Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 17/2018

07-07-2018

Optimization of the CdS quantum dot sensitized solar cells with ZnS passivation layer

Authors: Wei Zheng, Yinan Zhang, Di Wang, Qiming Wang

Published in: Journal of Materials Science: Materials in Electronics | Issue 17/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Quantum dot sensitized solar cell (QDSC) is assembled with CdS/ZnS cosensitized TiO2 photoanode, Pt counter electrode and the polysulfide electrolyte. Since the conduction band of ZnS is higher than that of CdS, ZnS can suppress reversed transformation of electrons and improve the efficiency of electron collection as the passivation layer. The morphology and composition of photoanodes are characterized by XRD, SEM, AFM, EDS and XPS analysis. Results show that CdS and ZnS QDs are covered on the surface of TiO2 porous photoanode successfully to degrade the surface roughness and TiO2 crystal structure has not changed with the introduction of QDs. The photoelectric property of assembled QDSC is analyzed by EIS and J–V curves. The charge recombination at photoanode/electrolyte interface is less likely to occur due to enhanced charge transfer resistance after coating ZnS, leading to a higher power conversion efficiency (PCE) of cells. However, PCE of cell decreases when excessive ZnS QDs are introduced. The photoelectric property of cells sensitized with CdS and ZnS QDs in different cycles is compared and the effect of ZnS incorporated amount on photoelectric property of QDSC is discussed emphatically. It is found that cells sensitized with CdS in seven cycles and ZnS QDs in five cycles exhibit the best photoelectric performance and PCE of which is much higher than that of bare CdS sensitized cell.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J.J. Tian, G.Z. Cao, Design fabrication and modification of metal oxide semiconductor for improving conversion efficiency of excitonic solar cells. Coord. Chem. Rev. 320–321, 193–215 (2016)CrossRef J.J. Tian, G.Z. Cao, Design fabrication and modification of metal oxide semiconductor for improving conversion efficiency of excitonic solar cells. Coord. Chem. Rev. 320321, 193–215 (2016)CrossRef
2.
go back to reference I. Mora-Sero, J. Bisquert, Breakthroughs in the development of semiconductor sensitized solar cells. J. Phys. Chem. Lett. 1, 3046–3052 (2010)CrossRef I. Mora-Sero, J. Bisquert, Breakthroughs in the development of semiconductor sensitized solar cells. J. Phys. Chem. Lett. 1, 3046–3052 (2010)CrossRef
3.
go back to reference J.B. Sambur, T. Novet, B.A. Parkinson, Multiple exciton collection in a sensitized photovoltaic system. Science 330, 63–66 (2010)CrossRef J.B. Sambur, T. Novet, B.A. Parkinson, Multiple exciton collection in a sensitized photovoltaic system. Science 330, 63–66 (2010)CrossRef
4.
go back to reference S.H. Pan, R. Zhou, H.H. Niu, L. Wan, B. Huang, Y.Z. Huang, F.W. Ji, J.Z. Xu, Hierarchical SnO2 hollow sub-microspheres for panchromatic PbS quantum dot-sensitized solar cells. J. Alloys Compd. 709, 187–196 (2017)CrossRef S.H. Pan, R. Zhou, H.H. Niu, L. Wan, B. Huang, Y.Z. Huang, F.W. Ji, J.Z. Xu, Hierarchical SnO2 hollow sub-microspheres for panchromatic PbS quantum dot-sensitized solar cells. J. Alloys Compd. 709, 187–196 (2017)CrossRef
5.
go back to reference J.M. Kim, H. Choi, C. Nahm, C. Kim, J.I. Kim, W. Lee, S. Kang, B. Lee, T. Hwang, H.H. Park, Graded bandgap structure for PbS/CdS/ZnS quantum-dot-sensitized solar cells with a PbxCd1–xS interlayer. Appl. Phys. Lett. 102, 183901 (2013)CrossRef J.M. Kim, H. Choi, C. Nahm, C. Kim, J.I. Kim, W. Lee, S. Kang, B. Lee, T. Hwang, H.H. Park, Graded bandgap structure for PbS/CdS/ZnS quantum-dot-sensitized solar cells with a PbxCd1–xS interlayer. Appl. Phys. Lett. 102, 183901 (2013)CrossRef
6.
