Skip to main content
Top
Published in: Progress in Additive Manufacturing 1-2/2017

28-03-2017 | Full Research Article

Optimization of selective laser sintering process parameters to achieve the maximum density and hardness in polyamide parts

Authors: Sharanjit Singh, Anish Sachdeva, Vishal S. Sharma

Published in: Progress in Additive Manufacturing | Issue 1-2/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Density and hardness of selective laser-sintered parts are influenced by the different sintering parameters. The selection of sintering parameters plays a vital role to achieve the high precision of end use functional parts. These parts are widely used in the industries such as automobile, aerospace, and for medical applications [Sustarsic et al. (Mater Manuf Process 24:837–841, 2009), Shah et al. (Mater Manuf Process 25:1372–1380, 2010)]. In this study, laser power, scan spacing, bed temperature, hatch length, and scan count were the parameters taken into account for experimentation. Face-centered central composite design was used as a statistical design of experiment technique to set the optimal laser sintering parameters. A relationship between these parameters had also been developed with the generation of different mathematical models. The adequacies of these models were confirmed using analysis of variance. The study concluded that laser power, scan spacing, bed temperature, and hatch length have higher influence on density and hardness of polyamide laser-sintered parts. Among these parameters, scan spacing is the most significant parameter for both density and hardness measures. Laser power—24.05 mm, scan spacing—0.1 mm, bed temperature—173.65 °C, hatch length—114.64 mm, and scan count—2 are the optimum levels to maximize the density and hardness.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sustarsic B, Dolinsek S, Jenko M, Leskovsek V (2009) Microstructure and mechanical characteristics of DMLS tool-inserts. Mater Manuf Process 24(7–8):837–841 Sustarsic B, Dolinsek S, Jenko M, Leskovsek V (2009) Microstructure and mechanical characteristics of DMLS tool-inserts. Mater Manuf Process 24(7–8):837–841
2.
go back to reference Shah K, Pinkerton AJ, Salman A, Li L (2010) Effects of melt pool variables and process parameters in laser direct metal deposition of aerospace alloys. Mater Manuf Process 25(12):1372–1380 Shah K, Pinkerton AJ, Salman A, Li L (2010) Effects of melt pool variables and process parameters in laser direct metal deposition of aerospace alloys. Mater Manuf Process 25(12):1372–1380
3.
go back to reference Gibson I, Rosen DW, Stucker B (2010) Additive manufacturing technologies. In: Rapid Prototyping to Direct Digital Manufacturing. Springer, New York Gibson I, Rosen DW, Stucker B (2010) Additive manufacturing technologies. In: Rapid Prototyping to Direct Digital Manufacturing. Springer, New York
4.
go back to reference Chua CK, Leong KF, Lim CS (2010) Rapid prototyping: principles and applications, 4th edn. World Scientific, SingaporeCrossRef Chua CK, Leong KF, Lim CS (2010) Rapid prototyping: principles and applications, 4th edn. World Scientific, SingaporeCrossRef
5.
go back to reference Crawford R (1986) Solid phase compaction of polymeric powders. Developments in Plastics Technology—3. Elsevier applied science publisher’s ltd Crawford R (1986) Solid phase compaction of polymeric powders. Developments in Plastics Technology—3. Elsevier applied science publisher’s ltd
6.
go back to reference Crawford RJ, Paul DW, Sprevak D (1982) Solid phase compaction of polymeric powders: effects of compaction conditions on pressure and density variations. Polymer 23:123–128CrossRef Crawford RJ, Paul DW, Sprevak D (1982) Solid phase compaction of polymeric powders: effects of compaction conditions on pressure and density variations. Polymer 23:123–128CrossRef
7.
go back to reference Singh S, Sharma VS, Sachdeva A, Sinha SK (2013) Optimization and analysis of mechanical properties for selective laser sintered polyamide parts. Mater Manuf Process 28 (2):163–172 Singh S, Sharma VS, Sachdeva A, Sinha SK (2013) Optimization and analysis of mechanical properties for selective laser sintered polyamide parts. Mater Manuf Process 28 (2):163–172
8.
go back to reference Sachdeva A, Singh S, Sharma VS (2013) Investigating surface roughness of parts produced by SLS process. Int J Adv Manuf Technol 64:1505–1516CrossRef Sachdeva A, Singh S, Sharma VS (2013) Investigating surface roughness of parts produced by SLS process. Int J Adv Manuf Technol 64:1505–1516CrossRef
9.
go back to reference Singh S, Sharma VS, Sachdeva A (2016) Progress in selective laser sintering using metallic powders: a review. Mater Sci Technol 32:760–772 Singh S, Sharma VS, Sachdeva A (2016) Progress in selective laser sintering using metallic powders: a review. Mater Sci Technol 32:760–772
10.
