Skip to main content
Top
Published in:
Cover of the book

2019 | OriginalPaper | Chapter

1. Organic and Carbon Gels: From Laboratory to Industry?

Authors : Ana Arenillas, J. Angel Menéndez, Gudrun Reichenauer, Alain Celzard, Vanessa Fierro, Francisco José Maldonado Hodar, Esther Bailόn-Garcia, Nathalie Job

Published in: Organic and Carbon Gels

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Since the first report on organic gels based on the polycondensation of resorcinol with formaldehyde presented by Pekala in 1989, the number of publications, on both organic gels and carbon gels has experimented an enormous increase to the point where nowadays are published every year more than a hundred papers covering topics ranging from variations in the synthesis to the potential applications of this vast family of porous materials. This is due to the fact that, by controlling the synthesis conditions, it is possible to obtain materials with a suitable porosity for a specific application and even also with predetermined chemical properties, something that is practically impossible to achieve with any other porous materials. However, even after almost 30 years of continuous researching at laboratory scale, their industrial production and commercialization are still marginal compared with that of competitive materials. This chapter summarizes how the physicochemical properties of organic and carbon gels can be designed by controlling all the variables involved in the synthesis process. The chapter also addresses the most challenging problem of their mass production, i.e., scaling-up of production methods currently used in the labs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J.A. Menéndez, I. Martín Gullón, Types of absorbents and their production, in Activated Carbon Surfaces in Environmental Remediation, Interface Science and Technology, ed. by T. Bandosz, vol. 7, (Elsevier, Oxford, 2006), pp. 1–47CrossRef J.A. Menéndez, I. Martín Gullón, Types of absorbents and their production, in Activated Carbon Surfaces in Environmental Remediation, Interface Science and Technology, ed. by T. Bandosz, vol. 7, (Elsevier, Oxford, 2006), pp. 1–47CrossRef
2.
go back to reference R.W. Pekala, Organic aerogels from the polycondensation of resorcinol with formaldehyde. J. Mater. Sci. 24, 3221–3227 (1989)CrossRef R.W. Pekala, Organic aerogels from the polycondensation of resorcinol with formaldehyde. J. Mater. Sci. 24, 3221–3227 (1989)CrossRef
3.
go back to reference N. Job, A. Thery, R. Pirard, et al., Carbon aerogels, cryogels and xerogels: influence of the drying method on the textural properties of porous carbon materials. Carbon 43, 2481–2494 (2005)CrossRef N. Job, A. Thery, R. Pirard, et al., Carbon aerogels, cryogels and xerogels: influence of the drying method on the textural properties of porous carbon materials. Carbon 43, 2481–2494 (2005)CrossRef
4.
go back to reference L. Zubizarreta, A. Arenillas, A. Domínguez, et al., Development of microporous carbon xerogels by controlling synthesis conditions. J. Non-Cryst. Solids 354, 817–825 (2008)CrossRef L. Zubizarreta, A. Arenillas, A. Domínguez, et al., Development of microporous carbon xerogels by controlling synthesis conditions. J. Non-Cryst. Solids 354, 817–825 (2008)CrossRef
5.
go back to reference J. Aleman, A.V. Chadwick, J. He, et al., Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials. Pure Appl. Chem. 79, 1801–1829 (2007)CrossRef J. Aleman, A.V. Chadwick, J. He, et al., Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials. Pure Appl. Chem. 79, 1801–1829 (2007)CrossRef
6.
go back to reference A.A. Smitha, M.S.A. Lekshmi, V. Sekkar, et al., Microporous carbon aerogel prepared through ambient pressure drying route as anode material for lithium ion cells. Polym. Adv. Technol. 28, 1945–1950 (2017)CrossRef A.A. Smitha, M.S.A. Lekshmi, V. Sekkar, et al., Microporous carbon aerogel prepared through ambient pressure drying route as anode material for lithium ion cells. Polym. Adv. Technol. 28, 1945–1950 (2017)CrossRef
8.
go back to reference A.M. Elkhatat, S.A. Al-Muhtaseb, Advances in tailoring resorcinol-formaldehyde organic and carbon gels. Adv. Mater. 23, 2887–2903 (2011)CrossRef A.M. Elkhatat, S.A. Al-Muhtaseb, Advances in tailoring resorcinol-formaldehyde organic and carbon gels. Adv. Mater. 23, 2887–2903 (2011)CrossRef
9.
go back to reference I.D. Alonso-Buenaposada, N. Rey-Raap, E.G. Calvo, et al., Acid-based resorcinol-formaldehyde xerogels synthesized by microwave heating. J. Sol-Gel Sci. Technol. 84, 60–69 (2017)CrossRef I.D. Alonso-Buenaposada, N. Rey-Raap, E.G. Calvo, et al., Acid-based resorcinol-formaldehyde xerogels synthesized by microwave heating. J. Sol-Gel Sci. Technol. 84, 60–69 (2017)CrossRef
10.