go back to reference G.H. Carey, A.L. Abdelhady, Z.J. Ning, S.M. Thon, O.M. Bakr, E.H. Sargent, Colloidal quantum dot solar cells. Chem. Rev. 115, 12732–12763 (2015)CrossRef G.H. Carey, A.L. Abdelhady, Z.J. Ning, S.M. Thon, O.M. Bakr, E.H. Sargent, Colloidal quantum dot solar cells. Chem. Rev. 115, 12732–12763 (2015)CrossRef
7.
go back to reference C. Shen, D. Fichou, Q. Wang, Interfacial engineering for quantum-dot sensitized solar cells. Chem. Asian J. 11, 1183–1193 (2016)CrossRef C. Shen, D. Fichou, Q. Wang, Interfacial engineering for quantum-dot sensitized solar cells. Chem. Asian J. 11, 1183–1193 (2016)CrossRef
8.
go back to reference R. Zhou, L. Wan, H.H. Niu, L. Yang, X.L. Mao, Q.F. Zhang, S.D. Miao, J.Z. Xu, G.Z. Cao, Tailoring band structure of ternary CdSxSe1–x quantum dots for highly efficient sensitized solar cells. Sol. Energy Mater. Sol. Cells 155, 20–29 (2016)CrossRef R. Zhou, L. Wan, H.H. Niu, L. Yang, X.L. Mao, Q.F. Zhang, S.D. Miao, J.Z. Xu, G.Z. Cao, Tailoring band structure of ternary CdSxSe1–x quantum dots for highly efficient sensitized solar cells. Sol. Energy Mater. Sol. Cells 155, 20–29 (2016)CrossRef
9.
go back to reference R. Zhou, Q.F. Zhang, E. Uchaker, J.L. Lan, M. Yin, G.Z. Cao, Mesoporous TiO2 beads for high efficiency CdS/CdSe quantum dot co-sensitized solar cells. J. Mater. Chem. A 2, 2517–2525 (2014)CrossRef R. Zhou, Q.F. Zhang, E. Uchaker, J.L. Lan, M. Yin, G.Z. Cao, Mesoporous TiO2 beads for high efficiency CdS/CdSe quantum dot co-sensitized solar cells. J. Mater. Chem. A 2, 2517–2525 (2014)CrossRef
10.
go back to reference R. Zhou, H.H. Niu, Q.F. Zhang, E. Uchaker, Z.Q. Guo, L. Wan, S.D. Miao, J.Z. Xu, G.Z. Cao, Influence of deposition strategies on CdSe quantum dot-sensitized solar cells: a comparison between successive ionic layer adsorption and reaction and chemical bath deposition. J. Mater. Chem. A 3, 12539–12549 (2015)CrossRef R. Zhou, H.H. Niu, Q.F. Zhang, E. Uchaker, Z.Q. Guo, L. Wan, S.D. Miao, J.Z. Xu, G.Z. Cao, Influence of deposition strategies on CdSe quantum dot-sensitized solar cells: a comparison between successive ionic layer adsorption and reaction and chemical bath deposition. J. Mater. Chem. A 3, 12539–12549 (2015)CrossRef
11.
go back to reference T. Shen, L. Bian, B. Li, K.B. Zheng, T. Pullerits, J.J. Tian, A structure of CdS/CuxS quantum dots sensitized solar cells. Appl. Phys. Lett. 108, 21 (2016) T. Shen, L. Bian, B. Li, K.B. Zheng, T. Pullerits, J.J. Tian, A structure of CdS/CuxS quantum dots sensitized solar cells. Appl. Phys. Lett. 108, 21 (2016)
12.
go back to reference D.R. Baker, P.V. Kamat, Photosensitization of TiO2 nanostructures with CdS quantum dots: particulate versus tubular support architectures. Adv. Funct. Mater. 19, 805–811 (2009)CrossRef D.R. Baker, P.V. Kamat, Photosensitization of TiO2 nanostructures with CdS quantum dots: particulate versus tubular support architectures. Adv. Funct. Mater. 19, 805–811 (2009)CrossRef
13.
