Skip to main content
Top

2018 | OriginalPaper | Chapter

7. Optimisation of Porous 2D PhPs for Deformation-Induced Tunability

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Due to wide multiscale application of PhCrs it is of great value to introduce controllable phononic bandgaps to be tailored, degraded or enhanced during their function or with switchable bandgap properties. In this chapter, novel porous PhP topologies with optimised deformation induced bandgap tunability performance are introduced through a multi-objective optimisation strategy. Maximum relative bandgap width of guided waves in undeformed state and maximum deformation-induced bandgap gradient under equibiaxial stretch are the two objectives of optimisation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bayat, A., & Gordaninejad, F. (2015a). Switching band-gaps of a phononic crystal slab by surface instability. Smart Materials and Structures, 24(7), 075009.CrossRef Bayat, A., & Gordaninejad, F. (2015a). Switching band-gaps of a phononic crystal slab by surface instability. Smart Materials and Structures, 24(7), 075009.CrossRef
go back to reference Bayat, A., & Gordaninejad, F. (2015b). Dynamic response of a tunable phononic crystal under applied mechanical and magnetic loadings. Smart Materials and Structures, 24(6), 065027.CrossRef Bayat, A., & Gordaninejad, F. (2015b). Dynamic response of a tunable phononic crystal under applied mechanical and magnetic loadings. Smart Materials and Structures, 24(6), 065027.CrossRef
go back to reference Bergamini, A., Delpero, T., Simoni, L. D., Lillo, L. D., Ruzzene, M., & Ermanni, P. (2014). Phononic crystal with adaptive connectivity. Advanced Materials, 26(9), 1343–1347.CrossRef Bergamini, A., Delpero, T., Simoni, L. D., Lillo, L. D., Ruzzene, M., & Ermanni, P. (2014). Phononic crystal with adaptive connectivity. Advanced Materials, 26(9), 1343–1347.CrossRef
go back to reference Bertoldi, K., & Boyce, M. C. (2008). Wave propagation and instabilities in monolithic and periodically structured elastomeric materials undergoing large deformations. Physical Review B, 78(18), 184107.CrossRef Bertoldi, K., & Boyce, M. C. (2008). Wave propagation and instabilities in monolithic and periodically structured elastomeric materials undergoing large deformations. Physical Review B, 78(18), 184107.CrossRef
go back to reference Bertoldi, K., Boyce, M. C., Deschanel, S., Prange, S. M., & Mullin, T. (2008). Mechanics of deformation-triggered pattern transformations and superelastic behavior in periodic elastomeric structures. Journal of the Mechanics and Physics of Solids, 56(8), 2642–2668.CrossRefMATH Bertoldi, K., Boyce, M. C., Deschanel, S., Prange, S. M., & Mullin, T. (2008). Mechanics of deformation-triggered pattern transformations and superelastic behavior in periodic elastomeric structures. Journal of the Mechanics and Physics of Solids, 56(8), 2642–2668.CrossRefMATH
go back to reference Bilal, O. R., & Hussein, M. I. (2012). Topologically evolved phononic material: Breaking the world record in band gap size. In Photonic and phononic properties of engineered nanostructures (pp. 826911–826917). International Socienty for Optics and Photonics. Bilal, O. R., & Hussein, M. I. (2012). Topologically evolved phononic material: Breaking the world record in band gap size. In Photonic and phononic properties of engineered nanostructures (pp. 826911–826917). International Socienty for Optics and Photonics.
