Skip to main content
Top
Published in: Journal of Electronic Materials 3/2021

04-01-2021 | Original Research Article

Opto-Electronic Properties Modulation Through Iodine Doping of Imine- and Triphenylamine-Based Oligomers

Authors: Andra-Elena Bejan, Cristian-Vasile Diaconu, Mariana-Dana Damaceanu

Published in: Journal of Electronic Materials | Issue 3/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Conjugated imine derivatives are of particular interest for the opto-electronic field since their opto-electronic properties can be finely tailored by protonation or doping of the imine unit, e.g. by iodine doping. In this context, four triphenylamine-based oligoimines were subjected to iodine doping in the solid state and thoroughly investigated with respect to the electronic structure modulation induced by doping. The iodine doping process was analyzed by several methods, such as cyclic voltammetry, ultraviolet–visible absorption and Fourier-transform infrared (FTIR) spectroscopy. In addition, a four-point probe technique was applied to measure the electrical conductivities of both the doped and undoped oligoimines. We have noticed changes of the electronic absorption spectra that consisted of the appearance of a new absorption band due to dopant-induced states within the highest occupied molecular orbital (HOMO)—lowest unoccupied molecular orbital (LUMO) gap. Due to the p-type doping process, a distinct reduction of the energy bandgap occurred, being contingent on the formation of imine polaron states, according to the proposed mechanisms. This was confirmed by FTIR spectroscopy, which indicated the presence of the quinoid skeleton in polaronic species formed by doping. Nevertheless, the iodine doping process of oligoimines was accompanied by new redox processes in both the anodic and cathodic regions. Electrochemical data indicated that iodine-doped oligoimines exhibit a higher electronic affinity (LUMO) and a slightly lower energy bandgap compared to pristine forms. The electrical conductivity values of the undoped oligoimines were found in the range of 6.4 × 10−7–8.14 × 10−8 S/cm and increased eight times after oligoimine iodine-doping only in the case of two oligomers. Since doped oligoimine films display better features compared to their pristine forms, they could find applications in opto-electronic devices.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J. Zhang, H.S. Tan, X. Guo, A. Facchetti, and H. Yan, Nat. Energy 3, 720 (2018).CrossRef J. Zhang, H.S. Tan, X. Guo, A. Facchetti, and H. Yan, Nat. Energy 3, 720 (2018).CrossRef
2.
go back to reference L. Ye, H. Hu, M. Ghasemi, T. Wang, B.A. Collins, J.H. Kim, K. Jiang, J.H. Carpenter, H. Li, Z. Li, T. McAfee, J. Zhao, X. Chen, J.L.Y. Lai, T. Ma, J.L. Bredas, H. Yan, and H. Ade, Nat. Mater. 17, 253 (2018).CrossRef L. Ye, H. Hu, M. Ghasemi, T. Wang, B.A. Collins, J.H. Kim, K. Jiang, J.H. Carpenter, H. Li, Z. Li, T. McAfee, J. Zhao, X. Chen, J.L.Y. Lai, T. Ma, J.L. Bredas, H. Yan, and H. Ade, Nat. Mater. 17, 253 (2018).CrossRef
3.
go back to reference H. Li, J. Wang, Y. Wang, F. Bu, W. Shen, J. Liu, L. Huang, W. Wang, L.A. Belfiore, and J. Tang, Sol. Energ. Mat. Sol. C 190, 83 (2019).CrossRef H. Li, J. Wang, Y. Wang, F. Bu, W. Shen, J. Liu, L. Huang, W. Wang, L.A. Belfiore, and J. Tang, Sol. Energ. Mat. Sol. C 190, 83 (2019).CrossRef
4.
go back to reference J. Wang, C. Zhao, J. Jiao, L. Huang, and J. Tang, J. Mater. Chem. C 8, 28 (2020).CrossRef J. Wang, C. Zhao, J. Jiao, L. Huang, and J. Tang, J. Mater. Chem. C 8, 28 (2020).CrossRef
5.
go back to reference H. Kang, G. Kim, J. Kim, S. Kwon, H. Kim, and K. Lee, Adv. Mater. 28, 7821 (2016).CrossRef H. Kang, G. Kim, J. Kim, S. Kwon, H. Kim, and K. Lee, Adv. Mater. 28, 7821 (2016).CrossRef
6.
