Skip to main content
Top
Published in: Structural and Multidisciplinary Optimization 1/2020

15-02-2020 | Research Paper

Optimum target stiffness allocation for design of a reinforcing member on an existing structure

Authors: Shinyu Kim, Saekyeol Kim, Tae Hee Lee, SeongWook Seo

Published in: Structural and Multidisciplinary Optimization | Issue 1/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The reinforcing members are often added on an existing structure to improve stiffness of the structure up to required level. In general, the design targets for the reinforcing members need to be allocated for their designs. However, since the members are additively designed, it is difficult to predict behavior of the reinforcing members and their influence on the existing structure. Therefore, allocating the design targets is challenging task, and the targets based on engineering experience and intuition can lead to the repetitive design cycles. This paper proposes a method for determining target stiffness of a reinforcing member which makes an existing structure achieve the required performances. To utilize individual models of an existing structure and the reinforcing members in a design, the system of equations of the assembled structure is decomposed by using a substructuring technique. Additional boundary conditions are imposed on the interfaces between the structure and members to ensure consistency between models, and the target stiffness of the member is defined by using the boundary conditions. The optimal target stiffness and design of the members are determined through the use of a multidisciplinary design optimization technique, analytical target cascading. This method is applied to a simple portal frame and a body-in-white with reinforcing member of a vehicle manufactured by Hyundai Motor Company. By using the optimal target stiffness, reinforcing member of any shape can be designed independently and at little cost, without access of the existing structure model.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Adams V (2008) A designer’s guide to simulation with finite element analysis. NAFEMS, Hamilton Adams V (2008) A designer’s guide to simulation with finite element analysis. NAFEMS, Hamilton
go back to reference Allison J T (2004) Complex system optimization: a review of analytical target cascading, collaborative optimization, and other formulations. Master’s thesis University of Michigan, Ann Arbor Allison J T (2004) Complex system optimization: a review of analytical target cascading, collaborative optimization, and other formulations. Master’s thesis University of Michigan, Ann Arbor
go back to reference Austin-Breneman J, Honda T, Yang M C (2012) A study of student design team behaviors in complex system design. J Mech Des 134(12):124504CrossRef Austin-Breneman J, Honda T, Yang M C (2012) A study of student design team behaviors in complex system design. J Mech Des 134(12):124504CrossRef
go back to reference Braun R D (1997) Collaborative optimization: an architecture for large-scale distributed design. Dissertation Stanford University, Stanford Braun R D (1997) Collaborative optimization: an architecture for large-scale distributed design. Dissertation Stanford University, Stanford
go back to reference Cramer E J, Dennis J J E, Frank P D, Lewis R M, Shubin G R (1994) Problem formulation for multidisciplinary optimization. SIAM J Optimiz 4(4):754–776MathSciNetCrossRef Cramer E J, Dennis J J E, Frank P D, Lewis R M, Shubin G R (1994) Problem formulation for multidisciplinary optimization. SIAM J Optimiz 4(4):754–776MathSciNetCrossRef
go back to reference Kang N, Kokkolaras M, Papalambros P Y, Yoo S, Na W, Park J, Featherman D (2014) Optimal design of commercial vehicle systems using analytical target cascading. Struct Multidisc Optim 50(6):1103–1114CrossRef Kang N, Kokkolaras M, Papalambros P Y, Yoo S, Na W, Park J, Featherman D (2014) Optimal design of commercial vehicle systems using analytical target cascading. Struct Multidisc Optim 50(6):1103–1114CrossRef
go back to reference Kim H M (2001) Target cascading in optimal system design. Dissertation University of Michigan, Ann Arbor Kim H M (2001) Target cascading in optimal system design. Dissertation University of Michigan, Ann Arbor
go back to reference Kim H M, Rideout D G, Papalambros P Y, Stein J L (2003) Analytical target cascading in automotive vehicle design. J Mech Des 125(3):481–489CrossRef Kim H M, Rideout D G, Papalambros P Y, Stein J L (2003) Analytical target cascading in automotive vehicle design. J Mech Des 125(3):481–489CrossRef
go back to reference Kim S, Lim W, Kim H, Ryu N, Kwon K, Lim S, Min S, Lee T H (2016) Robust target cascading for improving firing accuracy of combat vehicle. J Mech Sci Tech 30(12):5577–5586CrossRef Kim S, Lim W, Kim H, Ryu N, Kwon K, Lim S, Min S, Lee T H (2016) Robust target cascading for improving firing accuracy of combat vehicle. J Mech Sci Tech 30(12):5577–5586CrossRef
