Skip to main content
Top
Published in: Polymer Bulletin 4/2024

04-06-2023 | ORIGINAL PAPER

Organically modified clay as an enhancement filler in novel polyimide mixed matrix membranes for gas separation

Authors: Hashem Ahmadizadegan, Sheida Esmaielzadeh

Published in: Polymer Bulletin | Issue 4/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nanocomposite gas transport and thermally stable membranes-based fluorinated polyimide/clay were prepared. Novel polyimide (PI) membranes containing various amount of organically modified clay with the main intention to investigate the gas permeation behavior of the resultant material combination were prepared. The fabricated mixed matrix membranes (MMM)s were characterized by X-ray diffraction (XRD), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and pure gas permeation testing. The dispersion morphology of these nanocomposites was confirmed by XRD and TEM analyses. The intercalation of PI chains among the clays particles were examined using wide-angle X-ray diffraction (XRD) and electron microscopy (TEM) techniques. TEM photographs showed that most clay layers were dispersed homogeneously into the matrix polymer on the nanoscale, although some particles of clays were agglomerated. Moreover, the addition of only a small amount of clays particles was enough to improve the thermal stabilities and mechanical properties of PI hybrid films. XRD and TEM analysis revealed that the layered silicate clay has been successfully exfoliated in the polymer matrix. The gas permeation properties were evaluated by pure gases: nitrogen, oxygen, methane, and carbon dioxide. Several interesting roles of layered silicate clay particle in determining the gas permeation behavior of the hybrid membrane have been discovered. It was no surprise that the gas permeation flux was decreasing with the addition of clays into the PI matrix. It was interesting to note that the pure gas selectivity was seen to be increased with decreasing the filler loading. At 1 wt% clay loading, PI/clay showed an increase of 55% in CO2/CH4 ideal selectivity over pristine PI membrane.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Chung TS, Jiang LY, Li Y, Kulprathipanja S (2007) Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog Polym Sci 32:483–507CrossRef Chung TS, Jiang LY, Li Y, Kulprathipanja S (2007) Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog Polym Sci 32:483–507CrossRef
2.
go back to reference Te Hennepe HJC, Boswerger WBF, Bargeman D, Mulder MHV, Smolders CA (1994) Zeolite-filled silicone rubber membranes—experimental determination of concentration profiles. J Membr Sci 89:185–196CrossRef Te Hennepe HJC, Boswerger WBF, Bargeman D, Mulder MHV, Smolders CA (1994) Zeolite-filled silicone rubber membranes—experimental determination of concentration profiles. J Membr Sci 89:185–196CrossRef
3.
go back to reference Te Hennepe HJC, Bargeman D, Mulder MHV, Smolders CA (1998) Permeation through zeolite filled silicone rubber membranes. Stud Surf Sci Catal 39:411–420CrossRef Te Hennepe HJC, Bargeman D, Mulder MHV, Smolders CA (1998) Permeation through zeolite filled silicone rubber membranes. Stud Surf Sci Catal 39:411–420CrossRef
4.
go back to reference Zulhairun AK, Ismail AF, Matsuura T, Abdullah MS, Mustafa A (2014) Asymmetric mixed matrix membrane incorporating organically modified clay particle for gas separation. Chem Eng J 241:495–503CrossRef Zulhairun AK, Ismail AF, Matsuura T, Abdullah MS, Mustafa A (2014) Asymmetric mixed matrix membrane incorporating organically modified clay particle for gas separation. Chem Eng J 241:495–503CrossRef
5.
go back to reference Sciortino F, Sanchez-Ballester NM, Mir SH et al (2021) Functional elastomeric copolymer membranes designed by nanoarchitectonics approach for methylene blue removal. J Inorg Organomet Polym 31:1967–1977CrossRef Sciortino F, Sanchez-Ballester NM, Mir SH et al (2021) Functional elastomeric copolymer membranes designed by nanoarchitectonics approach for methylene blue removal. J Inorg Organomet Polym 31:1967–1977CrossRef
6.
go back to reference Wang H, He S, Qin X, Li C, Li T (2018) Interfacial engineering in metal–organic framework-based mixed matrix membranes using covalently grafted polyimide brushes. J Am Chem Soc 140:17203–17210CrossRefPubMed Wang H, He S, Qin X, Li C, Li T (2018) Interfacial engineering in metal–organic framework-based mixed matrix membranes using covalently grafted polyimide brushes. J Am Chem Soc 140:17203–17210CrossRefPubMed
7.
