Skip to main content
Top
Published in: Progress in Artificial Intelligence 2/2015

01-03-2015 | Regular Paper

Optimizing different loss functions in multilabel classifications

Authors: Jorge Díez, Oscar Luaces, Juan José del Coz, Antonio Bahamonde

Published in: Progress in Artificial Intelligence | Issue 2/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Multilabel classification (ML) aims to assign a set of labels to an instance. This generalization of multiclass classification yields to the redefinition of loss functions and the learning tasks become harder. The objective of this paper is to gain insights into the relations of optimization aims and some of the most popular performance measures: subset (or 0/1), Hamming, and the example-based F-measure. To make a fair comparison, we implemented three ML learners for optimizing explicitly each one of these measures in a common framework. This can be done considering a subset of labels as a structured output. Then, we use structured output support vector machines tailored to optimize a given loss function. The paper includes an exhaustive experimental comparison. The conclusion is that in most cases, the optimization of the Hamming loss produces the best or competitive scores. This is a practical result since the Hamming loss can be minimized using a bunch of binary classifiers, one for each label separately, and therefore, it is a scalable and fast method to learn ML tasks. Additionally, we observe that in noise-free learning tasks optimizing the subset loss is the best option, but the differences are very small. We have also noticed that the biggest room for improvement can be found when the goal is to optimize an F-measure in noisy learning tasks.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
http://​www.​aic.​uniovi.​es/​ml_​generator/​.
Table 1
Cardinality and density statistics of the 48 free-noise datasets
 
Cardinality
Density (%)
50 Labels
   Max
4.3
9
   Min
2.5
5
   Mean
3.3
7
   SD
0.5
1
25 Labels
   Max
4.3
17
   Min
2.4
10
   Mean
3.1
13
   SD
0.6
2
10 Labels
   Max
4.0
40
   Min
1.8
18
   Mean
2.9
29
   SD
0.7
7
Datasets with Bernoulli and swap noise present similar figures
 