go back to reference S. Mulik, C. Sotiriou-Leventis, Resorcinol-formaldehyde aerogels, in Aerogels Handbook. Advances in Sol-Gel Derived Materials and Technologies, ed. by M. Aegerter, N. Leventis, M. Koebel, (Springer, New York, 2011), pp. 215–234 S. Mulik, C. Sotiriou-Leventis, Resorcinol-formaldehyde aerogels, in Aerogels Handbook. Advances in Sol-Gel Derived Materials and Technologies, ed. by M. Aegerter, N. Leventis, M. Koebel, (Springer, New York, 2011), pp. 215–234
11.
go back to reference E.G. Calvo, J.A. Menéndez, A. Arenillas, Influence of alkaline compounds on the porosity of resorcinol-formaldehyde xerogels. J. Non-Cryst. Solids 452, 286–290 (2016)CrossRef E.G. Calvo, J.A. Menéndez, A. Arenillas, Influence of alkaline compounds on the porosity of resorcinol-formaldehyde xerogels. J. Non-Cryst. Solids 452, 286–290 (2016)CrossRef
12.
go back to reference D. Fairen-Jimenez, F. Carrasco-Marín, C. Moreno-Castilla, Porosity and surface area of monolithic carbon aerogels prepared using alkaline carbonates and organic acids as polymerization catalyst. Carbon 44, 2301–2307 (2006)CrossRef D. Fairen-Jimenez, F. Carrasco-Marín, C. Moreno-Castilla, Porosity and surface area of monolithic carbon aerogels prepared using alkaline carbonates and organic acids as polymerization catalyst. Carbon 44, 2301–2307 (2006)CrossRef
13.
go back to reference N. Job, C.J. Gommes, R. Pirard, et al., Effect of the counter-ion of the basification agent on the porous texture of organic and carbon xerogels. J. Non-Cryst. Solids 354, 4698–4701 (2008)CrossRef N. Job, C.J. Gommes, R. Pirard, et al., Effect of the counter-ion of the basification agent on the porous texture of organic and carbon xerogels. J. Non-Cryst. Solids 354, 4698–4701 (2008)CrossRef
14.
go back to reference R.J. Konwar, M. De, Effects of synthesis parameters on zeolite templated carbon for hydrogen storage application. Microporous Mesoporous Mater. 175, 16–24 (2013)CrossRef R.J. Konwar, M. De, Effects of synthesis parameters on zeolite templated carbon for hydrogen storage application. Microporous Mesoporous Mater. 175, 16–24 (2013)CrossRef
15.
go back to reference T. Segakweng, N.M. Musyoka, J. Ren, et al., Comparison of MOF-5 and Cr-MOF-derived carbons for hydrogen storage application. Res. Chem. Intermed. 42, 4951–4961 (2016)CrossRef T. Segakweng, N.M. Musyoka, J. Ren, et al., Comparison of MOF-5 and Cr-MOF-derived carbons for hydrogen storage application. Res. Chem. Intermed. 42, 4951–4961 (2016)CrossRef
16.
go back to reference R. Xu, M. Prodanovic, Effect of pore geometry on nitrogen sorption isotherms interpretation: a pore network modeling study. Fuel 225, 243–255 (2018)CrossRef R. Xu, M. Prodanovic, Effect of pore geometry on nitrogen sorption isotherms interpretation: a pore network modeling study. Fuel 225, 243–255 (2018)CrossRef
17.
go back to reference I.D. Alonso-Buenaposada, A. Arenillas, M.A. Montes-Morán, et al., Superhydrophobic and breathable resorcinol-formaldehyde xerogels. J. Non-Cryst. Solids 471, 202–208 (2017)CrossRef I.D. Alonso-Buenaposada, A. Arenillas, M.A. Montes-Morán, et al., Superhydrophobic and breathable resorcinol-formaldehyde xerogels. J. Non-Cryst. Solids 471, 202–208 (2017)CrossRef
18.
go back to reference F. Béguin, A. Balducci, E. Frackowiak, Carbons and electrolytes for advanced supercapacitors. Adv. Mater. 26, 2219–2251 (2014)CrossRef F. Béguin, A. Balducci, E. Frackowiak, Carbons and electrolytes for advanced supercapacitors. Adv. Mater. 26, 2219–2251 (2014)CrossRef
19.
go back to reference S.A. Al-Muhtased, J.A. Ritter, Preparation and properties of resorcinol-formaldehyde organic and carbon gels. Adv. Mater. 15, 101–114 (2003)CrossRef S.A. Al-Muhtased, J.A. Ritter, Preparation and properties of resorcinol-formaldehyde organic and carbon gels. Adv. Mater. 15, 101–114 (2003)CrossRef
20.