go back to reference Chapman, C. D., Saitou, K., & Jakiela, M. J. (1994). Genetic algorithms as an approach to configuration and topology design. Journal of Mechanical Design, 116(4), 1005–1012.CrossRef Chapman, C. D., Saitou, K., & Jakiela, M. J. (1994). Genetic algorithms as an approach to configuration and topology design. Journal of Mechanical Design, 116(4), 1005–1012.CrossRef
go back to reference de Borst, R., Crisfield, M. A., Remmers, J. J. C., & Verhoosel, C. V. (2012). Non-linear finite element analysis of solids and structures (2nd ed.). New York: Wiley.CrossRefMATH de Borst, R., Crisfield, M. A., Remmers, J. J. C., & Verhoosel, C. V. (2012). Non-linear finite element analysis of solids and structures (2nd ed.). New York: Wiley.CrossRefMATH
go back to reference Dong, H.-W., Su, X.-X., & Wang, Y.-S. (2014a). Multi-objective optimization of two-dimensional porous phononic crystals. Journal of Physics. D. Applied Physics, 47(15), 155301.CrossRef Dong, H.-W., Su, X.-X., & Wang, Y.-S. (2014a). Multi-objective optimization of two-dimensional porous phononic crystals. Journal of Physics. D. Applied Physics, 47(15), 155301.CrossRef
go back to reference Dong, H.-W., Su, X.-X., Wang, Y.-S., & Zhang, C. (2014b). Topological optimization of two-dimensional phononic crystals based on the finite element method and genetic algorithm. Structural and Multidisciplinary Optimization, 50(4), 593–604.MathSciNetCrossRef Dong, H.-W., Su, X.-X., Wang, Y.-S., & Zhang, C. (2014b). Topological optimization of two-dimensional phononic crystals based on the finite element method and genetic algorithm. Structural and Multidisciplinary Optimization, 50(4), 593–604.MathSciNetCrossRef
go back to reference Dong, H.-W., Su, X.-X., Wang, Y.-S., & Zhang, C. (2014c). Topology optimization of two-dimensional asymmetrical phononic crystals. Physics Letters A, 378(4), 434–441.CrossRef Dong, H.-W., Su, X.-X., Wang, Y.-S., & Zhang, C. (2014c). Topology optimization of two-dimensional asymmetrical phononic crystals. Physics Letters A, 378(4), 434–441.CrossRef
go back to reference Evgrafov, A., Rupp, C. J., Dunn, M. L., & Maute, K. (2008). Optimal synthesis of tunable elastic wave-guides. Computer Methods in Applied Mechanics and Engineering, 198(2), 292–301.CrossRefMATH Evgrafov, A., Rupp, C. J., Dunn, M. L., & Maute, K. (2008). Optimal synthesis of tunable elastic wave-guides. Computer Methods in Applied Mechanics and Engineering, 198(2), 292–301.CrossRefMATH
go back to reference Filipovic, N., Stojanovic, B., Kojic, N., & Kojic, M. (2008). Computer modeling in bioengineering-theoretical background. Examples and Software. New York: Wiley. Filipovic, N., Stojanovic, B., Kojic, N., & Kojic, M. (2008). Computer modeling in bioengineering-theoretical background. Examples and Software. New York: Wiley.
go back to reference Gazonas, G. A., Weile, D. S., Wildman, R., & Mohan, A. (2006). Genetic algorithm optimization of phononic bandgap structures. International Journal of Solids and Structures, 43(18–19), 5851–5866.CrossRefMATH Gazonas, G. A., Weile, D. S., Wildman, R., & Mohan, A. (2006). Genetic algorithm optimization of phononic bandgap structures. International Journal of Solids and Structures, 43(18–19), 5851–5866.CrossRefMATH
go back to reference Gei, M., Bigoni, D., Movchan, A., & Bacca, M. (2013). ‘Band-gap properties of prestressed structures’, Acoustic Metamaterials (pp. 61–82). Berlin: Springer.CrossRef Gei, M., Bigoni, D., Movchan, A., & Bacca, M. (2013). ‘Band-gap properties of prestressed structures’, Acoustic Metamaterials (pp. 61–82). Berlin: Springer.CrossRef
go back to reference Goffaux, C., & Vigneron, J. P. (2001, July 31). Theoretical study of a tunable phononic band gap system. Physical Review B, 64(7), 075118. Goffaux, C., & Vigneron, J. P. (2001, July 31). Theoretical study of a tunable phononic band gap system. Physical Review B, 64(7), 075118.