go back to reference C.L. Cao, C.G. Hu, W.D. Shen, S.X. Wang, Y.S. Tian, X. Wang, Synthesis and characterization of TiO2/CdS core-shell nanorod arrays and their photoelectrochemical property. J. Alloys Compd. 523, 139–145 (2012)CrossRef C.L. Cao, C.G. Hu, W.D. Shen, S.X. Wang, Y.S. Tian, X. Wang, Synthesis and characterization of TiO2/CdS core-shell nanorod arrays and their photoelectrochemical property. J. Alloys Compd. 523, 139–145 (2012)CrossRef
14.
go back to reference P. Ardalan, T.P. Brennan, H.B.R. Lee, J.R. Bakke, I.K. Ding, M.D. McGehee, S.F. Bent, Effects of self-assembled monolayers on solid-state CdS quantum dot sensitized solar cells. ACS Nano 5, 1495–1504 (2011)CrossRef P. Ardalan, T.P. Brennan, H.B.R. Lee, J.R. Bakke, I.K. Ding, M.D. McGehee, S.F. Bent, Effects of self-assembled monolayers on solid-state CdS quantum dot sensitized solar cells. ACS Nano 5, 1495–1504 (2011)CrossRef
15.
go back to reference D.W. Jeong, J.Y. Park, T.S. Kim, T.Y. Seong, J.Y. Kim, M.J. Ko, B.S. Kim, Fine tuning of colloidal CdSe quantum dot photovoltaic properties by microfluidic reactors. Electrochim. Acta 222, 1668–1676 (2016)CrossRef D.W. Jeong, J.Y. Park, T.S. Kim, T.Y. Seong, J.Y. Kim, M.J. Ko, B.S. Kim, Fine tuning of colloidal CdSe quantum dot photovoltaic properties by microfluidic reactors. Electrochim. Acta 222, 1668–1676 (2016)CrossRef
16.
go back to reference C. Ratanatawanate, C.R. Xiong, K.J. Balkus, Fabrication of PbS quantum dot doped TiO2 nanotubes. ACS Nano 2, 1682–1688 (2008)CrossRef C. Ratanatawanate, C.R. Xiong, K.J. Balkus, Fabrication of PbS quantum dot doped TiO2 nanotubes. ACS Nano 2, 1682–1688 (2008)CrossRef
17.
go back to reference J.J. Tian, T. Shen, X.G. Liu, C.B. Fei, L.L. Lv, G.Z. Cao, Enhanced performance of PbS-quantum-dot-sensitized solar cells via optimizing precursor solution and electrolytes. Sci. Rep. 6, 23094 (2016)CrossRef J.J. Tian, T. Shen, X.G. Liu, C.B. Fei, L.L. Lv, G.Z. Cao, Enhanced performance of PbS-quantum-dot-sensitized solar cells via optimizing precursor solution and electrolytes. Sci. Rep. 6, 23094 (2016)CrossRef
18.
go back to reference S.K. Sarkar, J.Y. Kim, D.N. Goldstein, N.R. Neale, K. Zhu, C.M. Elliot, A.J. Frank, S.M. George, In2S3 atomic layer deposition and its application as a sensitizer on TiO2 nanotube arrays for solar energy conversion. J. Phys. Chem. C 114, 8032–8039 (2010)CrossRef S.K. Sarkar, J.Y. Kim, D.N. Goldstein, N.R. Neale, K. Zhu, C.M. Elliot, A.J. Frank, S.M. George, In2S3 atomic layer deposition and its application as a sensitizer on TiO2 nanotube arrays for solar energy conversion. J. Phys. Chem. C 114, 8032–8039 (2010)CrossRef
19.