go back to reference C. Scherdel, R. Gayer, G. Reichenauer, Porous organic and carbon xerogels derived from alkaline aqueous phenol-formaldehyde solutions. J. Porous. Mater. 136, 837–844 (2012) C. Scherdel, R. Gayer, G. Reichenauer, Porous organic and carbon xerogels derived from alkaline aqueous phenol-formaldehyde solutions. J. Porous. Mater. 136, 837–844 (2012)
21.
go back to reference Y.F. Lin, J.L. Chen, Magnetic mesoporous Fe/carbon aerogel structures with enhanced arsenic removal efficiency. J. Colloid Interface Sci. 420, 74–79 (2014)CrossRef Y.F. Lin, J.L. Chen, Magnetic mesoporous Fe/carbon aerogel structures with enhanced arsenic removal efficiency. J. Colloid Interface Sci. 420, 74–79 (2014)CrossRef
22.
go back to reference S. Chandra, S. Bag, R. Bhar, Effect of transition and non-transition metals during the synthesis of carbon xerogels. Microporous Mesoporous Mater. 138, 149–156 (2011)CrossRef S. Chandra, S. Bag, R. Bhar, Effect of transition and non-transition metals during the synthesis of carbon xerogels. Microporous Mesoporous Mater. 138, 149–156 (2011)CrossRef
23.
go back to reference Y. Zhu, H. Hu, W.C. Li, Cresol-formaldehyde based carbon aerogel as electrode material for electrochemical capacitor. J. Power Sources 162, 738–742 (2006)CrossRef Y. Zhu, H. Hu, W.C. Li, Cresol-formaldehyde based carbon aerogel as electrode material for electrochemical capacitor. J. Power Sources 162, 738–742 (2006)CrossRef
24.
go back to reference B. Grzyb, C. Hildenbrand, S. Berthon-Fabry, et al., Functionalization and chemical characterization of cellulose-derived carbon aerogels. Carbon 48, 2297–2307 (2010)CrossRef B. Grzyb, C. Hildenbrand, S. Berthon-Fabry, et al., Functionalization and chemical characterization of cellulose-derived carbon aerogels. Carbon 48, 2297–2307 (2010)CrossRef
25.
go back to reference A. Szczurek, G. Amaral-Labat, V. Fierro, et al., The use of tannin to prepare carbon gels. Part I: carbon aerogels. Carbon 49, 2773–2784 (2011)CrossRef A. Szczurek, G. Amaral-Labat, V. Fierro, et al., The use of tannin to prepare carbon gels. Part I: carbon aerogels. Carbon 49, 2773–2784 (2011)CrossRef
26.
go back to reference G. Amaral-Labat, L.I. Grishechko, V. Fierro, et al., Tannin-based xerogels with distinctive porous structures. Biomass Bioenergy 56, 437–445 (2013)CrossRef G. Amaral-Labat, L.I. Grishechko, V. Fierro, et al., Tannin-based xerogels with distinctive porous structures. Biomass Bioenergy 56, 437–445 (2013)CrossRef
27.
go back to reference R. Saliger, V. Bock, R. Petricevic, et al., Carbon aerogels from dilute catalysis of resorcinol with formaldehyde. J. Non-Cryst. Solids 221, 144–150 (1997)CrossRef R. Saliger, V. Bock, R. Petricevic, et al., Carbon aerogels from dilute catalysis of resorcinol with formaldehyde. J. Non-Cryst. Solids 221, 144–150 (1997)CrossRef
28.
go back to reference H. Tamon, H. Ishizaka, M. Mikami, et al., Porous structure of organic and carbon aerogels synthesized by sol-gel polycondensation of resorcinol with formaldehyde. Carbon 35, 791–796 (1997)CrossRef H. Tamon, H. Ishizaka, M. Mikami, et al., Porous structure of organic and carbon aerogels synthesized by sol-gel polycondensation of resorcinol with formaldehyde. Carbon 35, 791–796 (1997)CrossRef
29.
go back to reference N. Job, F. Sabatier, J.P. Pirard, et al., Towards the production of carbon xerogel monoliths by optimizing convective drying conditions. Carbon 44, 2534–2542 (2006)CrossRef N. Job, F. Sabatier, J.P. Pirard, et al., Towards the production of carbon xerogel monoliths by optimizing convective drying conditions. Carbon 44, 2534–2542 (2006)CrossRef
30.
go back to reference F. Perez-Caballero, A.L. Peikolainen, M. Uibu, et al., Preparation of carbon aerogels from 5-methylresorcinol-formaldehyde gels. Microporous Mesoporous Mater. 108, 230–236 (2008)CrossRef F. Perez-Caballero, A.L. Peikolainen, M. Uibu, et al., Preparation of carbon aerogels from 5-methylresorcinol-formaldehyde gels. Microporous Mesoporous Mater. 108, 230–236 (2008)CrossRef
31.
