmitting at the same time slot may not result in a collision if two conditions are met simultaneously. First, one node selects an alignment mode different from that of the remaining nodes. Secondly, the sum of the time durations of two “representative” packets is shorter than the duration of a time slot. The performance analysis demonstrates that the throughput gain due to the packet squeezing is significant. The gain of packet squeezing can be enhanced by time slot management, where a transmitting node randomly selects a set of points of Finite Projective Plane and transmits at the time slots corresponding to the points of the chosen set. Due to the rather uniform distribution of the transmitting nodes and fewer empty time slots, the gain of packet squeezing is further improved for the entire frame. Based on the simulation results and analysis, we have observed that the time slot management extends the range of packet arrival rate of peak throughput for packet squeezing. Lastly, we compare and contrast the combining of packet squeezing and time slot management with well-known random access protocols of IoT such as slotted ALOHA and NOMA, and simulate real systems to verify the results of performance analysis.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Al-Fuqaha, A., et al. (2015). Internet of Things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys and Tutorials, 17(4), 2347–2376.CrossRef Al-Fuqaha, A., et al. (2015). Internet of Things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys and Tutorials, 17(4), 2347–2376.CrossRef
2.
go back to reference Osseiran, et al. (2014). Scenarios for 5G Mobile and Wireless Communications: the Vision of the METIS project. IEEE Communications Magazine, 52(5), 26–35. Osseiran, et al. (2014). Scenarios for 5G Mobile and Wireless Communications: the Vision of the METIS project. IEEE Communications Magazine, 52(5), 26–35.
3.
go back to reference Shafi, M., et al. (2017). 5G: A tutorial overview of standards, trials, challenges, deployment, and practice. IEEE Journal on Selected Areas in Communications, 35(6), 1201–1221.CrossRef Shafi, M., et al. (2017). 5G: A tutorial overview of standards, trials, challenges, deployment, and practice. IEEE Journal on Selected Areas in Communications, 35(6), 1201–1221.CrossRef
4.
go back to reference Dawy, Z., et al. (2017). Toward massive machine type cellular communications. IEEE Wireless Communications, 24(1), 120–128.CrossRef Dawy, Z., et al. (2017). Toward massive machine type cellular communications. IEEE Wireless Communications, 24(1), 120–128.CrossRef
5.
go back to reference Ikpehai, A., et al. (2019). Low-power wide area network technologies for Internet-of-Things: A comparative review. IEEE Internet of Things Journal, 6(2). Ikpehai, A., et al. (2019). Low-power wide area network technologies for Internet-of-Things: A comparative review. IEEE Internet of Things Journal, 6(2).
6.
go back to reference Chen, H., et al. (2020). Age-of-Information dependent random access for massive IoT networks. INFOCOM 2020. Chen, H., et al. (2020). Age-of-Information dependent random access for massive IoT networks. INFOCOM 2020.
7.
go back to reference “Study on Scenarios and Requirements for Next Generation Access Technologies,” 3GPP, Sophia Antipolis, France, Rep. TR 38.913 V14.3.0, Jun. 2017. “Study on Scenarios and Requirements for Next Generation Access Technologies,” 3GPP, Sophia Antipolis, France, Rep. TR 38.913 V14.3.0, Jun. 2017.
8.
go back to reference Wang, Y., et al. (2017). A primer on 3GPP narrowband Internet of Things. IEEE Communications. Magazine, 55(3), 117–123.CrossRef Wang, Y., et al. (2017). A primer on 3GPP narrowband Internet of Things. IEEE Communications. Magazine, 55(3), 117–123.CrossRef
9.
go back to reference Navarro-Ortiz, J., et al. (2018). Integration of LoRaWAN and 4G/5G for the industrial Internet of Things. IEEE Communications Magazine, 56(2), 60–67.CrossRef Navarro-Ortiz, J., et al. (2018). Integration of LoRaWAN and 4G/5G for the industrial Internet of Things. IEEE Communications Magazine, 56(2), 60–67.CrossRef
10.
go back to reference Abramson, N. (1970). The ALOHA system: Another alternative for computer communications. In Proceedings of 1970 fall joint computer conference (Vol. 37, pp. 281–285). Abramson, N. (1970). The ALOHA system: Another alternative for computer communications. In Proceedings of 1970 fall joint computer conference (Vol. 37, pp. 281–285).