go back to reference Ahmadizadegan H, Tahriri M, Tahriri M, Padam M, Ranjbar M (2019) Polyimide-TiO2 nanocomposites and their corresponding membranes: synthesis, characterization, and gas separation applications. Solid State Sci 89:25–36CrossRef Ahmadizadegan H, Tahriri M, Tahriri M, Padam M, Ranjbar M (2019) Polyimide-TiO2 nanocomposites and their corresponding membranes: synthesis, characterization, and gas separation applications. Solid State Sci 89:25–36CrossRef
8.
go back to reference Ahmadizadegan H, Ranjbar M, Esmaielzadeh S (2017) Synthesis and characterization of green membranes polyimide/titania bionanocomposites containing amino acid and benzimidazole moieties for gas transport properties. Polym Eng Sci 58:1666–1677CrossRef Ahmadizadegan H, Ranjbar M, Esmaielzadeh S (2017) Synthesis and characterization of green membranes polyimide/titania bionanocomposites containing amino acid and benzimidazole moieties for gas transport properties. Polym Eng Sci 58:1666–1677CrossRef
9.
go back to reference Mallakpour S, Ahmadizadegan H (2015) Manufacture of zinc oxide/chiral poly(amide-imide)-functionalized amino acid and thiazole bionanocomposites: using ionic liquid and ultrasonic irradiation. J Thermoplast Compos Mater 28:672–685CrossRef Mallakpour S, Ahmadizadegan H (2015) Manufacture of zinc oxide/chiral poly(amide-imide)-functionalized amino acid and thiazole bionanocomposites: using ionic liquid and ultrasonic irradiation. J Thermoplast Compos Mater 28:672–685CrossRef
10.
go back to reference Chang J-H (2018) Polyimide nanocomposites with functionalized graphene sheets: thermal property, morphology, gas permeation, and electroconductivity. J Thermoplast Compos Mater 31:837–861CrossRef Chang J-H (2018) Polyimide nanocomposites with functionalized graphene sheets: thermal property, morphology, gas permeation, and electroconductivity. J Thermoplast Compos Mater 31:837–861CrossRef
11.
go back to reference Pandey P, Dayanidhi A, Mohanty S, Nayak SK (2013) Effect of clay loading on flammability of poly(methyl methacrylate)/clay nanocomposites. J Thermoplast Compos Mater 26:663–679CrossRef Pandey P, Dayanidhi A, Mohanty S, Nayak SK (2013) Effect of clay loading on flammability of poly(methyl methacrylate)/clay nanocomposites. J Thermoplast Compos Mater 26:663–679CrossRef
12.
go back to reference Sciortino F, Mir SH, Pakdel A, Oruganti A, Abe H, Witecka A, Shri DNA, Rydzek G, Ariga K (2020) Saloplastics as multiresponsive ion exchange reservoirs and catalyst supports. J Mater Chem A 8:17713–17724CrossRef Sciortino F, Mir SH, Pakdel A, Oruganti A, Abe H, Witecka A, Shri DNA, Rydzek G, Ariga K (2020) Saloplastics as multiresponsive ion exchange reservoirs and catalyst supports. J Mater Chem A 8:17713–17724CrossRef
13.
go back to reference Sanchez-Ballester NM, Sciortino F, Mir SH, Rydzek G (2022) Weak polyelectrolytes as nanoarchitectonic design tools for functional materials: a review of recent achievements. Molecules 27:3263CrossRefPubMedPubMedCentral Sanchez-Ballester NM, Sciortino F, Mir SH, Rydzek G (2022) Weak polyelectrolytes as nanoarchitectonic design tools for functional materials: a review of recent achievements. Molecules 27:3263CrossRefPubMedPubMedCentral
14.
go back to reference Fornes TD, Hunter DL, Paul DR (2004) Nylon-6 nanocomposites from alkylammonium-modified clay: the role of alkyl tails on exfoliation. Macromolecules 37(5):1793–1798CrossRef Fornes TD, Hunter DL, Paul DR (2004) Nylon-6 nanocomposites from alkylammonium-modified clay: the role of alkyl tails on exfoliation. Macromolecules 37(5):1793–1798CrossRef
15.