go back to reference Y. Lee, J.S. Yoon, D.J. Suh, et al., 5-hydroxymethylfurfural as a potential monomer for the preparation of carbon aerogel. Mater. Chem. Phys. 136, 837–844 (2012)CrossRef Y. Lee, J.S. Yoon, D.J. Suh, et al., 5-hydroxymethylfurfural as a potential monomer for the preparation of carbon aerogel. Mater. Chem. Phys. 136, 837–844 (2012)CrossRef
32.
go back to reference B.B. Garcia, D. Liu, S. Sepehri, et al., Hexamethylenetetramine multiple catalysis as a porosity and pore size modifier in carbon cryogels. J. Non-Cryst. Solids 356, 1620–1625 (2010)CrossRef B.B. Garcia, D. Liu, S. Sepehri, et al., Hexamethylenetetramine multiple catalysis as a porosity and pore size modifier in carbon cryogels. J. Non-Cryst. Solids 356, 1620–1625 (2010)CrossRef
33.
go back to reference R. Kocklenberg, B. Mathieu, S. Blacher, et al., Texture control of freeze-dried resorcinol-formaldehyde gels. J. Non-Cryst. Solids 225, 8–13 (1998)CrossRef R. Kocklenberg, B. Mathieu, S. Blacher, et al., Texture control of freeze-dried resorcinol-formaldehyde gels. J. Non-Cryst. Solids 225, 8–13 (1998)CrossRef
34.
go back to reference E.G. Calvo, E.J. Juarez-Perez, J.A. Menendez, et al., Fast microwave-assisted synthesis of tailored mesoporous carbon xerogels. J. Colloid Interface Sci. 357, 541–547 (2011)CrossRef E.G. Calvo, E.J. Juarez-Perez, J.A. Menendez, et al., Fast microwave-assisted synthesis of tailored mesoporous carbon xerogels. J. Colloid Interface Sci. 357, 541–547 (2011)CrossRef
35.
go back to reference S. Berthon, O. Barbieri, F. Ehrburger-Dolle, et al., DLS and SAXS investigations of organic gels and aerogels. J. Non-Cryst. Solids 285, 154–161 (2001)CrossRef S. Berthon, O. Barbieri, F. Ehrburger-Dolle, et al., DLS and SAXS investigations of organic gels and aerogels. J. Non-Cryst. Solids 285, 154–161 (2001)CrossRef
36.
go back to reference W. Kicinski, M. Szala, M. Nita, Structurally tailored carbon xerogels produced through a sol-gel process in a water-methanol-inorganic salt solution. J. Sol-Gel Sci. Technol. 58, 102–113 (2011)CrossRef W. Kicinski, M. Szala, M. Nita, Structurally tailored carbon xerogels produced through a sol-gel process in a water-methanol-inorganic salt solution. J. Sol-Gel Sci. Technol. 58, 102–113 (2011)CrossRef
37.
go back to reference G. Qin, S. Guo, Preparation of RF organic aerogels and carbon aerogels by alcoholic sol-gel process. Carbon 39, 1935–1937 (2001)CrossRef G. Qin, S. Guo, Preparation of RF organic aerogels and carbon aerogels by alcoholic sol-gel process. Carbon 39, 1935–1937 (2001)CrossRef
38.
go back to reference S. Mulik, C. Sotiriou-Leventis, L.N. Leventis, Time-efficient acid-catalyzed synthesis of resorcinol-formaldehyde aerogels. Chem. Mater. 19, 6138–6144 (2007)CrossRef S. Mulik, C. Sotiriou-Leventis, L.N. Leventis, Time-efficient acid-catalyzed synthesis of resorcinol-formaldehyde aerogels. Chem. Mater. 19, 6138–6144 (2007)CrossRef
39.
go back to reference C.I. Merzbacher, S.R. Meier, J.R. Pierce, et al., Carbon aerogels as broadband non-reflective materials. J. Non-Cryst. Solids 285, 210–215 (2001)CrossRef C.I. Merzbacher, S.R. Meier, J.R. Pierce, et al., Carbon aerogels as broadband non-reflective materials. J. Non-Cryst. Solids 285, 210–215 (2001)CrossRef
40.
go back to reference J. Laskowski, B. Milow, L. Ratke, Subcritically dried resorcinol-formaldehyde aerogels from a base-acid catalyzed synthesis route. Microporous Mesoporous Mater. 197, 308–315 (2014)CrossRef J. Laskowski, B. Milow, L. Ratke, Subcritically dried resorcinol-formaldehyde aerogels from a base-acid catalyzed synthesis route. Microporous Mesoporous Mater. 197, 308–315 (2014)CrossRef
41.
