Skip to main content
Top
Published in: Wireless Personal Communications 1/2021

03-01-2021

Optimally Configured Deep Convolutional Neural Network for Attack Detection in Internet of Things: Impact of Algorithm of the Innovative Gunner

Author: Subramonian Krishna Sarma

Published in: Wireless Personal Communications | Issue 1/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nowadays, the internet of things (IoT) has gained significant research attention. It is becoming critically imperative to protect IoT devices against cyberattacks with the phenomenal intensification. The malicious users or attackers might take control of the devices and serious things will be at stake apart from privacy violation. Therefore, it is important to identify and prevent novel attacks in the IoT context. This paper proposes a novel attack detection system by interlinking the development and operations framework. This proposed detection model includes two stages such as proposed feature extraction and classification. The preliminary phase is feature extraction, the data from every application are processed by integrating the statistical and higher-order statistical features together with the extant features. Based on these extracted features the classification process is evolved for this, an optimized deep convolutional neural network (DCNN) model is utilized. Besides, the count of filters and filter size in the convolution layer, as well as the activation function, are optimized using a new modified algorithm of the innovative gunner (MAIG), which is the enhanced version of the AIG algorithm. Finally, the proposed work is compared and proved over other traditional works concerning positive and negative measures as well. The experimental outcomes show that the proposed MAIG algorithm for application 1 under the GAF-GYT attack achieves higher accuracy of 64.52, 2.38 and 3.76% when compared over the methods like DCNN, AIG and FAE-GWO-DBN, respectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Huang, X. (2020). Intelligent remote monitoring and manufacturing system of production line based on industrial Internet of Things. Computer Communications, 150, 421–428.CrossRef Huang, X. (2020). Intelligent remote monitoring and manufacturing system of production line based on industrial Internet of Things. Computer Communications, 150, 421–428.CrossRef
2.
go back to reference Wang, Y. (2020). Construction and simulation of performance evaluation index system of Internet of Things based on cloud model. Computer Communications, 153, 177–187.CrossRef Wang, Y. (2020). Construction and simulation of performance evaluation index system of Internet of Things based on cloud model. Computer Communications, 153, 177–187.CrossRef
3.
go back to reference Lyu, Yi., & Yin, P. (2020). Internet of Things transmission and network reliability in complex environment. Computer Communications, 150, 757–763.CrossRef Lyu, Yi., & Yin, P. (2020). Internet of Things transmission and network reliability in complex environment. Computer Communications, 150, 757–763.CrossRef
4.
go back to reference Sun, C. (2020). Research on investment decision-making model from the perspective of Internet of Things + Big data. Future Generation Computer Systems, 107, 286–292.CrossRef Sun, C. (2020). Research on investment decision-making model from the perspective of Internet of Things + Big data. Future Generation Computer Systems, 107, 286–292.CrossRef
5.
go back to reference Pour, M. S., Mangino, A., Friday, K., Rathbun, M., & Ghan, N. (2020). On data-driven curation, learning and analysis for inferring evolving internet-of-Things (IoT) botnets in the wild. Computers & Security, 91, 101707.CrossRef Pour, M. S., Mangino, A., Friday, K., Rathbun, M., & Ghan, N. (2020). On data-driven curation, learning and analysis for inferring evolving internet-of-Things (IoT) botnets in the wild. Computers & Security, 91, 101707.CrossRef
6.
go back to reference Chen, Y., Kintis, P., Antonakakis, M., Nadji, Y., & Farrell, M. (2017). Measuring lower bounds of the financial abuse to online advertisers: A four year case study of the TDSS/TDL4 Botnet. Computers & Security, 67, 164–180.CrossRef Chen, Y., Kintis, P., Antonakakis, M., Nadji, Y., & Farrell, M. (2017). Measuring lower bounds of the financial abuse to online advertisers: A four year case study of the TDSS/TDL4 Botnet. Computers & Security, 67, 164–180.CrossRef
7.
go back to reference Koroniotis, N., Moustafa, N., Sitnikova, E., & Turnbull, B. (2019). Towards the development of realistic botnet dataset in the Internet of Things for network forensic analytics: Bot-IoT dataset. Future Generation Computer Systems, 100, 779–796.CrossRef Koroniotis, N., Moustafa, N., Sitnikova, E., & Turnbull, B. (2019). Towards the development of realistic botnet dataset in the Internet of Things for network forensic analytics: Bot-IoT dataset. Future Generation Computer Systems, 100, 779–796.CrossRef
8.