go back to reference P.Z. Yang, Q.W. Tang, C.M. Ji, H.B. Wang, A strategy of combining SILAR with solvothermal process for In2S3 sensitized quantum dot-sensitized solar cells. Appl. Surf. Sci. 357, 666–671 (2015)CrossRef P.Z. Yang, Q.W. Tang, C.M. Ji, H.B. Wang, A strategy of combining SILAR with solvothermal process for In2S3 sensitized quantum dot-sensitized solar cells. Appl. Surf. Sci. 357, 666–671 (2015)CrossRef
20.
go back to reference Y.T. Li, L. Wei, X.Y. Chen et al., Efficient PbS/CdS co-sensitized solar cells based on TiO2 nanorod arrays. Nanoscale Res. Lett. 8, 1–7 (2013)CrossRef Y.T. Li, L. Wei, X.Y. Chen et al., Efficient PbS/CdS co-sensitized solar cells based on TiO2 nanorod arrays. Nanoscale Res. Lett. 8, 1–7 (2013)CrossRef
21.
go back to reference C.C. Liu, Z.F. Liu, Y.B. Li et al., CdS/PbS co-sensitized ZnO nanorods and its photovoltaic properties. Appl. Surf. Sci. 257, 7041–7046 (2011)CrossRef C.C. Liu, Z.F. Liu, Y.B. Li et al., CdS/PbS co-sensitized ZnO nanorods and its photovoltaic properties. Appl. Surf. Sci. 257, 7041–7046 (2011)CrossRef
22.
go back to reference J.H. Borja, Y.V. Vorobiev, R.R. Bon, Thin film solar cells of CdS/PbS chemically deposited by an ammonia-free process. Sol. Energy Mater. Sol. Cells. 95, 1882–1887 (2011)CrossRef J.H. Borja, Y.V. Vorobiev, R.R. Bon, Thin film solar cells of CdS/PbS chemically deposited by an ammonia-free process. Sol. Energy Mater. Sol. Cells. 95, 1882–1887 (2011)CrossRef
23.
go back to reference Y.L. Lee, Y.S. Lo, Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe. Adv. Funct. Mater. 19, 604–609 (2009)CrossRef Y.L. Lee, Y.S. Lo, Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe. Adv. Funct. Mater. 19, 604–609 (2009)CrossRef
24.
go back to reference N. Zhou, G.P. Chen, X.L. Zhang, L.Y. Cheng, Y.H. Luo, D.M. Li, Q.B. Meng, Highly efficient PbS/CdS co-sensitized solar cells based on photoanodes with hierarchical pore distribution. Electrochem. Commun. 20, 97–100 (2012)CrossRef N. Zhou, G.P. Chen, X.L. Zhang, L.Y. Cheng, Y.H. Luo, D.M. Li, Q.B. Meng, Highly efficient PbS/CdS co-sensitized solar cells based on photoanodes with hierarchical pore distribution. Electrochem. Commun. 20, 97–100 (2012)CrossRef
25.
go back to reference B.K. Liu, Y.F. Xue, J.T. Zhang, D.J. Wang, T.F. Xie, X.Y. Suo, L.L. Mu, H.Z. Shi, Study on photo-induced charge transfer in the heterointerfaces of CuInS2/CdS co-sensitized mesoporous TiO2 photoelectrode. Electrochim. Acta 192, 370–376 (2016)CrossRef B.K. Liu, Y.F. Xue, J.T. Zhang, D.J. Wang, T.F. Xie, X.Y. Suo, L.L. Mu, H.Z. Shi, Study on photo-induced charge transfer in the heterointerfaces of CuInS2/CdS co-sensitized mesoporous TiO2 photoelectrode. Electrochim. Acta 192, 370–376 (2016)CrossRef
26.
go back to reference M. Samadpour, Efficient CdS/CdSe/ZnS quantum dot sensitized solar cells prepared by ZnS treatment from methanol solvent. Sol. Energy 144, 63–70 (2017)CrossRef M. Samadpour, Efficient CdS/CdSe/ZnS quantum dot sensitized solar cells prepared by ZnS treatment from methanol solvent. Sol. Energy 144, 63–70 (2017)CrossRef
27.