Literature
1.
go back to reference Cheng, W., Hüllermeier, E.: Combining instance-based learning and logistic regression for multilabel classification. Mach Learn 76(2), 211–225 (2009)CrossRef Cheng, W., Hüllermeier, E.: Combining instance-based learning and logistic regression for multilabel classification. Mach Learn 76(2), 211–225 (2009)CrossRef
2.
go back to reference Crammer, K., Singer, Y.: On the algorithmic implementation of multiclass kernel-based vector machines. J Mach Learn Res 2, 265–292 (2002)MATH Crammer, K., Singer, Y.: On the algorithmic implementation of multiclass kernel-based vector machines. J Mach Learn Res 2, 265–292 (2002)MATH
3.
go back to reference Dembczyński, K., Cheng, W., Hüllermeier, E.: Bayes optimal multilabel classification via probabilistic classifier chains. In: Proceedings of the International Conference on Machine Learning (ICML) (2010) Dembczyński, K., Cheng, W., Hüllermeier, E.: Bayes optimal multilabel classification via probabilistic classifier chains. In: Proceedings of the International Conference on Machine Learning (ICML) (2010)
4.
go back to reference Dembczyński, K., Kotłowski, W., Jachnik, A., Waegeman, W., Hüllermeier, E.: Optimizing the f-measure in multi-label classification: plug-in rule approach versus structured loss minimization. ICML (2013) Dembczyński, K., Kotłowski, W., Jachnik, A., Waegeman, W., Hüllermeier, E.: Optimizing the f-measure in multi-label classification: plug-in rule approach versus structured loss minimization. ICML (2013)
5.
go back to reference Dembczyński, K., Waegeman, W., Cheng, W., Hüllermeier, E.: An exact algorithm for F-measure maximization. In: Proceedings of the neural information processing systems (NIPS) (2011) Dembczyński, K., Waegeman, W., Cheng, W., Hüllermeier, E.: An exact algorithm for F-measure maximization. In: Proceedings of the neural information processing systems (NIPS) (2011)
6.
go back to reference Dembczyński, K., Waegeman, W., Cheng, W., Hüllermeier, E.: On label dependence and loss minimization in multi-label classification. Mach Learn 88, 1–41 (2012)CrossRefMathSciNet Dembczyński, K., Waegeman, W., Cheng, W., Hüllermeier, E.: On label dependence and loss minimization in multi-label classification. Mach Learn 88, 1–41 (2012)CrossRefMathSciNet
7.
go back to reference Díez, J., del Coz, J.J., Luaces, O., Bahamonde, A.: Tensor products to optimize label-based loss measures in multilabel classifications. Tech. rep., Centro de Inteligencia Artificial. Universidad de Oviedo at Gijón (2012) Díez, J., del Coz, J.J., Luaces, O., Bahamonde, A.: Tensor products to optimize label-based loss measures in multilabel classifications. Tech. rep., Centro de Inteligencia Artificial. Universidad de Oviedo at Gijón (2012)
8.
go back to reference Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In: Proceedings of the Annual Conference on Neural Information Processing Systems (NIPS), pp. 681–687. MIT Press, Cambridge (2001) Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In: Proceedings of the Annual Conference on Neural Information Processing Systems (NIPS), pp. 681–687. MIT Press, Cambridge (2001)
9.
go back to reference Gao, W., Zhou, Z.H.: On the consistency of multi-label learning. J Mach Learn Res Proc Track (COLT) 19, 341–358 (2011) Gao, W., Zhou, Z.H.: On the consistency of multi-label learning. J Mach Learn Res Proc Track (COLT) 19, 341–358 (2011)
10.
go back to reference Ghamrawi, N., McCallum, A.: Collective multi-label classification. In: Proceedings of the 14th ACM International Conference on Information and Knowledge Management, pp. 195–200. ACM, New York (2005) Ghamrawi, N., McCallum, A.: Collective multi-label classification. In: Proceedings of the 14th ACM International Conference on Information and Knowledge Management, pp. 195–200. ACM, New York (2005)
11.
go back to reference Hariharan, B., Vishwanathan, S., Varma, M.: Efficient max-margin multi-label classification with applications to zero-shot learning. Mach Learn 88(1–2), 127–155 (2012)CrossRefMATHMathSciNet Hariharan, B., Vishwanathan, S., Varma, M.: Efficient max-margin multi-label classification with applications to zero-shot learning. Mach Learn 88(1–2), 127–155 (2012)CrossRefMATHMathSciNet
12.
go back to reference Joachims, T.: A support vector method for multivariate performance measures. In: Proceedings of the International Conference on Machine Learning (ICML) (2005) Joachims, T.: A support vector method for multivariate performance measures. In: Proceedings of the International Conference on Machine Learning (ICML) (2005)
13.
go back to reference Joachims, T.: Training linear SVMs in linear time. In: Proceedings of the ACM Conference on Knowledge Discovery and Data Mining (KDD). ACM, New York (2006) Joachims, T.: Training linear SVMs in linear time. In: Proceedings of the ACM Conference on Knowledge Discovery and Data Mining (KDD). ACM, New York (2006)
14.
go back to reference Joachims, T., Finley, T., Yu, C.: Cutting-plane training of structural svms. Mach Learn 77(1), 27–59 (2009)CrossRefMATH Joachims, T., Finley, T., Yu, C.: Cutting-plane training of structural svms. Mach Learn 77(1), 27–59 (2009)CrossRefMATH
15.
go back to reference Lampert, C.H.: Maximum margin multi-label structured prediction. In: Advances in Neural Information Processing Systems, pp. 289–297 (2011) Lampert, C.H.: Maximum margin multi-label structured prediction. In: Advances in Neural Information Processing Systems, pp. 289–297 (2011)
16.