go back to reference Kokkolaras M, Louca L, Delagrammatikas G, Michelena N, Filipi Z, Papalambros P, Stein J, Assanis D (2004) Simulation-based optimal design of heavy trucks by model-based decomposition: an extensive analytical target cascading case study. Int J Heavy Veh Syst 11(3-4):403–433CrossRef Kokkolaras M, Louca L, Delagrammatikas G, Michelena N, Filipi Z, Papalambros P, Stein J, Assanis D (2004) Simulation-based optimal design of heavy trucks by model-based decomposition: an extensive analytical target cascading case study. Int J Heavy Veh Syst 11(3-4):403–433CrossRef
go back to reference Lee H C, Jung Y S, Oh H J, Kim S S (2014) Design of a hybrid composite strut tower for use in automobiles. Adv Compos Mater 23(3):275–291CrossRef Lee H C, Jung Y S, Oh H J, Kim S S (2014) Design of a hybrid composite strut tower for use in automobiles. Adv Compos Mater 23(3):275–291CrossRef
go back to reference Li Y, Lu Z, Michalek J J (2008) Diagonal quadratic approximation for parallelization of analytical target cascading. J Mech Des 130(5):051402CrossRef Li Y, Lu Z, Michalek J J (2008) Diagonal quadratic approximation for parallelization of analytical target cascading. J Mech Des 130(5):051402CrossRef
go back to reference Lim W, Jang J, Kim S, Lee T H, Kim J, Lee K, Lee C, Kim Y (2016) Reliability-based design optimization of an automotive structure using a variable uncertainty. P I Mech Eng D-J Aut 230(10):1314–1323CrossRef Lim W, Jang J, Kim S, Lee T H, Kim J, Lee K, Lee C, Kim Y (2016) Reliability-based design optimization of an automotive structure using a variable uncertainty. P I Mech Eng D-J Aut 230(10):1314–1323CrossRef
go back to reference Martins J R, Lambe A B (2013) Multidisciplinary design optimization: a survey of architectures. AIAA J 51(9):2049–2075CrossRef Martins J R, Lambe A B (2013) Multidisciplinary design optimization: a survey of architectures. AIAA J 51(9):2049–2075CrossRef
go back to reference Michalek J J, Papalambros P Y (2005) An efficient weighting update method to achieve acceptable consistency deviation in analytical target cascading. J Mech Des 127(2):206–214CrossRef Michalek J J, Papalambros P Y (2005) An efficient weighting update method to achieve acceptable consistency deviation in analytical target cascading. J Mech Des 127(2):206–214CrossRef
go back to reference Sobieszczanski-Sobieski J (1988) Optimization by decomposition: a step from hierarchic to non-hierarchic systems. Tech. Rep. NASA-TM-101494, NASA Langley Research Center Sobieszczanski-Sobieski J (1988) Optimization by decomposition: a step from hierarchic to non-hierarchic systems. Tech. Rep. NASA-TM-101494, NASA Langley Research Center
go back to reference Sobieszczanski-Sobieski J, Agte J S, Sandusky R R (2000) Bilevel integrated system synthesis. AIAA J 38(1):164–172CrossRef Sobieszczanski-Sobieski J, Agte J S, Sandusky R R (2000) Bilevel integrated system synthesis. AIAA J 38(1):164–172CrossRef
go back to reference Takamatsu M, Fujita H, Inoue H, Kijima M (1992) Development of lighter-weight, higher-stiffness body for new RX-7. Tech. Rep. 920244, SAE International Takamatsu M, Fujita H, Inoue H, Kijima M (1992) Development of lighter-weight, higher-stiffness body for new RX-7. Tech. Rep. 920244, SAE International
go back to reference Tosserams S, Etman L, Papalambros P, Rooda J (2006) An augmented lagrangian relaxation for analytical target cascading using the alternating direction method of multipliers. Struct Multidisc Optim 31(3):176–189MathSciNetCrossRef Tosserams S, Etman L, Papalambros P, Rooda J (2006) An augmented lagrangian relaxation for analytical target cascading using the alternating direction method of multipliers. Struct Multidisc Optim 31(3):176–189MathSciNetCrossRef
go back to reference Tosserams S, Kokkolaras M, Etman L, Rooda J (2010) A nonhierarchical formulation of analytical target cascading. J Mech Des 132(5):051002CrossRef Tosserams S, Kokkolaras M, Etman L, Rooda J (2010) A nonhierarchical formulation of analytical target cascading. J Mech Des 132(5):051002CrossRef
go back to reference Yang M, Liang X F (2011) Structural reinforced parts for improving roof crush performance. Adv Mat Res 189:391–394 Yang M, Liang X F (2011) Structural reinforced parts for improving roof crush performance. Adv Mat Res 189:391–394
go back to reference Zienkiewicz O C, Taylor R L, Nithiarasu P, Zhu J (1977) The finite element method, vol 3. McGraw-hill, London Zienkiewicz O C, Taylor R L, Nithiarasu P, Zhu J (1977) The finite element method, vol 3. McGraw-hill, London
Metadata
Title
Optimum target stiffness allocation for design of a reinforcing member on an existing structure
Authors
Shinyu Kim
Saekyeol Kim
Tae Hee Lee
SeongWook Seo
Publication date
15-02-2020
Publisher
Springer Berlin Heidelberg
Published in
Structural and Multidisciplinary Optimization / Issue 1/2020
Print ISSN: 1615-147X
Electronic ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-019-02479-1

Other articles of this Issue 1/2020

Structural and Multidisciplinary Optimization 1/2020 Go to the issue

Premium Partners