go back to reference M.D. Damaceanu, C.P. Constantin, A.E. Bejan, M. Mihaila, M. Kusko, C. Diaconu, I. Mihalache, and R. Pascu, Dyes Pigm. 166, 15 (2019).CrossRef M.D. Damaceanu, C.P. Constantin, A.E. Bejan, M. Mihaila, M. Kusko, C. Diaconu, I. Mihalache, and R. Pascu, Dyes Pigm. 166, 15 (2019).CrossRef
7.
go back to reference W. Porzio, S. Destri, U. Giovanella, M. Pasini, L. Marin, M.D. Iosip, and M. Campione, Thin Solid Films 515, 7318 (2007).CrossRef W. Porzio, S. Destri, U. Giovanella, M. Pasini, L. Marin, M.D. Iosip, and M. Campione, Thin Solid Films 515, 7318 (2007).CrossRef
8.
go back to reference M.D. Damaceanu, L. Marin, T. Manicke, and M. Bruma, Soft Mater. 7, 164 (2009).CrossRef M.D. Damaceanu, L. Marin, T. Manicke, and M. Bruma, Soft Mater. 7, 164 (2009).CrossRef
9.
go back to reference C.P. Constantin, A.E. Bejan, and M.D. Damaceanu, Macromolecules 52, 8040 (2019).CrossRef C.P. Constantin, A.E. Bejan, and M.D. Damaceanu, Macromolecules 52, 8040 (2019).CrossRef
10.
go back to reference A.E. Bejan, C.P. Constantin, and M.D. Damaceanu, J. Phys. Chem. C 123, 15908 (2019).CrossRef A.E. Bejan, C.P. Constantin, and M.D. Damaceanu, J. Phys. Chem. C 123, 15908 (2019).CrossRef
11.
go back to reference M. Grigoras and C.O. Catanescu, J. Macromol. Sci. Polymer Rev. 44, 131 (2004).CrossRef M. Grigoras and C.O. Catanescu, J. Macromol. Sci. Polymer Rev. 44, 131 (2004).CrossRef
14.
go back to reference A. De Fátima, C. de Paula Pereira, C.R.S.D.G. Olímpio, B.G. de Freitas Oliveira, L.L. Franco, and P.H.C. da Silva, J. Adv. Res. 13, 113 (2018).CrossRef A. De Fátima, C. de Paula Pereira, C.R.S.D.G. Olímpio, B.G. de Freitas Oliveira, L.L. Franco, and P.H.C. da Silva, J. Adv. Res. 13, 113 (2018).CrossRef
17.
go back to reference A.G. EI-Shekeil, S.A.M.K. Hamid, and D.A. Ali, Angew. Makromolek. Chem. 253, 99 (1997).CrossRef A.G. EI-Shekeil, S.A.M.K. Hamid, and D.A. Ali, Angew. Makromolek. Chem. 253, 99 (1997).CrossRef
18.
19.
20.
go back to reference S. Koyuncu, I. Kaya, F.B. Koyuncu, and E. Ozdemir, Synth. Met. 159, 1034 (2009).CrossRef S. Koyuncu, I. Kaya, F.B. Koyuncu, and E. Ozdemir, Synth. Met. 159, 1034 (2009).CrossRef
21.
go back to reference O.D. Is, F.B. Koyuncu, S. Koyuncu, and E. Ozdemir, Polymer 51, 1663 (2010).CrossRef O.D. Is, F.B. Koyuncu, S. Koyuncu, and E. Ozdemir, Polymer 51, 1663 (2010).CrossRef
23.
go back to reference A. Islam, D. Zhang, L. Hong, H. Cui, Q. Wei, L. Duan, R. Peng, X. Ouyang, and Z. Ge, J. Photochem. Photobiol. A Chem. 359, 87 (2018).CrossRef A. Islam, D. Zhang, L. Hong, H. Cui, Q. Wei, L. Duan, R. Peng, X. Ouyang, and Z. Ge, J. Photochem. Photobiol. A Chem. 359, 87 (2018).CrossRef
24.
go back to reference S. Xiong, S. Li, X. Zhang, R. Wang, R. Zhang, X. Wang, B. Wu, M. Gong, and J. Chu, J. Electron. Mater. 47, 1167 (2018).CrossRef S. Xiong, S. Li, X. Zhang, R. Wang, R. Zhang, X. Wang, B. Wu, M. Gong, and J. Chu, J. Electron. Mater. 47, 1167 (2018).CrossRef
25.