go back to reference Q. Shen, J. Kobayashi, L.J. Diguna, T. Toyoda, Effect of ZnS coating on the photovoltaic properties of CdSe quantum dot-sensitized solar cells. J. Appl. Phys. 103, 8 (2008) Q. Shen, J. Kobayashi, L.J. Diguna, T. Toyoda, Effect of ZnS coating on the photovoltaic properties of CdSe quantum dot-sensitized solar cells. J. Appl. Phys. 103, 8 (2008)
28.
go back to reference M. Marandi, E. Rahmani, F.A. Farahani, Optimization of the photoanode of CdS quantum dot-sensitized solar cells using light-scattering TiO2 hollow spheres. J. Electron. Mater. 46, 6769–6783 (2017)CrossRef M. Marandi, E. Rahmani, F.A. Farahani, Optimization of the photoanode of CdS quantum dot-sensitized solar cells using light-scattering TiO2 hollow spheres. J. Electron. Mater. 46, 6769–6783 (2017)CrossRef
29.
go back to reference M.M. Aslam, S.M. Ali, A. Fatehmulla, W.A. Farooq, M. Atif, A.M. Al-Dhafiri, M.A. Shar, Growth and characterization of layer by layer CdS-ZnS QDs on dandelion like TiO2 microspheres for QDSSC application. Mater. Sci. Semicond. Process. 36, 57–64 (2015)CrossRef M.M. Aslam, S.M. Ali, A. Fatehmulla, W.A. Farooq, M. Atif, A.M. Al-Dhafiri, M.A. Shar, Growth and characterization of layer by layer CdS-ZnS QDs on dandelion like TiO2 microspheres for QDSSC application. Mater. Sci. Semicond. Process. 36, 57–64 (2015)CrossRef
30.
go back to reference Z. Wang, X.Z. Wang, X.S. Jiang, J.J. Tao, Z.Z. Gong, Y.L. Cheng, M.A. Zhang, L. Yang, J.G. Lv, G. He, CdS/ZnS co-sensitized hierarchical TiO2 nanotree array with rutile/anatase junctions for enhanced photoelectrochemical performance. J. Electrochem. Soc. 163, H1041–H1046 (2016)CrossRef Z. Wang, X.Z. Wang, X.S. Jiang, J.J. Tao, Z.Z. Gong, Y.L. Cheng, M.A. Zhang, L. Yang, J.G. Lv, G. He, CdS/ZnS co-sensitized hierarchical TiO2 nanotree array with rutile/anatase junctions for enhanced photoelectrochemical performance. J. Electrochem. Soc. 163, H1041–H1046 (2016)CrossRef
31.
go back to reference H.G. Yang, C.H. Sun, S.Z. Qiao, J. Zou, G. Liu, S.C. Smith, H.M. Cheng, G.Q. Lu, Anatase TiO2 Single crystals with a large percentage of reactive facets. Nature 453, 638–641 (2008)CrossRef H.G. Yang, C.H. Sun, S.Z. Qiao, J. Zou, G. Liu, S.C. Smith, H.M. Cheng, G.Q. Lu, Anatase TiO2 Single crystals with a large percentage of reactive facets. Nature 453, 638–641 (2008)CrossRef
32.
go back to reference C.V.V.M. Gopi, M.V. Haritha, S.K. Kim, H.J. Kim, A strategy to improve the energy conversion efficiency and stability of quantum dot-sensitized solar cells using manganese-doped cadmium sulfide quantum dots. Dalton Trans. 44, 630 (2015)CrossRef C.V.V.M. Gopi, M.V. Haritha, S.K. Kim, H.J. Kim, A strategy to improve the energy conversion efficiency and stability of quantum dot-sensitized solar cells using manganese-doped cadmium sulfide quantum dots. Dalton Trans. 44, 630 (2015)CrossRef
Metadata
Title
Optimization of the CdS quantum dot sensitized solar cells with ZnS passivation layer
Authors
Wei Zheng
Yinan Zhang
Di Wang
Qiming Wang
Publication date
07-07-2018
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 17/2018
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-9616-9

Other articles of this Issue 17/2018

Journal of Materials Science: Materials in Electronics 17/2018 Go to the issue