go back to reference Guest, J. K., Prévost, J., & Belytschko, T. (2004). Achieving minimum length scale in topology optimization using nodal design variables and projection functions. International Journal for Numerical Methods in Engineering, 61(2), 238–254.MathSciNetCrossRefMATH Guest, J. K., Prévost, J., & Belytschko, T. (2004). Achieving minimum length scale in topology optimization using nodal design variables and projection functions. International Journal for Numerical Methods in Engineering, 61(2), 238–254.MathSciNetCrossRefMATH
go back to reference Guest, J. K., & Smith Genut, L. C. (2010). Reducing dimensionality in topology optimization using adaptive design variable fields. International Journal for Numerical Methods in Engineering, 81(8), 1019–1045.MATH Guest, J. K., & Smith Genut, L. C. (2010). Reducing dimensionality in topology optimization using adaptive design variable fields. International Journal for Numerical Methods in Engineering, 81(8), 1019–1045.MATH
go back to reference Hajela, P., Lee, E., & Lin, C. Y. (1993). Genetic algorithms in structural topology optimization. In M. Bendsøe & C. M. Soares (Eds.), Topology design of structures (Vol. 227, pp. 117–133). Dordrecht: Springer Netherlands.CrossRef Hajela, P., Lee, E., & Lin, C. Y. (1993). Genetic algorithms in structural topology optimization. In M. Bendsøe & C. M. Soares (Eds.), Topology design of structures (Vol. 227, pp. 117–133). Dordrecht: Springer Netherlands.CrossRef
go back to reference Hussein, M. I., Hamza, K., Hulbert, G. M., & Saitou, K. (2007, November). Optimal synthesis of 2D phononic crystals for broadband frequency isolation. Waves in Random and Complex Media, 17(4), 491–510. Hussein, M. I., Hamza, K., Hulbert, G. M., & Saitou, K. (2007, November). Optimal synthesis of 2D phononic crystals for broadband frequency isolation. Waves in Random and Complex Media, 17(4), 491–510.
go back to reference Hussein, M. I., Hamza, K., Hulbert, G. M., Scott, R. A., & Saitou, K. (2006, January 1). Multiobjective evolutionary optimization of periodic layered materials for desired wave dispersion characteristics. Structural and Multidisciplinary Optimization, 31(1), pp. 60–75. Hussein, M. I., Hamza, K., Hulbert, G. M., Scott, R. A., & Saitou, K. (2006, January 1). Multiobjective evolutionary optimization of periodic layered materials for desired wave dispersion characteristics. Structural and Multidisciplinary Optimization, 31(1), pp. 60–75.
go back to reference Lin, S.-C. S., & Huang, T. J. (2011, May 18). Tunable phononic crystals with anisotropic inclusions. Physical Review B, 83(17), 174303. Lin, S.-C. S., & Huang, T. J. (2011, May 18). Tunable phononic crystals with anisotropic inclusions. Physical Review B, 83(17), 174303.
go back to reference Liu, Z., Wu, B., & He, C. (2014). Band-gap optimization of two-dimensional phononic crystals based on genetic algorithm and FPWE. In Waves in Random and Complex Media, no. ahead-of-print (pp. 1–20). Liu, Z., Wu, B., & He, C. (2014). Band-gap optimization of two-dimensional phononic crystals based on genetic algorithm and FPWE. In Waves in Random and Complex Media, no. ahead-of-print (pp. 1–20).
