Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2021 | OriginalPaper | Chapter

6. Optimization of Micro Milling Process

Authors : Apoorva Shastri, Aniket Nargundkar, Anand J. Kulkarni

Published in: Socio-Inspired Optimization Methods for Advanced Manufacturing Processes

Publisher: Springer Singapore

Abstract

Micro-Milling refers to a basic end-milling process using tools up to 1 mm in diameter. The geometry that can be produced by micro-end-milling is more flexible than those produced by lithography and other traditional micro manufacturing techniques. Furthermore, a wide range of materials could be processed using micro end milling. This chapter is based on the optimization of process parameters of micro milling performed on polymethyl methacrylate (PMMA) workpiece.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference Bao W, Chen P, Tansel I, Reen NS, Yang S, Rincon D (2003) Selection of optimal cutting conditions by using the genetically optimized neural network system (GONNS). In: Kaynak O, Alpaydin E, Oja E, Xu L (eds) Artificial neural networks and neural information processing—ICANN/ICONIP 2003. ICANN 2003, ICONIP 2003. Lecture Notes in Computer Science, vol 2714. Springer, Berlin, Heidelberg Bao W, Chen P, Tansel I, Reen NS, Yang S, Rincon D (2003) Selection of optimal cutting conditions by using the genetically optimized neural network system (GONNS). In: Kaynak O, Alpaydin E, Oja E, Xu L (eds) Artificial neural networks and neural information processing—ICANN/ICONIP 2003. ICANN 2003, ICONIP 2003. Lecture Notes in Computer Science, vol 2714. Springer, Berlin, Heidelberg
2.
go back to reference Gopalsamy BM, Mondal B, Ghosh S (2009) Taguchi method and ANOVA: An approach for process parameters optimization of hard machining while machining hardened steel Gopalsamy BM, Mondal B, Ghosh S (2009) Taguchi method and ANOVA: An approach for process parameters optimization of hard machining while machining hardened steel
3.
go back to reference Hayajneh MT, Tahat MS, Bluhm J (2007) A study of the effects of machining parameters on the surface roughness in the end-milling process. Jordan J Mech Ind Eng 1(1):1–5 Hayajneh MT, Tahat MS, Bluhm J (2007) A study of the effects of machining parameters on the surface roughness in the end-milling process. Jordan J Mech Ind Eng 1(1):1–5
4.
go back to reference Jain VK (2008) Advanced (non-traditional) machining processes. In: Machining. Springer, London, pp 299–327 Jain VK (2008) Advanced (non-traditional) machining processes. In: Machining. Springer, London, pp 299–327
5.
go back to reference Kulkarni AJ, Durugkar IP, Kumar M (2013) Cohort intelligence: a self supervised learning behavior. In: 2013 IEEE international conference on systems, man, and cybernetics. IEEE, pp 1396–1400 Kulkarni AJ, Durugkar IP, Kumar M (2013) Cohort intelligence: a self supervised learning behavior. In: 2013 IEEE international conference on systems, man, and cybernetics. IEEE, pp 1396–1400
6.
go back to reference Kumar SL, Jerald J, Kumanan S, Aniket N (2014) Process parameters optimization for micro end-milling operation for CAPP applications. Neural Comput Appl 25(7–8):1941–1950 CrossRef Kumar SL, Jerald J, Kumanan S, Aniket N (2014) Process parameters optimization for micro end-milling operation for CAPP applications. Neural Comput Appl 25(7–8):1941–1950 CrossRef
7.
go back to reference Lu X, Jia Z, Wang H, Si L, Liu Y, Wu W (2016) Tool wear appearance and failure mechanism of coated carbide tools in micro-milling of Inconel 718 super alloy. Ind Lubric Tribol 68(2):267–277 CrossRef Lu X, Jia Z, Wang H, Si L, Liu Y, Wu W (2016) Tool wear appearance and failure mechanism of coated carbide tools in micro-milling of Inconel 718 super alloy. Ind Lubric Tribol 68(2):267–277 CrossRef
8.
go back to reference Patankar NS, Kulkarni AJ (2018) Variations of cohort intelligence. Soft Comput 22(6):1731–1747 CrossRef Patankar NS, Kulkarni AJ (2018) Variations of cohort intelligence. Soft Comput 22(6):1731–1747 CrossRef
9.
go back to reference Pham DT, Elkaseera AM, Popova KP, Dimova SS, Olejnikc L, Rosochowskid A (2007) An experimental and statistical study of the factors affecting surface roughness in the micro milling process. In: Innovative Production machines and systems Pham DT, Elkaseera AM, Popova KP, Dimova SS, Olejnikc L, Rosochowskid A (2007) An experimental and statistical study of the factors affecting surface roughness in the micro milling process. In: Innovative Production machines and systems
10.
go back to reference Rahman M, Kumar AS, Prakash JRS (2001) Micro milling of pure copper. J Mater Process Technol 116(1):39–43 CrossRef Rahman M, Kumar AS, Prakash JRS (2001) Micro milling of pure copper. J Mater Process Technol 116(1):39–43 CrossRef
11.
go back to reference Saravanan M, Ramalingam D, Manikandan G, Kaarthikeyen RR (2012) Multi objective optimization of drilling parameters using genetic algorithm. Procedia Eng 38:197–207 CrossRef Saravanan M, Ramalingam D, Manikandan G, Kaarthikeyen RR (2012) Multi objective optimization of drilling parameters using genetic algorithm. Procedia Eng 38:197–207 CrossRef
12.
go back to reference Shastri AS, Kulkarni AJ (2018) Multi-cohort intelligence algorithm: an intra-and inter-group learning behaviour based socio-inspired optimisation methodology. Int J Parallel Emergent Distrib Syst 33(6):675–715 CrossRef Shastri AS, Kulkarni AJ (2018) Multi-cohort intelligence algorithm: an intra-and inter-group learning behaviour based socio-inspired optimisation methodology. Int J Parallel Emergent Distrib Syst 33(6):675–715 CrossRef
14.
go back to reference Zain AM, Haron H, Sharif S (2011) Estimation of the minimum machining performance in the abrasive water jet machining using integrated ANN-SA. Expert Syst Appl 38(7):8316–8326 CrossRef Zain AM, Haron H, Sharif S (2011) Estimation of the minimum machining performance in the abrasive water jet machining using integrated ANN-SA. Expert Syst Appl 38(7):8316–8326 CrossRef
Metadata
Title
Optimization of Micro Milling Process
Authors
Apoorva Shastri
Aniket Nargundkar
Anand J. Kulkarni
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-7797-0_6

Premium Partner