11.
go back to reference Abramson, N. (1977). The throughput of packet broadcasting channels. IEEE Transactions on Communications, 25(1), 117–128.CrossRef Abramson, N. (1977). The throughput of packet broadcasting channels. IEEE Transactions on Communications, 25(1), 117–128.CrossRef
12.
go back to reference Tegos, S. A., et al. (2020). Slotted ALOHA with NOMA for the next generation IoT. IEEE Transactions on Communications, 68(10), 6289–6301.CrossRef Tegos, S. A., et al. (2020). Slotted ALOHA with NOMA for the next generation IoT. IEEE Transactions on Communications, 68(10), 6289–6301.CrossRef
13.
go back to reference Lin, H., Kim, K. S., & Shin, W. S. (2020). Interference-aware opportunistic random access in dense IoT network. IEEE Access, 8, 93472–93486.CrossRef Lin, H., Kim, K. S., & Shin, W. S. (2020). Interference-aware opportunistic random access in dense IoT network. IEEE Access, 8, 93472–93486.CrossRef
14.
go back to reference Casini, E., Gaudenzi, R. D., & Herrero, O. D. R. (2007). Contention Resolution Diversity Slotted Aloha (CRDSA): An enhanced random access scheme for satellite access packet networks. IEEE Transactions on Wireless Communications, 6(4), 1408–1419.CrossRef Casini, E., Gaudenzi, R. D., & Herrero, O. D. R. (2007). Contention Resolution Diversity Slotted Aloha (CRDSA): An enhanced random access scheme for satellite access packet networks. IEEE Transactions on Wireless Communications, 6(4), 1408–1419.CrossRef
15.
go back to reference Liva, G. (2011). Graph-based analysis and optimization of contention resolution diversity slotted ALOHA. IEEE Transactions on Communications, 59(2), 477–487.CrossRef Liva, G. (2011). Graph-based analysis and optimization of contention resolution diversity slotted ALOHA. IEEE Transactions on Communications, 59(2), 477–487.CrossRef
16.
go back to reference Narayanan, K. R., & Pfister, H. D. (2012). Iterative collision resolution for slotted ALOHA: An Optimal Uncoordinated Transmission Policy. In Proceedings of 2012 ISTC, Gothenburg (pp. 136–139). Narayanan, K. R., & Pfister, H. D. (2012). Iterative collision resolution for slotted ALOHA: An Optimal Uncoordinated Transmission Policy. In Proceedings of 2012 ISTC, Gothenburg (pp. 136–139).
17.
go back to reference Byers, J., Luby, M., Mitzenmacher, M., & Rege, A. (1998). A digital fountain approach to reliable distribution of bulk data. In Proceedings of 1998, ACM SIGCOMM., Vancouver (pp. 56–67). Byers, J., Luby, M., Mitzenmacher, M., & Rege, A. (1998). A digital fountain approach to reliable distribution of bulk data. In Proceedings of 1998, ACM SIGCOMM., Vancouver (pp. 56–67).
18.
go back to reference Paolini, E., Stefanovi, C., Liva, G., & Popovski, P. (2015). Coded random access: Applying codes on graphs to design random access protocol. IEEE Communications Magazine, 144–150. Paolini, E., Stefanovi, C., Liva, G., & Popovski, P. (2015). Coded random access: Applying codes on graphs to design random access protocol. IEEE Communications Magazine, 144–150.
19.
go back to reference Mengali, A., Gaudenzi, R. D., & Stefanovi, C. (2018). On the modeling and performance assessment of random access with SIC. IEEE Journal on Selected Areas in Communications, 36(2), 292–303.CrossRef Mengali, A., Gaudenzi, R. D., & Stefanovi, C. (2018). On the modeling and performance assessment of random access with SIC. IEEE Journal on Selected Areas in Communications, 36(2), 292–303.CrossRef
20.
go back to reference Moon, S., et al. (2018). SARA: Sparse code multiple access-applied random access for IoT devices. IEEE Internet of Things Journal, 5(4). Moon, S., et al. (2018). SARA: Sparse code multiple access-applied random access for IoT devices. IEEE Internet of Things Journal, 5(4).