go back to reference Asadi, M., Ali, M., Jamali, J., Parsa, S., & Majidnezhad, V. (2020). Detecting botnet by using particle swarm optimization algorithm based on voting system”. Future Generation Computer Systems, 107, 95–111.CrossRef Asadi, M., Ali, M., Jamali, J., Parsa, S., & Majidnezhad, V. (2020). Detecting botnet by using particle swarm optimization algorithm based on voting system”. Future Generation Computer Systems, 107, 95–111.CrossRef
9.
go back to reference Jung, W., Zhao, H., Sun, M., & Zhou, G. (2020). IoT botnet detection via power consumption modelling. Smart Health, 15, 100103.CrossRef Jung, W., Zhao, H., Sun, M., & Zhou, G. (2020). IoT botnet detection via power consumption modelling. Smart Health, 15, 100103.CrossRef
10.
go back to reference Alauthman, M., Aslam, N., Al-kasassbeh, M., Suleman Khan, K. K., & Choo, R. (2020). An efficient reinforcement learning-based Botnet detection approach. Journal of Network and Computer Applications, 150, 15.CrossRef Alauthman, M., Aslam, N., Al-kasassbeh, M., Suleman Khan, K. K., & Choo, R. (2020). An efficient reinforcement learning-based Botnet detection approach. Journal of Network and Computer Applications, 150, 15.CrossRef
11.
go back to reference Mousavi, S. H., Khansari, M., & Rahmani, R. (2020). A fully scalable big data framework for Botnet detection based on network traffic analysis. Information Sciences, 512, 629–640.CrossRef Mousavi, S. H., Khansari, M., & Rahmani, R. (2020). A fully scalable big data framework for Botnet detection based on network traffic analysis. Information Sciences, 512, 629–640.CrossRef
12.
go back to reference Shafiq, M., Tian, Z., Sun, Y., & Xiaojiang, Du. (2020). Mohsen Guizani”, Selection of effective machine learning algorithm and Bot-IoT attacks traffic identification for internet of things in smart city”. Future Generation Computer Systems, 107, 433–442.CrossRef Shafiq, M., Tian, Z., Sun, Y., & Xiaojiang, Du. (2020). Mohsen Guizani”, Selection of effective machine learning algorithm and Bot-IoT attacks traffic identification for internet of things in smart city”. Future Generation Computer Systems, 107, 433–442.CrossRef
13.
go back to reference Alfian, G., Syafrudin, M., Farooq, U., Ma’arif, M. R., & Rhee, J. (2020). Improving efficiency of RFID-based traceability system for perishable food by utilizing IoT sensors and machine learning model. Food Control, 110, 107016.CrossRef Alfian, G., Syafrudin, M., Farooq, U., Ma’arif, M. R., & Rhee, J. (2020). Improving efficiency of RFID-based traceability system for perishable food by utilizing IoT sensors and machine learning model. Food Control, 110, 107016.CrossRef
14.
go back to reference Cheng, J. C. P., Chen, W., Chen, K., & Wang, Q. (2020). Data-driven predictive maintenance planning framework for MEP components based on BIM and IoT using machine learning algorithms”. Automation in Construction, 112, 103087.CrossRef Cheng, J. C. P., Chen, W., Chen, K., & Wang, Q. (2020). Data-driven predictive maintenance planning framework for MEP components based on BIM and IoT using machine learning algorithms”. Automation in Construction, 112, 103087.CrossRef
15.
go back to reference Azar, J., Makhoul, A., Barhamgi, M., & Couturier, R. (2019). An energy efficient IoT data compression approach for edge machine learning. Future Generation Computer Systems, 96, 168–175.CrossRef Azar, J., Makhoul, A., Barhamgi, M., & Couturier, R. (2019). An energy efficient IoT data compression approach for edge machine learning. Future Generation Computer Systems, 96, 168–175.CrossRef
18.
go back to reference Aloysius George and B. R. Rajakumar (2013)"On hybridizing fuzzy min max neural network and firefly algorithm for automated heart disease diagnosis”, Fourth international conference on computing, communications and networking technologies, Tiruchengode, India Aloysius George and B. R. Rajakumar (2013)"On hybridizing fuzzy min max neural network and firefly algorithm for automated heart disease diagnosis”, Fourth international conference on computing, communications and networking technologies, Tiruchengode, India
19.