go back to reference R. Brandt, R. Petricevic, H. Probstle, et al., Acetic acid catalyzed carbon aerogels. J. Porous. Mater. 10, 171–178 (2003)CrossRef R. Brandt, R. Petricevic, H. Probstle, et al., Acetic acid catalyzed carbon aerogels. J. Porous. Mater. 10, 171–178 (2003)CrossRef
42.
go back to reference S. Morales-Torres, F.J. Maldonado-Hodar, A.F. Perez-Cadenas, et al., Textural and mechanical characteristics of carbon aerogels synthesized by polymerization of resorcinol and formaldehyde using alkali carbonates as basification agents. Phys. Chem. Chem. Phys. 12, 10365–10372 (2010)CrossRef S. Morales-Torres, F.J. Maldonado-Hodar, A.F. Perez-Cadenas, et al., Textural and mechanical characteristics of carbon aerogels synthesized by polymerization of resorcinol and formaldehyde using alkali carbonates as basification agents. Phys. Chem. Chem. Phys. 12, 10365–10372 (2010)CrossRef
43.
go back to reference N. Rey-Raap, J.A. Menéndez, A. Arenillas, RF xerogels with tailored porosity over the entire nanoscale. Microporous Mesoporous Mater. 195, 266–275 (2014)CrossRef N. Rey-Raap, J.A. Menéndez, A. Arenillas, RF xerogels with tailored porosity over the entire nanoscale. Microporous Mesoporous Mater. 195, 266–275 (2014)CrossRef
44.
go back to reference C. Moreno-Castilla, F.J. Maldonado-Hodar, Carbon aerogels for catalysis applications: an overview. Carbon 43, 455–465 (2005)CrossRef C. Moreno-Castilla, F.J. Maldonado-Hodar, Carbon aerogels for catalysis applications: an overview. Carbon 43, 455–465 (2005)CrossRef
45.
go back to reference I. Matos, S. Fernandes, L. Guerreiro, et al., The effect of surfactants on the porosity of carbon xerogels. Microporous Mesoporous Mater. 92, 38–46 (2006)CrossRef I. Matos, S. Fernandes, L. Guerreiro, et al., The effect of surfactants on the porosity of carbon xerogels. Microporous Mesoporous Mater. 92, 38–46 (2006)CrossRef
46.
go back to reference N. Job, R. Pirard, J. Marien, et al., Porous carbon xerogels with texture tailored by pH control during sol-gel process. Carbon 42, 619–628 (2004)CrossRef N. Job, R. Pirard, J. Marien, et al., Porous carbon xerogels with texture tailored by pH control during sol-gel process. Carbon 42, 619–628 (2004)CrossRef
47.
go back to reference S.J. Taylor, M.D. Haw, J. Sefcik, et al., Gelation mechanism of resorcinol-formaldehyde gels investigated by dynamic light scattering. Langmuir 30, 10231–10240 (2014)CrossRef S.J. Taylor, M.D. Haw, J. Sefcik, et al., Gelation mechanism of resorcinol-formaldehyde gels investigated by dynamic light scattering. Langmuir 30, 10231–10240 (2014)CrossRef
48.
go back to reference N. Rey-Raap, J.A. Menéndez, A. Arenillas, Simultaneous adjustment of the main chemical variables to fine-tune the porosity of carbon xerogels. Carbon 78, 490–499 (2014)CrossRef N. Rey-Raap, J.A. Menéndez, A. Arenillas, Simultaneous adjustment of the main chemical variables to fine-tune the porosity of carbon xerogels. Carbon 78, 490–499 (2014)CrossRef
49.
go back to reference F. Wang, L.F. Yao, J. Shen, et al., The effect of different ratio in carbon aerogel on pore structure in ambient dry. Adv. Mater. Res. 941-944, 450–453 (2014)CrossRef F. Wang, L.F. Yao, J. Shen, et al., The effect of different ratio in carbon aerogel on pore structure in ambient dry. Adv. Mater. Res. 941-944, 450–453 (2014)CrossRef
50.
go back to reference L. Zubizarreta, A. Arenillas, J.A. Menéndez, et al., Microwave drying as an effective method to obtain porous carbon xerogels. J. Non-Cryst. Solids 354, 4024–4026 (2008)CrossRef L. Zubizarreta, A. Arenillas, J.A. Menéndez, et al., Microwave drying as an effective method to obtain porous carbon xerogels. J. Non-Cryst. Solids 354, 4024–4026 (2008)CrossRef
51.