go back to reference M.D. Damaceanu, M. Mihaila, C.P. Constantin, S. Chisca, B.C. Serban, C. Diaconu, O. Buiu, E.M. Pavelescu, and M. Kusko, RSC Adv. 5, 53687 (2015).CrossRef M.D. Damaceanu, M. Mihaila, C.P. Constantin, S. Chisca, B.C. Serban, C. Diaconu, O. Buiu, E.M. Pavelescu, and M. Kusko, RSC Adv. 5, 53687 (2015).CrossRef
27.
go back to reference H.N. Giang, K. Kinashi, W. Sakai, and N. Tsutsumi, J. Photochem. Photobiol. A 291, 26 (2014).CrossRef H.N. Giang, K. Kinashi, W. Sakai, and N. Tsutsumi, J. Photochem. Photobiol. A 291, 26 (2014).CrossRef
28.
go back to reference A.F. Pozharskii, A.T. Soldatenkov, and A.R. Katritzky, Heterocycles in Life and Society: An Introduction to Heterocyclic Chemistry, Biochemistry and Applications, 2nd ed. (New York: Wiley, 2011).CrossRef A.F. Pozharskii, A.T. Soldatenkov, and A.R. Katritzky, Heterocycles in Life and Society: An Introduction to Heterocyclic Chemistry, Biochemistry and Applications, 2nd ed. (New York: Wiley, 2011).CrossRef
29.
go back to reference T. Eicher and S. Hauptmann, The Chemistry of Heterocycles: Structure, Reactions, Syntheses, and Applications, 2nd ed. (Weinheim: Wiley-VCH, 2003).CrossRef T. Eicher and S. Hauptmann, The Chemistry of Heterocycles: Structure, Reactions, Syntheses, and Applications, 2nd ed. (Weinheim: Wiley-VCH, 2003).CrossRef
30.
31.
33.
go back to reference A.E. Bejan and M.D. Damaceanu, J. Photochem. Photobiol. A Chem. 378, 24 (2019).CrossRef A.E. Bejan and M.D. Damaceanu, J. Photochem. Photobiol. A Chem. 378, 24 (2019).CrossRef
34.
go back to reference B. Hajduk, J. Weszka, B. Jarzabek, J. Jurusik, and M. Domanski, J. Achiev. Mat. Manuf. Eng. 24, 67 (2007). B. Hajduk, J. Weszka, B. Jarzabek, J. Jurusik, and M. Domanski, J. Achiev. Mat. Manuf. Eng. 24, 67 (2007).
35.
go back to reference B. Jarzabek, J. Weszka, B. Hajduk, J. Jurusik, M. Domanski, and J. Cisowski, Synth. Met. 161, 969 (2011).CrossRef B. Jarzabek, J. Weszka, B. Hajduk, J. Jurusik, M. Domanski, and J. Cisowski, Synth. Met. 161, 969 (2011).CrossRef
36.
go back to reference B. Jarząbek, B. Hajduk, J. Jurusik, and M. Domański, Polym. Test 59, 230 (2017).CrossRef B. Jarząbek, B. Hajduk, J. Jurusik, and M. Domański, Polym. Test 59, 230 (2017).CrossRef
37.
go back to reference C. Wang, S. Shieh, E. LeGoff, and M.G. Kanatzidis, Macromolecules 29, 3147 (1996).CrossRef C. Wang, S. Shieh, E. LeGoff, and M.G. Kanatzidis, Macromolecules 29, 3147 (1996).CrossRef
38.
go back to reference F.R. Diaz, J. Moreno, L.H. Tagle, G.A. East, and D. Radie, Synth. Met. 100, 187 (1999).CrossRef F.R. Diaz, J. Moreno, L.H. Tagle, G.A. East, and D. Radie, Synth. Met. 100, 187 (1999).CrossRef
39.
go back to reference D. Sek, B. Jarzabek, E. Grabiec, B. Kaczmarczyk, H. Janeczek, A. Sikora, A. Hreniak, M. Palewicz, M. Lapkowski, K. Karon, and A. Iwan, Synth. Met. 160, 2065 (2010).CrossRef D. Sek, B. Jarzabek, E. Grabiec, B. Kaczmarczyk, H. Janeczek, A. Sikora, A. Hreniak, M. Palewicz, M. Lapkowski, K. Karon, and A. Iwan, Synth. Met. 160, 2065 (2010).CrossRef
40.