21.
go back to reference Diamantoulakis, P. D., Pappi, K. N., Ding, Z., & Karagiannidis, G. K. ( 2016). Wireless-powered communications with non-orthogonal multiple access. IEEE Transactions on Wireless Communications, 15(12), 8422–8436.CrossRef Diamantoulakis, P. D., Pappi, K. N., Ding, Z., & Karagiannidis, G. K. ( 2016). Wireless-powered communications with non-orthogonal multiple access. IEEE Transactions on Wireless Communications, 15(12), 8422–8436.CrossRef
22.
go back to reference Ding, Z., Lei, X., Karagiannidis, G. K., Schober, R., Yuan, J., & Bhargava, V. K. ( 2017). A survey on non-orthogonal multiple access for 5G networks: research challenges and future trends. IEEE Journal on Selected Areas in Communications, 35(10), 2181–2195.CrossRef Ding, Z., Lei, X., Karagiannidis, G. K., Schober, R., Yuan, J., & Bhargava, V. K. ( 2017). A survey on non-orthogonal multiple access for 5G networks: research challenges and future trends. IEEE Journal on Selected Areas in Communications, 35(10), 2181–2195.CrossRef
23.
go back to reference Xiao, L., Li, Y., Dai, C., Dai, H., & Poor, H. V. (2018). Reinforcement learning based NOMA power allocation in the presence of smart jamming. IEEE Transactions on Vehicular Technology, 67(4), 3377–3389.CrossRef Xiao, L., Li, Y., Dai, C., Dai, H., & Poor, H. V. (2018). Reinforcement learning based NOMA power allocation in the presence of smart jamming. IEEE Transactions on Vehicular Technology, 67(4), 3377–3389.CrossRef
24.
go back to reference Choi, J. (2018). Layered non-orthogonal random access with SIC and transmit diversity for reliable transmissions. IEEE Transactions on Communications, 66(3), 1262–1272.CrossRef Choi, J. (2018). Layered non-orthogonal random access with SIC and transmit diversity for reliable transmissions. IEEE Transactions on Communications, 66(3), 1262–1272.CrossRef
25.
go back to reference Yuan, Y., Yuan, Z., & Tan, L. (2020). 5G non-orthogonal multiple access study in 3GPP. IEEE Communications Magazine, 58(7), 90–96.CrossRef Yuan, Y., Yuan, Z., & Tan, L. (2020). 5G non-orthogonal multiple access study in 3GPP. IEEE Communications Magazine, 58(7), 90–96.CrossRef
26.
go back to reference Abbas, R., Shirvanimoghaddam, M., Li, Y., & Vucetic, B. (2019). A novel analytical framework for massive grant-free NOMA. IEEE Transactions on Communications, 67(3), 2436–2449.CrossRef Abbas, R., Shirvanimoghaddam, M., Li, Y., & Vucetic, B. (2019). A novel analytical framework for massive grant-free NOMA. IEEE Transactions on Communications, 67(3), 2436–2449.CrossRef
27.
go back to reference Woo, T. K. (2019). FRAM: Framed ALOHA for 5G super real-time multimedia random access with packet slicing. Wireless Personal Communications, 106, 1253–1073.CrossRef Woo, T. K. (2019). FRAM: Framed ALOHA for 5G super real-time multimedia random access with packet slicing. Wireless Personal Communications, 106, 1253–1073.CrossRef
28.
go back to reference Hughes, D. R., & Piper, F. (1973). Projective plane. Berlin: Springer.MATH Hughes, D. R., & Piper, F. (1973). Projective plane. Berlin: Springer.MATH
29.
go back to reference Hall, M., Jr. (1986). Combinatorial theory (2nd ed.). New York, NY: Wiley.MATH Hall, M., Jr. (1986). Combinatorial theory (2nd ed.). New York, NY: Wiley.MATH
30.
go back to reference Nakajima, A. (1992). Using a finite projective plane with a duality for decentralized consensus protocols. In Proceedings of the 12th international conference on distributed computing systems (pp. 665–672). Nakajima, A. (1992). Using a finite projective plane with a duality for decentralized consensus protocols. In Proceedings of the 12th international conference on distributed computing systems (pp. 665–672).
31.
go back to reference Czerwinski, T., & Oakden, D. (1992). The translation planes of order twenty-five. Journal of Combinatorics, 193–217. Czerwinski, T., & Oakden, D. (1992). The translation planes of order twenty-five. Journal of Combinatorics, 193–217.
32.
go back to reference Dempwolff, U. (1994). Translation planes of order 27’, Des. Codes and Crypt, pp. 105–121. Dempwolff, U. (1994). Translation planes of order 27’, Des. Codes and Crypt, pp. 105–121.
Metadata
Title
Packet Squeezing of Random Access with 5G Real-Time Services for Internet of Things
Author
Tai-Kuo Woo
Publication date
27-02-2021
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 2/2021
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-08080-4

Other articles of this Issue 2/2021

Wireless Personal Communications 2/2021 Go to the issue