go back to reference N. Rey-Raap, A. Arenillas, J.A. Menéndez, A visual validation of the combined effect of pH and dilution on the porosity of carbon xerogels. Microporous Mesoporous Mater. 223, 89–93 (2016)CrossRef N. Rey-Raap, A. Arenillas, J.A. Menéndez, A visual validation of the combined effect of pH and dilution on the porosity of carbon xerogels. Microporous Mesoporous Mater. 223, 89–93 (2016)CrossRef
52.
go back to reference F.J. Maldonado-Hodar, M.A. Ferro-Garcia, J. Rivera-Utrilla, et al., Synthesis and textural characteristics of organic aerogels, transition-metal-containing organic aerogels and their carbonized derivatives. Carbon 37, 1199–1205 (1999)CrossRef F.J. Maldonado-Hodar, M.A. Ferro-Garcia, J. Rivera-Utrilla, et al., Synthesis and textural characteristics of organic aerogels, transition-metal-containing organic aerogels and their carbonized derivatives. Carbon 37, 1199–1205 (1999)CrossRef
53.
go back to reference I.D. Alonso-Buenaposada, N. Rey-Raap, E.G. Calvo, et al., Effect of methanol content in commercial formaldehyde solutions on the porosity of RF carbon xerogels. J. Non-Cryst. Solids 426, 13–18 (2015)CrossRef I.D. Alonso-Buenaposada, N. Rey-Raap, E.G. Calvo, et al., Effect of methanol content in commercial formaldehyde solutions on the porosity of RF carbon xerogels. J. Non-Cryst. Solids 426, 13–18 (2015)CrossRef
54.
go back to reference I.D. Alonso-Buenaposada, L. Garrido, M.A. Montes-Morán, et al., An underrated variable essential for tailoring the structure of xerogel: the methanol content of commercial formaldehyde solutions. J. Sol-Gel Sci. Technol. 83, 478–488 (2017)CrossRef I.D. Alonso-Buenaposada, L. Garrido, M.A. Montes-Morán, et al., An underrated variable essential for tailoring the structure of xerogel: the methanol content of commercial formaldehyde solutions. J. Sol-Gel Sci. Technol. 83, 478–488 (2017)CrossRef
55.
go back to reference M.A. Worsley, J.H. Satcher Jr., T.F. Baumann, Influence of sodium dodecylbenzene sulfonate on the structure and properties of carbon aerogels. J. Non-Cryst. Solids 356, 172–174 (2010)CrossRef M.A. Worsley, J.H. Satcher Jr., T.F. Baumann, Influence of sodium dodecylbenzene sulfonate on the structure and properties of carbon aerogels. J. Non-Cryst. Solids 356, 172–174 (2010)CrossRef
56.
go back to reference N. Rey-Raap, A. Szczurek, V. Fierro, et al., Advances in tailoring the porosity of tannin-based carbon xerogels. Ind. Crop. Prod. 82, 100–106 (2016)CrossRef N. Rey-Raap, A. Szczurek, V. Fierro, et al., Advances in tailoring the porosity of tannin-based carbon xerogels. Ind. Crop. Prod. 82, 100–106 (2016)CrossRef
57.
go back to reference N. Rey-Raap, A. Szczurek, V. Fierro, et al., Towards a feasible and scalable production of bio-xerogels. J. Colloid Interface Sci. 456, 138–144 (2015)CrossRef N. Rey-Raap, A. Szczurek, V. Fierro, et al., Towards a feasible and scalable production of bio-xerogels. J. Colloid Interface Sci. 456, 138–144 (2015)CrossRef
58.
go back to reference F.J. Maldonado-Hodar, C. Moreno-Castilla, J. Rivera-Utrilla, et al., Catalytic graphitization of carbon aerogels by transition metals. Langmuir 16, 4367–4373 (2000)CrossRef F.J. Maldonado-Hodar, C. Moreno-Castilla, J. Rivera-Utrilla, et al., Catalytic graphitization of carbon aerogels by transition metals. Langmuir 16, 4367–4373 (2000)CrossRef
59.
go back to reference N. Job, S.D. Lambert, A. Zubiaur, et al., Design of Pt/carbon xerogel catalysts for PEM fuel cells. Catalysts 5, 40–57 (2015)CrossRef N. Job, S.D. Lambert, A. Zubiaur, et al., Design of Pt/carbon xerogel catalysts for PEM fuel cells. Catalysts 5, 40–57 (2015)CrossRef
60.
go back to reference K. Guo, H. Song, X. Chen, et al., Graphene oxide as an anti-shrinkage additive for resorcinol-formaldehyde composite aerogels. Phys. Chem. Chem. Phys. 16, 11603–11608 (2014)CrossRef K. Guo, H. Song, X. Chen, et al., Graphene oxide as an anti-shrinkage additive for resorcinol-formaldehyde composite aerogels. Phys. Chem. Chem. Phys. 16, 11603–11608 (2014)CrossRef
61.