go back to reference Ren, Z., Haomin, Wu., Ning, Q., Hussain, I., & Chen, B. (2020). End-to-end malware detection for android IoT devices using deep learning”. Ad Hoc Networks, 101, 15.CrossRef Ren, Z., Haomin, Wu., Ning, Q., Hussain, I., & Chen, B. (2020). End-to-end malware detection for android IoT devices using deep learning”. Ad Hoc Networks, 101, 15.CrossRef
20.
go back to reference Brun, O., & Yin, Y. (2018). Erol Gelenbe”, deep learning with dense random neural network for detecting attacks against IoT-connected home environments”. Procedia Computer Science, 134, 458–463.CrossRef Brun, O., & Yin, Y. (2018). Erol Gelenbe”, deep learning with dense random neural network for detecting attacks against IoT-connected home environments”. Procedia Computer Science, 134, 458–463.CrossRef
22.
go back to reference Swamy, SM., Rajakumar, BR. & Valarmathi, IR (2013) “Design of hybrid wind and photovoltaic power system using opposition-based genetic algorithm with cauchy mutation”, IET Chennai Fourth international conference on sustainable energy and intelligent systems (SEISCON 2013), Chennai, India. Swamy, SM., Rajakumar, BR. & Valarmathi, IR (2013) “Design of hybrid wind and photovoltaic power system using opposition-based genetic algorithm with cauchy mutation”, IET Chennai Fourth international conference on sustainable energy and intelligent systems (SEISCON 2013), Chennai, India.
27.
go back to reference Giridhar Reddy, B. & Sai Ambati, L. (2020) A novel framework for crop pests and disease identification using social media. MWAIS 2020 Proceedings. 9. Giridhar Reddy, B. & Sai Ambati, L. (2020) A novel framework for crop pests and disease identification using social media. MWAIS 2020 Proceedings. 9.
28.
go back to reference Ambati L.S., Narukonda, K., Bojja, G.R. and Bishop, D., (2020) Factors influencing the adoption of artificial intelligence in organizations—from an employee’s perspective (2020). MWAIS Proceedings 20. Ambati L.S., Narukonda, K., Bojja, G.R. and Bishop, D., (2020) Factors influencing the adoption of artificial intelligence in organizations—from an employee’s perspective (2020). MWAIS Proceedings 20.
29.
go back to reference Agnoletti, M., Conti, L., Frezza, L., Monti, M., & Santoro, A. (2015). Features analysis of dry stone walls of Tuscany (Italy). Sustainability, 7(10), 13887–13903.CrossRef Agnoletti, M., Conti, L., Frezza, L., Monti, M., & Santoro, A. (2015). Features analysis of dry stone walls of Tuscany (Italy). Sustainability, 7(10), 13887–13903.CrossRef
30.
go back to reference Conti, L., Bartolozzi, S., Racanelli, V., Sorbettiguerri, F., & Iacobelli, S. (2018). Alarm guard systems for the prevention of damage produced by ungulates in a chestnut grove of Middle Italy. Agronomy Research, 16(3), 679–687. Conti, L., Bartolozzi, S., Racanelli, V., Sorbettiguerri, F., & Iacobelli, S. (2018). Alarm guard systems for the prevention of damage produced by ungulates in a chestnut grove of Middle Italy. Agronomy Research, 16(3), 679–687.
31.
go back to reference Liang Liu, Zuchao Ma, Weizhi Meng (1989) Detection of multiple-mix-attack malicious nodes using perceptron-based trust in IoT networks”, Future generation computer systems, vol. 101, pp. 865–879, 2019M. Young, The Technical Writer’s Handbook. Mill Valley, CA: University Science. Liang Liu, Zuchao Ma, Weizhi Meng (1989) Detection of multiple-mix-attack malicious nodes using perceptron-based trust in IoT networks”, Future generation computer systems, vol. 101, pp. 865–879, 2019M. Young, The Technical Writer’s Handbook. Mill Valley, CA: University Science.
