Skip to main content
Top
Published in: Structural and Multidisciplinary Optimization 6/2018

30-10-2018 | Research Paper

Optimizing supports for additive manufacturing

Authors: Grégoire Allaire, Beniamin Bogosel

Published in: Structural and Multidisciplinary Optimization | Issue 6/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In additive manufacturing process, support structures are often required to ensure the quality of the final built part. In this article, we present mathematical models and their numerical implementations in an optimization loop, which allow us to design optimal support structures. Our models are derived with the requirement that they should be as simple as possible, computationally cheap, and, yet, based on a realistic physical modelling. Supports are optimized with respect to two different physical properties. First, they must support overhanging regions of the structure for improving the stiffness of the supported structure during the building process. Second, supports can help in channeling the heat flux produced by the source term (typically a laser beam) and thus improving the cooling down of the structure during the fabrication process. Of course, more involved constraints or manufacturability conditions could be taken into account, most notably removal of supports. Our work is just a first step, proposing a general framework for support optimization. Our optimization algorithm is based on the level set method and on the computation of shape derivatives by the Hadamard method. In a first approach, only the shape and topology of the supports are optimized, for a given and fixed structure. In a second and more elaborated strategy, both the supports and the structure are optimized, which amounts to a specific multiphase optimization problem. Numerical examples are given in 2D and 3D.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Allaire G (2007a) Conception optimale de structures, volume 58 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Berlin Allaire G (2007a) Conception optimale de structures, volume 58 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Berlin
go back to reference Allaire G (2007b) Numerical analysis and optimization. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford. An introduction to mathematical modelling and numerical simulation, Translated from the French by Alan CraigMATH Allaire G (2007b) Numerical analysis and optimization. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford. An introduction to mathematical modelling and numerical simulation, Translated from the French by Alan CraigMATH
go back to reference Allaire G, Jouve F (2005) A level-set method for vibration and multiple loads structural optimization. Comput Methods Appl Mech Eng 194(30):3269–3290MathSciNetCrossRef Allaire G, Jouve F (2005) A level-set method for vibration and multiple loads structural optimization. Comput Methods Appl Mech Eng 194(30):3269–3290MathSciNetCrossRef
go back to reference Allaire G, Jouve F, Toader A-M (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393MathSciNetCrossRef Allaire G, Jouve F, Toader A-M (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393MathSciNetCrossRef
go back to reference Allaire G, Dapogny C, Delgado G, Michailidis G (2014) Multi-phase structural optimization via a level set method. ESAIM Control Optim Calc Var 20(2):576–611MathSciNetCrossRef Allaire G, Dapogny C, Delgado G, Michailidis G (2014) Multi-phase structural optimization via a level set method. ESAIM Control Optim Calc Var 20(2):576–611MathSciNetCrossRef
go back to reference Allaire G, Jouve F, Michailidis G (2016a) Molding direction constraints in structural optimization via a level-set method. In: Variational analysis and aerospace engineering, volume 116 of Springer Optim Appl. Springer, Cham, pp 1–39 Allaire G, Jouve F, Michailidis G (2016a) Molding direction constraints in structural optimization via a level-set method. In: Variational analysis and aerospace engineering, volume 116 of Springer Optim Appl. Springer, Cham, pp 1–39