go back to reference Manktelow, K. L., Leamy, M. J., & Ruzzene, M. (2013). Topology Design and Optimization of Nonlinear Periodic Materials. Journal of the Mechanics and Physics of Solids, 61(12), 2433–2453.MathSciNetCrossRef Manktelow, K. L., Leamy, M. J., & Ruzzene, M. (2013). Topology Design and Optimization of Nonlinear Periodic Materials. Journal of the Mechanics and Physics of Solids, 61(12), 2433–2453.MathSciNetCrossRef
go back to reference Matar, O. B., Vasseur, J., & Deymier, P. A. (2013). ‘Tunable phononic crystals and metamaterials’, acoustic metamaterials and phononic crystals (pp. 253–280). Berlin: Springer.CrossRef Matar, O. B., Vasseur, J., & Deymier, P. A. (2013). ‘Tunable phononic crystals and metamaterials’, acoustic metamaterials and phononic crystals (pp. 253–280). Berlin: Springer.CrossRef
go back to reference Olsson Iii, R. H., & El-Kady, I. F. (2009). Microfabricated phononic crystal devices and applications. Measurement Science & Technology, 20(1), 012002.CrossRef Olsson Iii, R. H., & El-Kady, I. F. (2009). Microfabricated phononic crystal devices and applications. Measurement Science & Technology, 20(1), 012002.CrossRef
go back to reference Olsson Iii, R. H., El-Kady, I. F., Su, M. F., Tuck, M. R., & Fleming, J. G. (2008). Microfabricated VHF acoustic crystals and waveguides. Sensors and Actuators A: Physical, 145–146(0, 7), 87–93. Olsson Iii, R. H., El-Kady, I. F., Su, M. F., Tuck, M. R., & Fleming, J. G. (2008). Microfabricated VHF acoustic crystals and waveguides. Sensors and Actuators A: Physical, 145–146(0, 7), 87–93.
go back to reference Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.CrossRef Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.CrossRef
go back to reference Rudykh, S., & Boyce, M. C. (2014). Transforming wave propagation in layered media via instability-induced interfacial wrinkling. Physical Review Letters, 112(3), 034301.CrossRef Rudykh, S., & Boyce, M. C. (2014). Transforming wave propagation in layered media via instability-induced interfacial wrinkling. Physical Review Letters, 112(3), 034301.CrossRef
go back to reference Rupp, C. J., Dunn, M. L., & Maute, K. (2010). Switchable phononic wave filtering, guiding, harvesting, and actuating in polarization-patterned piezoelectric solids. Applied Physics Letters, 96(11), 111902.CrossRef Rupp, C. J., Dunn, M. L., & Maute, K. (2010). Switchable phononic wave filtering, guiding, harvesting, and actuating in polarization-patterned piezoelectric solids. Applied Physics Letters, 96(11), 111902.CrossRef
go back to reference Sigmund, O., & Jensen, J. S. (2003). Systematic design of phononic band-gap materials and structures by topology optimization. Philosophical Transactions of the Royal Society, 361(2003), 1001–1019.MathSciNetCrossRefMATH Sigmund, O., & Jensen, J. S. (2003). Systematic design of phononic band-gap materials and structures by topology optimization. Philosophical Transactions of the Royal Society, 361(2003), 1001–1019.MathSciNetCrossRefMATH
go back to reference Wang, P., Casadei, F., Shan, S., Weaver, J. C., & Bertoldi, K. (2014). Harnessing buckling to design tunable locally resonant acoustic metamaterials. Physical Review Letters, 113(1), 014301.CrossRef Wang, P., Casadei, F., Shan, S., Weaver, J. C., & Bertoldi, K. (2014). Harnessing buckling to design tunable locally resonant acoustic metamaterials. Physical Review Letters, 113(1), 014301.CrossRef
go back to reference Wang, P., Shim, J., & Bertoldi, K. (2013). Effects of geometric and material nonlinearities on tunable band gaps and low-frequency directionality of phononic crystals. Physical Review B, 88(1), 014304.CrossRef Wang, P., Shim, J., & Bertoldi, K. (2013). Effects of geometric and material nonlinearities on tunable band gaps and low-frequency directionality of phononic crystals. Physical Review B, 88(1), 014304.CrossRef
go back to reference Yao, Y., Wu, F., Zhang, X., & Hou, Z. (2011). Thermal tuning of Lamb wave band structure in a two-dimensional phononic crystal plate. Journal of Applied Physics, 110(12), 123503.CrossRef Yao, Y., Wu, F., Zhang, X., & Hou, Z. (2011). Thermal tuning of Lamb wave band structure in a two-dimensional phononic crystal plate. Journal of Applied Physics, 110(12), 123503.CrossRef
Metadata
Title
Optimisation of Porous 2D PhPs for Deformation-Induced Tunability
Author
Dr. Saeid Hedayatrasa
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-72959-6_7

Premium Partners