go back to reference Luaces, O., Dfez, J., Barranquero, J., del Coz, J.J., Bahamonde, A.: Binary relevance efficacy for multilabel classification. Prog Artif Intell 4(1), 303–313 (2012)CrossRef Luaces, O., Dfez, J., Barranquero, J., del Coz, J.J., Bahamonde, A.: Binary relevance efficacy for multilabel classification. Prog Artif Intell 4(1), 303–313 (2012)CrossRef
18.
go back to reference Montañés, E., Quevedo, J., del Coz, J.: Aggregating independent and dependent models to learn multi-label classifiers. In: Proceedings of European Conference on Machine Learning and Knowledge Discovery in Databases (ECML-PKDD), pp. 484–500. Springer, Berlin (2011) Montañés, E., Quevedo, J., del Coz, J.: Aggregating independent and dependent models to learn multi-label classifiers. In: Proceedings of European Conference on Machine Learning and Knowledge Discovery in Databases (ECML-PKDD), pp. 484–500. Springer, Berlin (2011)
19.
go back to reference Montañes, E., Senge, R., Barranquero, J., Ramón Quevedo, J., José del Coz, J., Hüllermeier, E.: Dependent binary relevance models for multi-label classification. Pattern Recognit 47(3), 1494–1508 (2014)CrossRef Montañes, E., Senge, R., Barranquero, J., Ramón Quevedo, J., José del Coz, J., Hüllermeier, E.: Dependent binary relevance models for multi-label classification. Pattern Recognit 47(3), 1494–1508 (2014)CrossRef
20.
go back to reference Petterson, J., Caetano, T.: Reverse multi-label learning. In: Proceedings of the Annual Conference on Neural Information Processing Systems (NIPS), pp. 1912–1920 (2010) Petterson, J., Caetano, T.: Reverse multi-label learning. In: Proceedings of the Annual Conference on Neural Information Processing Systems (NIPS), pp. 1912–1920 (2010)
21.
go back to reference Petterson, J., Caetano, T.S.: Submodular multi-label learning. In: Proceedings of the Annual Conference on Neural Information Processing Systems (NIPS), pp. 1512–1520 (2011) Petterson, J., Caetano, T.S.: Submodular multi-label learning. In: Proceedings of the Annual Conference on Neural Information Processing Systems (NIPS), pp. 1512–1520 (2011)
22.
go back to reference Quevedo, J.R., Luaces, O., Bahamonde, A.: Multilabel classifiers with a probabilistic thresholding strategy. Pattern Recognit 45(2), 876–883 (2012)MATH Quevedo, J.R., Luaces, O., Bahamonde, A.: Multilabel classifiers with a probabilistic thresholding strategy. Pattern Recognit 45(2), 876–883 (2012)MATH
23.
go back to reference Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. In: Proceedings of European Conference on Machine Learning and Knowledge Discovery in Databases (ECML-PKDD), pp. 254–269 (2009) Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. In: Proceedings of European Conference on Machine Learning and Knowledge Discovery in Databases (ECML-PKDD), pp. 254–269 (2009)
24.
go back to reference Schapire, R., Singer, Y.: Boostexter: a boosting-based system for text categorization. Mach Learn 39(2), 135–168 (2000)CrossRefMATH Schapire, R., Singer, Y.: Boostexter: a boosting-based system for text categorization. Mach Learn 39(2), 135–168 (2000)CrossRefMATH
25.
go back to reference Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods for structured and interdependent output variables. J Mach Learn Res 6(2), 1453 (2006)MathSciNet Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods for structured and interdependent output variables. J Mach Learn Res 6(2), 1453 (2006)MathSciNet
26.
go back to reference Tsoumakas, G., Katakis, I.: Multi labelclassification: an overview. Int J Data Wareh Min 3(3), 1–13 (2007)CrossRef Tsoumakas, G., Katakis, I.: Multi labelclassification: an overview. Int J Data Wareh Min 3(3), 1–13 (2007)CrossRef
27.
go back to reference Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining multilabel data. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook. Springer, Berlin (2010) Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining multilabel data. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook. Springer, Berlin (2010)
28.
go back to reference Tsoumakas, G., Katakis, I., Vlahavas, I.: Random k-labelsets for multi-label classification. IEEE Trans Knowl Discov Data Eng 23, 1079–1089 (2010)CrossRef Tsoumakas, G., Katakis, I., Vlahavas, I.: Random k-labelsets for multi-label classification. IEEE Trans Knowl Discov Data Eng 23, 1079–1089 (2010)CrossRef
29.
go back to reference Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)MATH Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)MATH
31.
go back to reference Zaragoza, J., Sucar, L., Bielza, C., Larrañaga, P.: Bayesian chain classifiers for multidimensional classification. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI) (2011) Zaragoza, J., Sucar, L., Bielza, C., Larrañaga, P.: Bayesian chain classifiers for multidimensional classification. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI) (2011)
32.
go back to reference Zhang, M.L., Zhou, Z.H.: ML-KNN: a lazy learning approach to multi-label learning. Pattern Recognit 40(7), 2038–2048 (2007)CrossRefMATH Zhang, M.L., Zhou, Z.H.: ML-KNN: a lazy learning approach to multi-label learning. Pattern Recognit 40(7), 2038–2048 (2007)CrossRefMATH
Metadata
Title
Optimizing different loss functions in multilabel classifications
Authors
Jorge Díez
Oscar Luaces
Juan José del Coz
Antonio Bahamonde
Publication date
01-03-2015
Publisher
Springer Berlin Heidelberg
Published in
Progress in Artificial Intelligence / Issue 2/2015
Print ISSN: 2192-6352
Electronic ISSN: 2192-6360
DOI
https://doi.org/10.1007/s13748-014-0060-7

Premium Partner