go back to reference C.P. Constantin, M.D. Damaceanu, M. Bruma, and R.S. Begunov, Dyes Pigm. 163, 126 (2019).CrossRef C.P. Constantin, M.D. Damaceanu, M. Bruma, and R.S. Begunov, Dyes Pigm. 163, 126 (2019).CrossRef
42.
go back to reference S.F. Chen, Y.K. Fang, S.C. Hou, C.Y. Lin, W.R. Chang, and T.H. Chou, Org. Electron. 6, 92 (2005).CrossRef S.F. Chen, Y.K. Fang, S.C. Hou, C.Y. Lin, W.R. Chang, and T.H. Chou, Org. Electron. 6, 92 (2005).CrossRef
43.
go back to reference Z. Zhuo, F. Zhang, J. Wang, X. Xu, Z. Xu, Y. Wang, and W. Tang, Solid State Electron. 63, 83 (2011). Z. Zhuo, F. Zhang, J. Wang, X. Xu, Z. Xu, Y. Wang, and W. Tang, Solid State Electron. 63, 83 (2011).
44.
go back to reference J. Wang, M. Xiao, W. Chen, M. Qiu, Z. Du, W. Zhu, S. Wen, N. Wang, and R. Yang, Macromolecules 47, 7823 (2014).CrossRef J. Wang, M. Xiao, W. Chen, M. Qiu, Z. Du, W. Zhu, S. Wen, N. Wang, and R. Yang, Macromolecules 47, 7823 (2014).CrossRef
45.
go back to reference D. Ding, J. Wang, Z. Du, F. Li, W. Chen, F. Liu, H. Li, M. Sun, and R. Yang, J. Mater. Chem. A 5, 10430 (2017).CrossRef D. Ding, J. Wang, Z. Du, F. Li, W. Chen, F. Liu, H. Li, M. Sun, and R. Yang, J. Mater. Chem. A 5, 10430 (2017).CrossRef
46.
go back to reference J. Gąsiorowski, E.D. Głowacki, B. Hajduk, M. Siwy, M. Chwastek-Ogierman, J. Weszka, H. Neugebauer, and N.S. Sariciftci, J. Phys. Chem. C 117, 2584 (2013).CrossRef J. Gąsiorowski, E.D. Głowacki, B. Hajduk, M. Siwy, M. Chwastek-Ogierman, J. Weszka, H. Neugebauer, and N.S. Sariciftci, J. Phys. Chem. C 117, 2584 (2013).CrossRef
47.
go back to reference M.D. Damaceanu, R.D. Rusu, A. Nicolescu, and M. Bruma, J. Polym. Sci. A Polym. Chem. 49, 893 (2010).CrossRef M.D. Damaceanu, R.D. Rusu, A. Nicolescu, and M. Bruma, J. Polym. Sci. A Polym. Chem. 49, 893 (2010).CrossRef
49.
go back to reference P.I. Djurovich, E.I. Mayo, S.R. Forrest, and M.E. Thompson, Org. Electron. 10, 515 (2009).CrossRef P.I. Djurovich, E.I. Mayo, S.R. Forrest, and M.E. Thompson, Org. Electron. 10, 515 (2009).CrossRef
50.
go back to reference S.C. Ng, H.S.O. Chan, P.M.L. Wong, K.L. Tan, and B.T.G. Tan, Polymer 39, 4963 (1998).CrossRef S.C. Ng, H.S.O. Chan, P.M.L. Wong, K.L. Tan, and B.T.G. Tan, Polymer 39, 4963 (1998).CrossRef
51.
go back to reference J.L. Bredas, B. Themans, J.G. Fripiat, J.M. Andre, and R.R. Chance, Phys. Rev. B Condens. Matter 29, 6761 (1984).CrossRef J.L. Bredas, B. Themans, J.G. Fripiat, J.M. Andre, and R.R. Chance, Phys. Rev. B Condens. Matter 29, 6761 (1984).CrossRef
Metadata
Title
Opto-Electronic Properties Modulation Through Iodine Doping of Imine- and Triphenylamine-Based Oligomers
Authors
Andra-Elena Bejan
Cristian-Vasile Diaconu
Mariana-Dana Damaceanu
Publication date
04-01-2021
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 3/2021
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-020-08615-8

Other articles of this Issue 3/2021

Journal of Electronic Materials 3/2021 Go to the issue