32.
go back to reference Baig, Z. A., Sanguanpong, S., Naeem Firdous, S., Nhan Vo, V., & So-In, C. (2020). Averaged dependence estimators for DoS attack detection in IoT networks. Future Generation Computer Systems, 102, 198–209.CrossRef Baig, Z. A., Sanguanpong, S., Naeem Firdous, S., Nhan Vo, V., & So-In, C. (2020). Averaged dependence estimators for DoS attack detection in IoT networks. Future Generation Computer Systems, 102, 198–209.CrossRef
33.
go back to reference Huy-Trung Nguyen., Quoc-Dung Ngo., Doan-Hieu Nguyen., Van-Hoang Le (2020) PSI-rooted subgraph: A novel feature for IoT botnet detection using classifier algorithms, ICT Express, In press, corrected proof, Available online 7. Huy-Trung Nguyen., Quoc-Dung Ngo., Doan-Hieu Nguyen., Van-Hoang Le (2020) PSI-rooted subgraph: A novel feature for IoT botnet detection using classifier algorithms, ICT Express, In press, corrected proof, Available online 7.
34.
go back to reference Hasan, M., Islam, M., Zarif, I., & Hashem, M. M. A. (2019). Attack and anomaly detection in IoT sensors in IoT sites using machine learning approaches". Internet of Things, 7, 100059.CrossRef Hasan, M., Islam, M., Zarif, I., & Hashem, M. M. A. (2019). Attack and anomaly detection in IoT sensors in IoT sites using machine learning approaches". Internet of Things, 7, 100059.CrossRef
35.
go back to reference Ho, J. (2018). Efficient and robust detection of code-reuse attacks through probabilistic packet inspection in industrial IoT devices. IEEE Access, 6, 54343–54354.CrossRef Ho, J. (2018). Efficient and robust detection of code-reuse attacks through probabilistic packet inspection in industrial IoT devices. IEEE Access, 6, 54343–54354.CrossRef
36.
go back to reference Murali, S., & Jamalipour, A. (2020). A lightweight intrusion detection for sybil attack under mobile RPL in the Internet of Things. IEEE Internet of Things Journal, 7(1), 379–388.CrossRef Murali, S., & Jamalipour, A. (2020). A lightweight intrusion detection for sybil attack under mobile RPL in the Internet of Things. IEEE Internet of Things Journal, 7(1), 379–388.CrossRef
37.
go back to reference Shailendra Rathore, J., & Park, H. (2018). Semi-supervised learning based distributed attack detection framework for IoT. Applied Soft Computing, 72, 79–89.CrossRef Shailendra Rathore, J., & Park, H. (2018). Semi-supervised learning based distributed attack detection framework for IoT. Applied Soft Computing, 72, 79–89.CrossRef
39.
go back to reference Arul, V. H., Sivakumar, V. G., Marimuthu, R., & Chakraborty, B. (2019). An approach for speech enhancement using deep convolutional neural network. Multimedia Research (MR), 2(1), 37–44. Arul, V. H., Sivakumar, V. G., Marimuthu, R., & Chakraborty, B. (2019). An approach for speech enhancement using deep convolutional neural network. Multimedia Research (MR), 2(1), 37–44.
40.
go back to reference Raviraj Vishwambhar, D., & Ashwinikumar Panjabrao, D. (2019). Emotion recognition from speech signals using DCNN with hybrid GA-GWO algorithm. Multimedia Research, 2(4), 12–22. Raviraj Vishwambhar, D., & Ashwinikumar Panjabrao, D. (2019). Emotion recognition from speech signals using DCNN with hybrid GA-GWO algorithm. Multimedia Research, 2(4), 12–22.
42.
go back to reference Li, Y., Yingying, Xu., Liu, Z., Hou, H., & Cui, L. (2020). Robust detection for network intrusion of industrial IoT based on multi-CNN fusion. Measurement, 154, 15. Li, Y., Yingying, Xu., Liu, Z., Hou, H., & Cui, L. (2020). Robust detection for network intrusion of industrial IoT based on multi-CNN fusion. Measurement, 154, 15.
43.
go back to reference Pijarski, P., & Kacejko, P. (2019). A new metaheuristic optimization method: the algorithm of the innovative gunner (AIG). Engineering Optimization, 51(12), 2049–2068.MathSciNetCrossRef Pijarski, P., & Kacejko, P. (2019). A new metaheuristic optimization method: the algorithm of the innovative gunner (AIG). Engineering Optimization, 51(12), 2049–2068.MathSciNetCrossRef
Metadata
Title
Optimally Configured Deep Convolutional Neural Network for Attack Detection in Internet of Things: Impact of Algorithm of the Innovative Gunner
Author
Subramonian Krishna Sarma
Publication date
03-01-2021
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 1/2021
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-08011-9

Other articles of this Issue 1/2021

Wireless Personal Communications 1/2021 Go to the issue