go back to reference Allaire G, Jouve F, Michailidis G (2016b) Thickness control in structural optimization via a level set method. Struct Multidiscip Optim 53(6):1349–1382MathSciNetCrossRef Allaire G, Jouve F, Michailidis G (2016b) Thickness control in structural optimization via a level set method. Struct Multidiscip Optim 53(6):1349–1382MathSciNetCrossRef
go back to reference Allaire G, Dapogny C, Estevez R, Faure A, Michailidis G (2017a) Structural optimization under overhang constraints imposed by additive manufacturing technologies. J Comput Phys 351:295–328MathSciNetCrossRef Allaire G, Dapogny C, Estevez R, Faure A, Michailidis G (2017a) Structural optimization under overhang constraints imposed by additive manufacturing technologies. J Comput Phys 351:295–328MathSciNetCrossRef
go back to reference Allaire G, Dapogny C, Faure A, Michailidis G (2017b) Shape optimization of a layer by layer mechanical constraint for additive manufacturing. C R Math Acad Sci Paris 355(6):699–717MathSciNetCrossRef Allaire G, Dapogny C, Faure A, Michailidis G (2017b) Shape optimization of a layer by layer mechanical constraint for additive manufacturing. C R Math Acad Sci Paris 355(6):699–717MathSciNetCrossRef
go back to reference Barlier C, Bernard A (2016) Fabrication additive - Du Prototypage Rapide à l’impression, vol 3D. Dunod, Paris Barlier C, Bernard A (2016) Fabrication additive - Du Prototypage Rapide à l’impression, vol 3D. Dunod, Paris
go back to reference Birgin EG, Martínez JM (2014) Practical augmented Lagrangian methods for constrained optimization, volume 10 of Fundamentals of Algorithms. Society for Industrial and Applied Mathematics (SIAM), PhiladelphiaCrossRef Birgin EG, Martínez JM (2014) Practical augmented Lagrangian methods for constrained optimization, volume 10 of Fundamentals of Algorithms. Society for Industrial and Applied Mathematics (SIAM), PhiladelphiaCrossRef
go back to reference Bruggi M, Parolini N, Regazzoni F, Verani M (2017) Finite element approximation of an evolutionary topology optimization problem. Addit Manuf 12(Part A):60–70 Bruggi M, Parolini N, Regazzoni F, Verani M (2017) Finite element approximation of an evolutionary topology optimization problem. Addit Manuf 12(Part A):60–70
go back to reference Bui C, Dapogny C, Frey P (2012) An accurate anisotropic adaptation method for solving the level set advection equation. Int J Numer Methods Fluids 70(7):899–922MathSciNetCrossRef Bui C, Dapogny C, Frey P (2012) An accurate anisotropic adaptation method for solving the level set advection equation. Int J Numer Methods Fluids 70(7):899–922MathSciNetCrossRef
go back to reference Cacace S, Cristiani E, Rocchi L (2017) A level set based method for fixing overhangs in 3D printing. Appl Math Model 44:446–455MathSciNetCrossRef Cacace S, Cristiani E, Rocchi L (2017) A level set based method for fixing overhangs in 3D printing. Appl Math Model 44:446–455MathSciNetCrossRef
go back to reference Calignano F (2014) Design optimization of supports for overhanging structures in aluminium and titanium alloys by selective laser melting. Mater Des 64:203–213CrossRef Calignano F (2014) Design optimization of supports for overhanging structures in aluminium and titanium alloys by selective laser melting. Mater Des 64:203–213CrossRef
go back to reference Céa J (1986) Conception optimale ou identification de formes: calcul rapide de la dérivée directionnelle de la fonction coût. RAIRO Modél. Math Anal Numér 20(3):371–402MathSciNetCrossRef Céa J (1986) Conception optimale ou identification de formes: calcul rapide de la dérivée directionnelle de la fonction coût. RAIRO Modél. Math Anal Numér 20(3):371–402MathSciNetCrossRef
go back to reference Dapogny C, Frey P (2012) Computation of the signed distance function to a discrete contour on adapted triangulation. Calcolo 49(3):193–219MathSciNetCrossRef Dapogny C, Frey P (2012) Computation of the signed distance function to a discrete contour on adapted triangulation. Calcolo 49(3):193–219MathSciNetCrossRef