go back to reference M. Canal-Rodríguez, A. Arenillas, N. Rey-Raap, et al., Graphene-doped carbon xerogel combining high electrical conductivity and surface area for optimized aqueous supercapacitors. Carbon 118, 291–298 (2017)CrossRef M. Canal-Rodríguez, A. Arenillas, N. Rey-Raap, et al., Graphene-doped carbon xerogel combining high electrical conductivity and surface area for optimized aqueous supercapacitors. Carbon 118, 291–298 (2017)CrossRef
62.
go back to reference I.D. Alonso-Buenaposada, A. Arenillas, et al., On the desiccant capacity of the mesoporous RF-xerogels. Microporous Mesoporous Mater. 248, 1–6 (2017)CrossRef I.D. Alonso-Buenaposada, A. Arenillas, et al., On the desiccant capacity of the mesoporous RF-xerogels. Microporous Mesoporous Mater. 248, 1–6 (2017)CrossRef
63.
go back to reference I.D. Alonso-Buenaposada, M.A. Montes-Morán, J.A. Menéndez, et al., Synthesis of hydrophobic resorcinol-formaldehyde xerogels by grafting with silanes. React. Funct. Polym. 120, 92–97 (2017)CrossRef I.D. Alonso-Buenaposada, M.A. Montes-Morán, J.A. Menéndez, et al., Synthesis of hydrophobic resorcinol-formaldehyde xerogels by grafting with silanes. React. Funct. Polym. 120, 92–97 (2017)CrossRef
64.
go back to reference A.H. Moreno, A. Arenillas, E.G. Calvo, et al., Carbonization of resorcinol-formaldehyde organic xerogels: effect of temperature, particle size and heating rate on the porosity of carbon xerogels. J. Anal. Appl. Pyrolysis 100, 111–116 (2013)CrossRef A.H. Moreno, A. Arenillas, E.G. Calvo, et al., Carbonization of resorcinol-formaldehyde organic xerogels: effect of temperature, particle size and heating rate on the porosity of carbon xerogels. J. Anal. Appl. Pyrolysis 100, 111–116 (2013)CrossRef
65.
go back to reference M. Enterria, J.L. Figueiredo, Nanostructured mesoporous carbons: tuning texture and surface chemistry. Carbon 108, 79–102 (2016)CrossRef M. Enterria, J.L. Figueiredo, Nanostructured mesoporous carbons: tuning texture and surface chemistry. Carbon 108, 79–102 (2016)CrossRef
66.
go back to reference C. Lin, J.A. Ritter, Carbonization and activation of sol-gel derived carbon xerogels. Carbon 38, 849–861 (2000)CrossRef C. Lin, J.A. Ritter, Carbonization and activation of sol-gel derived carbon xerogels. Carbon 38, 849–861 (2000)CrossRef
67.
go back to reference L. Zubizarreta, A. Arenillas, J.P. Pirard, et al., Tailoring the textural properties of activated carbon xerogels by chemical activation with KOH. Microporous Mesoporous Mater. 115, 480–490 (2008)CrossRef L. Zubizarreta, A. Arenillas, J.P. Pirard, et al., Tailoring the textural properties of activated carbon xerogels by chemical activation with KOH. Microporous Mesoporous Mater. 115, 480–490 (2008)CrossRef
68.
go back to reference F.L. Conceicao, P.M. Carrott, M.M.L. Carrott, New carbon materials with high porosity in the nm range obtained by chemical activation with phosphoric acid of resorcinol-formaldehyde aerogels. Carbon 47, 1874–1877 (2009)CrossRef F.L. Conceicao, P.M. Carrott, M.M.L. Carrott, New carbon materials with high porosity in the nm range obtained by chemical activation with phosphoric acid of resorcinol-formaldehyde aerogels. Carbon 47, 1874–1877 (2009)CrossRef
69.
go back to reference M. Wiener, G. Reichenauer, Microstructure of porous carbons derived from phenolic resin-impact of annealing at temperatures up to 2000°C analyzed by complementary characterization methods. Microporous Mesoporous Mater. 203, 116–122 (2015)CrossRef M. Wiener, G. Reichenauer, Microstructure of porous carbons derived from phenolic resin-impact of annealing at temperatures up to 2000°C analyzed by complementary characterization methods. Microporous Mesoporous Mater. 203, 116–122 (2015)CrossRef
70.
go back to reference J.A. Menéndez, A. Arenillas, I. Díaz, et al., Use of an organic xerogel as a desiccant, Patent WO2017149189 J.A. Menéndez, A. Arenillas, I. Díaz, et al., Use of an organic xerogel as a desiccant, Patent WO2017149189
71.