go back to reference Gibson I, Shi D (1997) Material properties and fabrication parameters in selective laser sintering process. Rapid Prototyping J 3:129–136CrossRef Gibson I, Shi D (1997) Material properties and fabrication parameters in selective laser sintering process. Rapid Prototyping J 3:129–136CrossRef
11.
go back to reference Williams JD, Deckard CR (1998) Advances in modeling the effects of selected parameters on the SLS process. Rapid Prototyping J 4:90–100CrossRef Williams JD, Deckard CR (1998) Advances in modeling the effects of selected parameters on the SLS process. Rapid Prototyping J 4:90–100CrossRef
12.
go back to reference Ho HCH, Gibson I, Cheung WL (1999) Effects of energy density on morphology and properties of selective laser sintered polycarbonate. J Mater Process Technol 89–90:204–210CrossRef Ho HCH, Gibson I, Cheung WL (1999) Effects of energy density on morphology and properties of selective laser sintered polycarbonate. J Mater Process Technol 89–90:204–210CrossRef
13.
go back to reference Tontowi AE, Childs THC (2001) Density prediction of crystalline polymer sintered parts at various powder bed temperatures. Rapid Prototyping J 7:180–184CrossRef Tontowi AE, Childs THC (2001) Density prediction of crystalline polymer sintered parts at various powder bed temperatures. Rapid Prototyping J 7:180–184CrossRef
14.
go back to reference Shi Y, Li Z, Sun H, Huang S, Zeng F (2004) Effect of the properties of the polymer materials on the quality of selective laser sintering parts. Proc Instn Mech Engrs Part L: J Mater Des Appl 218:247–252 Shi Y, Li Z, Sun H, Huang S, Zeng F (2004) Effect of the properties of the polymer materials on the quality of selective laser sintering parts. Proc Instn Mech Engrs Part L: J Mater Des Appl 218:247–252
15.
go back to reference Bugeda G, Cervera M, Lombera G (1999) Numerical prediction of temperature and density distributions in selective laser sintering processes. Rapid Prototyping J 5:21–26CrossRef Bugeda G, Cervera M, Lombera G (1999) Numerical prediction of temperature and density distributions in selective laser sintering processes. Rapid Prototyping J 5:21–26CrossRef
16.
go back to reference Vijayaraghavan V, Garg A, Wong CH, Tai K, Regalla SP, Tsai MC (2016) Density characteristics of laser-sintered three-dimensional printing parts investigated by using an integrated finite element analysis–based evolutionary algorithm approach. Proc IMechE Part B: J Eng Manuf 230(1):100–110 Vijayaraghavan V, Garg A, Wong CH, Tai K, Regalla SP, Tsai MC (2016) Density characteristics of laser-sintered three-dimensional printing parts investigated by using an integrated finite element analysis–based evolutionary algorithm approach. Proc IMechE Part B: J Eng Manuf 230(1):100–110
17.
go back to reference Wudy K, Drummer D (2016) Aging behavior of polyamide 12: interrelation between bulk characteristics and part properties. Solid Freeform Fabrication Symposium—an Additive Manufacturing Conference 770–781 Wudy K, Drummer D (2016) Aging behavior of polyamide 12: interrelation between bulk characteristics and part properties. Solid Freeform Fabrication Symposium—an Additive Manufacturing Conference 770–781
18.
go back to reference Spierings AB, Schneider M (2011) Comparison of density measurement techniques for additive manufactured metallic parts. Rapid Prototyping J 17:380–386CrossRef Spierings AB, Schneider M (2011) Comparison of density measurement techniques for additive manufactured metallic parts. Rapid Prototyping J 17:380–386CrossRef
19.
go back to reference Gong H, Rafi K, Gu H, Starr T, Stucker B (2014) Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion additive manufacturing processes. Additive Manuf 1–4: 87–98 Gong H, Rafi K, Gu H, Starr T, Stucker B (2014) Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion additive manufacturing processes. Additive Manuf 1–4: 87–98
20.
go back to reference Montgomery DC (2013) Design and analysis of experiments. John Wiley, Hoboken Montgomery DC (2013) Design and analysis of experiments. John Wiley, Hoboken
21.
go back to reference Myers RH, Montgomery DC, Anderson CM (2008) Response surface methodology: process and product optimization using designed experiments. Wiley, New York Myers RH, Montgomery DC, Anderson CM (2008) Response surface methodology: process and product optimization using designed experiments. Wiley, New York
Metadata
Title
Optimization of selective laser sintering process parameters to achieve the maximum density and hardness in polyamide parts
Authors
Sharanjit Singh
Anish Sachdeva
Vishal S. Sharma
Publication date
28-03-2017
Publisher
Springer International Publishing
Published in
Progress in Additive Manufacturing / Issue 1-2/2017
Print ISSN: 2363-9512
Electronic ISSN: 2363-9520
DOI
https://doi.org/10.1007/s40964-017-0020-4

Other articles of this Issue 1-2/2017

Progress in Additive Manufacturing 1-2/2017 Go to the issue

Premium Partners