go back to reference Dumas J, Hergel J, Lefebvre S (2014) Bridging the gap: automated steady scaffoldings for 3d printing. ACM Trans Graph 33(4):98:1–98:10CrossRef Dumas J, Hergel J, Lefebvre S (2014) Bridging the gap: automated steady scaffoldings for 3d printing. ACM Trans Graph 33(4):98:1–98:10CrossRef
go back to reference Gan M, Wong C (2016) Practical support structures for selective laser melting. J Mater Process Technol 238:474–484CrossRef Gan M, Wong C (2016) Practical support structures for selective laser melting. J Mater Process Technol 238:474–484CrossRef
go back to reference Gardan N, Schneider A (2015) Topological optimization of internal patterns and support in additive manufacturing. J Manuf Syst 37:417–425CrossRef Gardan N, Schneider A (2015) Topological optimization of internal patterns and support in additive manufacturing. J Manuf Syst 37:417–425CrossRef
go back to reference Gibson I, Rosen D, Stucker B (2015) Additive manufacturing technologies. Springer, New YorkCrossRef Gibson I, Rosen D, Stucker B (2015) Additive manufacturing technologies. Springer, New YorkCrossRef
go back to reference Henrot A, Pierre M (2005) Variation et optimisation de formes, volume 48 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Berlin Henrot A, Pierre M (2005) Variation et optimisation de formes, volume 48 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Berlin
go back to reference Hu K, Jin S, Wang CC (2015) Support slimming for single material based additive manufacturing. Comput Aided Des 65:1–10CrossRef Hu K, Jin S, Wang CC (2015) Support slimming for single material based additive manufacturing. Comput Aided Des 65:1–10CrossRef
go back to reference Huang X, Ye C, Wu S, Guo K, Mo J (2008) Sloping wall structure support generation for fused deposition modeling. Int J Adv Manuf Technol 42(11):1074 Huang X, Ye C, Wu S, Guo K, Mo J (2008) Sloping wall structure support generation for fused deposition modeling. Int J Adv Manuf Technol 42(11):1074
go back to reference Hussein A, Hao L, Yan C, Everson R, Young P (2013) Advanced lattice support structures for metal additive manufacturing. J Mater Process Technol 213(7):1019–1026CrossRef Hussein A, Hao L, Yan C, Everson R, Young P (2013) Advanced lattice support structures for metal additive manufacturing. J Mater Process Technol 213(7):1019–1026CrossRef
go back to reference Kuo Y-H, Cheng C-C, Lin Y-S, San C-H (2018) Support structure design in additive manufacturing based on topology optimization. Struct Multidiscip Optim 57(1):183–195MathSciNetCrossRef Kuo Y-H, Cheng C-C, Lin Y-S, San C-H (2018) Support structure design in additive manufacturing based on topology optimization. Struct Multidiscip Optim 57(1):183–195MathSciNetCrossRef
go back to reference Langelaar M (2016) Topology optimization of 3d self-supporting structures for additive manufacturing. Addit Manuf 12(Part A):60–70CrossRef Langelaar M (2016) Topology optimization of 3d self-supporting structures for additive manufacturing. Addit Manuf 12(Part A):60–70CrossRef
go back to reference Leary M, Merli L, Torti F, Mazur M, Brandt M (2014) Optimal topology for additive manufacture: a method for enabling additive manufacture of support-free optimal structures. Mater Des 63(Supplement C):678–690CrossRef Leary M, Merli L, Torti F, Mazur M, Brandt M (2014) Optimal topology for additive manufacture: a method for enabling additive manufacture of support-free optimal structures. Mater Des 63(Supplement C):678–690CrossRef
go back to reference Mezzadri F, Bouriakov V, Qian X (2018) Topology optimization of self-supporting support structures for additive manufacturing. Addit Manuf 21:666–682CrossRef Mezzadri F, Bouriakov V, Qian X (2018) Topology optimization of self-supporting support structures for additive manufacturing. Addit Manuf 21:666–682CrossRef
go back to reference Mirzendehdel AM, Suresh K (2016) Support structure constrained topology optimization for additive manufacturing. Comput Aided Des 81:1–13CrossRef Mirzendehdel AM, Suresh K (2016) Support structure constrained topology optimization for additive manufacturing. Comput Aided Des 81:1–13CrossRef