go back to reference A. Arenillas, J.A. Menéndez, N. Rey-Raap, et al., Use of an inorganic xerogel as heat insulator, Patent WO2017153624 A. Arenillas, J.A. Menéndez, N. Rey-Raap, et al., Use of an inorganic xerogel as heat insulator, Patent WO2017153624
72.
go back to reference A. Demilecamps, M. Alves, A. Rigacci, et al., Nanostructured interpenetrated organic-inorganic aerogels with thermal superinsulating properties. J. Non-Cryst. Solids 452, 259–265 (2016)CrossRef A. Demilecamps, M. Alves, A. Rigacci, et al., Nanostructured interpenetrated organic-inorganic aerogels with thermal superinsulating properties. J. Non-Cryst. Solids 452, 259–265 (2016)CrossRef
73.
go back to reference F. Svec, Y. Lv, Advances and recent trends in the field of monolithic columns for chromatography. Anal. Chem. 87, 250–273 (2015)CrossRef F. Svec, Y. Lv, Advances and recent trends in the field of monolithic columns for chromatography. Anal. Chem. 87, 250–273 (2015)CrossRef
74.
go back to reference L.A. Ramirez-Montoya, A. Concheso, I.D. Alonso-Buenaposada, et al., Protein adsorption and activity on carbon xerogels with narrow pore size distributions covering a wide mesoporous range. Carbon 118, 743–751 (2017)CrossRef L.A. Ramirez-Montoya, A. Concheso, I.D. Alonso-Buenaposada, et al., Protein adsorption and activity on carbon xerogels with narrow pore size distributions covering a wide mesoporous range. Carbon 118, 743–751 (2017)CrossRef
75.
go back to reference B.S. Girgis, I.Y. Sherif, A.A. Attia, et al., Textural and adsorption characteristics of carbon xerogel adsorbents for removal of Cu (II) ions from aqueous solutions. J. Non-Cryst. Solids 358, 741–747 (2012)CrossRef B.S. Girgis, I.Y. Sherif, A.A. Attia, et al., Textural and adsorption characteristics of carbon xerogel adsorbents for removal of Cu (II) ions from aqueous solutions. J. Non-Cryst. Solids 358, 741–747 (2012)CrossRef
76.
go back to reference E.G. Calvo, F. Lufrano, P. Staiti, et al., Carbon xerogel and manganese oxide capacitive materials for advanced supercapacitors. Int. J. Electrochem. Sci. 6, 596–612 (2011) E.G. Calvo, F. Lufrano, P. Staiti, et al., Carbon xerogel and manganese oxide capacitive materials for advanced supercapacitors. Int. J. Electrochem. Sci. 6, 596–612 (2011)
77.
go back to reference M. Mirzaeian, P.J. Hall, Preparation of controlled porosity carbon aerogels for energy storage in rechargeable lithium oxygen batteries. Electrochim. Acta 54, 7444–7451 (2009)CrossRef M. Mirzaeian, P.J. Hall, Preparation of controlled porosity carbon aerogels for energy storage in rechargeable lithium oxygen batteries. Electrochim. Acta 54, 7444–7451 (2009)CrossRef
78.
go back to reference M. Canal-Rodríguez, J.A. Menéndez, A. Arenillas, Performance of carbon xerogel-graphene hybrids as electrodes in aqueous supercapacitors. Electrochim. Acta 276, 28–36 (2018)CrossRef M. Canal-Rodríguez, J.A. Menéndez, A. Arenillas, Performance of carbon xerogel-graphene hybrids as electrodes in aqueous supercapacitors. Electrochim. Acta 276, 28–36 (2018)CrossRef
79.
go back to reference N. Rey-Raap, E.G. Calvo, J.M. Bermúdez, et al., An electrical conductivity translator for carbons. Measurement 56, 215–218 (2014)CrossRef N. Rey-Raap, E.G. Calvo, J.M. Bermúdez, et al., An electrical conductivity translator for carbons. Measurement 56, 215–218 (2014)CrossRef
80.
go back to reference N. Rey-Raap, A. Arenillas, J.A. Menéndez, Carbon gels and their applications: a review of patents, in Submicron Porous Materials, ed. by P. Bettotti, (Springer, New York, 2017), pp. 25–52CrossRef N. Rey-Raap, A. Arenillas, J.A. Menéndez, Carbon gels and their applications: a review of patents, in Submicron Porous Materials, ed. by P. Bettotti, (Springer, New York, 2017), pp. 25–52CrossRef
Metadata
Title
Organic and Carbon Gels: From Laboratory to Industry?
Authors
Ana Arenillas
J. Angel Menéndez
Gudrun Reichenauer
Alain Celzard
Vanessa Fierro
Francisco José Maldonado Hodar
Esther Bailόn-Garcia
Nathalie Job
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-13897-4_1

Premium Partners