go back to reference Morgan HD, Cherry JA, Jonnalagadda S, Ewing D, Sienz J (2016) Part orientation optimisation for the additive layer manufacture of metal components. Int J Adv Manuf Technol 86(5):1679–1687CrossRef Morgan HD, Cherry JA, Jonnalagadda S, Ewing D, Sienz J (2016) Part orientation optimisation for the additive layer manufacture of metal components. Int J Adv Manuf Technol 86(5):1679–1687CrossRef
go back to reference Mumtaz K, Vora P, Hopkinson N (2011) A method to eliminate anchors/supports from directly laser melted metal powder bed processes. In: Proceedings of solid freeform fabrication symposium, Sheffield, pp 54–64 Mumtaz K, Vora P, Hopkinson N (2011) A method to eliminate anchors/supports from directly laser melted metal powder bed processes. In: Proceedings of solid freeform fabrication symposium, Sheffield, pp 54–64
go back to reference Osher S, Fedkiw R (2003) Level set methods and dynamic implicit surfaces, volume 153 of Applied Mathematical Sciences. Springer, New YorkCrossRef Osher S, Fedkiw R (2003) Level set methods and dynamic implicit surfaces, volume 153 of Applied Mathematical Sciences. Springer, New YorkCrossRef
go back to reference Pironneau O (1984) Optimal shape design for elliptic systems. Springer Series in Computational Physics. Springer, New YorkCrossRef Pironneau O (1984) Optimal shape design for elliptic systems. Springer Series in Computational Physics. Springer, New YorkCrossRef
go back to reference Sethian JA (1999) Level set methods and fast marching methods, volume 3 of Cambridge Monographs on Applied and Computational Mathematics, 2nd edn. Cambridge University Press, Cambridge Sethian JA (1999) Level set methods and fast marching methods, volume 3 of Cambridge Monographs on Applied and Computational Mathematics, 2nd edn. Cambridge University Press, Cambridge
go back to reference Strano G, Hao L, Everson RM, Evans KE (2013) A new approach to the design and optimisation of support structures in additive manufacturing. Int J Adv Manuf Technol 66(9):1247–1254CrossRef Strano G, Hao L, Everson RM, Evans KE (2013) A new approach to the design and optimisation of support structures in additive manufacturing. Int J Adv Manuf Technol 66(9):1247–1254CrossRef
go back to reference Vanek J, Galicia JAG, Benes B (2014) Clever support: efficient support structure generation for digital fabrication. Comput Graphics Forum 33(5):117–125CrossRef Vanek J, Galicia JAG, Benes B (2014) Clever support: efficient support structure generation for digital fabrication. Comput Graphics Forum 33(5):117–125CrossRef
go back to reference Vese L, Chan T (2002) A multiphase level set framework for image segmentation using the mumford and shah model. Int J Comput Vision 50(3):271–293CrossRef Vese L, Chan T (2002) A multiphase level set framework for image segmentation using the mumford and shah model. Int J Comput Vision 50(3):271–293CrossRef
go back to reference Wang MY, Wang X (2004) “Color” level sets: a multi-phase method for structural topology optimization with multiple materials. Comput Methods Appl Mech Eng 193(6-8):469–496MathSciNetCrossRef Wang MY, Wang X (2004) “Color” level sets: a multi-phase method for structural topology optimization with multiple materials. Comput Methods Appl Mech Eng 193(6-8):469–496MathSciNetCrossRef
go back to reference Zhang X, Le X, Panotopoulou A, Whiting E, Wang CCL (2015) Perceptual models of preference in 3d printing direction. ACM Trans Graph 34(6):215:1–215:12CrossRef Zhang X, Le X, Panotopoulou A, Whiting E, Wang CCL (2015) Perceptual models of preference in 3d printing direction. ACM Trans Graph 34(6):215:1–215:12CrossRef
Metadata
Title
Optimizing supports for additive manufacturing
Authors
Grégoire Allaire
Beniamin Bogosel
Publication date
30-10-2018
Publisher
Springer Berlin Heidelberg
Published in
Structural and Multidisciplinary Optimization / Issue 6/2018
Print ISSN: 1615-147X
Electronic ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-018-2125-x

Other articles of this Issue 6/2018

Structural and Multidisciplinary Optimization 6/2018 Go to the issue

Premium Partners