go back to reference Zhao ZF, Tang T, Qin YX, Huang BT (2003) Effects of surfactant loadings on the dispersion of clay in maleated polypropylene. Langmuir 19(18):7157–7159CrossRef Zhao ZF, Tang T, Qin YX, Huang BT (2003) Effects of surfactant loadings on the dispersion of clay in maleated polypropylene. Langmuir 19(18):7157–7159CrossRef
16.
go back to reference Bousmina M (2006) Study of Intercalation and exfoliation processes in polymer nanocomposites. Macromolecules 39:4259–4263CrossRef Bousmina M (2006) Study of Intercalation and exfoliation processes in polymer nanocomposites. Macromolecules 39:4259–4263CrossRef
17.
go back to reference Meng X, Du X, Wang Z, Bi W, Tang T (2008) The investigation of exfoliation process of organic modified montmorillonite in thermoplastic polyurethane with different molecular weights. Compos Sci Technol 68:1815–1821CrossRef Meng X, Du X, Wang Z, Bi W, Tang T (2008) The investigation of exfoliation process of organic modified montmorillonite in thermoplastic polyurethane with different molecular weights. Compos Sci Technol 68:1815–1821CrossRef
18.
go back to reference Balazs AC, Singh C, Zhulina E (1998) Modeling the interactions between polymers and clay surfaces through self-consistent field theory. Macromolecules 31:8370–8381CrossRef Balazs AC, Singh C, Zhulina E (1998) Modeling the interactions between polymers and clay surfaces through self-consistent field theory. Macromolecules 31:8370–8381CrossRef
19.
go back to reference Balazs AC, Singh C, Zhulina E, Lyatskaya Y (1999) Modeling the phase behavior of polymer/clay nanocomposites. Acc Chem Res 32:651–657CrossRef Balazs AC, Singh C, Zhulina E, Lyatskaya Y (1999) Modeling the phase behavior of polymer/clay nanocomposites. Acc Chem Res 32:651–657CrossRef
20.
go back to reference Fermeglia M, Ferrone M, Pricl S (2003) Computer simulation of nylon-6/ organoclay nanocomposites: prediction of the binding energy. Fluid Phase Equilib 212:315–329CrossRef Fermeglia M, Ferrone M, Pricl S (2003) Computer simulation of nylon-6/ organoclay nanocomposites: prediction of the binding energy. Fluid Phase Equilib 212:315–329CrossRef
21.
go back to reference Tanaka G, Goettler LA (2002) Predicting the binding energy for nylon 6,6/clay nanocomposites by molecular modeling. Polymer 43:541–553CrossRef Tanaka G, Goettler LA (2002) Predicting the binding energy for nylon 6,6/clay nanocomposites by molecular modeling. Polymer 43:541–553CrossRef
22.
go back to reference Toth R, Coslanich A, Ferrone M, Fermeglia M, Pricl S, Miertus S, Chiellini E (2004) Computer simulation of polypropylene/organoclay nanocomposites: characterization of atomic scale structure and prediction of binding energy. Polymer 45:8075–8083CrossRef Toth R, Coslanich A, Ferrone M, Fermeglia M, Pricl S, Miertus S, Chiellini E (2004) Computer simulation of polypropylene/organoclay nanocomposites: characterization of atomic scale structure and prediction of binding energy. Polymer 45:8075–8083CrossRef
23.
go back to reference Manias E, Chen H, Krishnamoorti R, Genzer J, Kramer EJ, Giannelis EP (2000) Intercalation kinetics of long polymers in 2 nm confinements. Macromolecules 33:7955–7966CrossRef Manias E, Chen H, Krishnamoorti R, Genzer J, Kramer EJ, Giannelis EP (2000) Intercalation kinetics of long polymers in 2 nm confinements. Macromolecules 33:7955–7966CrossRef
24.
go back to reference Hu XS, Zhang WH, Si MY, Gelfer M, Hsiao B, Rafailovich M, Sokolov J, Zaitsev V, Schwarz S (2003) Dynamics of polymers in organosilicate nanocomposites. Macromolecules 36:823–829CrossRef Hu XS, Zhang WH, Si MY, Gelfer M, Hsiao B, Rafailovich M, Sokolov J, Zaitsev V, Schwarz S (2003) Dynamics of polymers in organosilicate nanocomposites. Macromolecules 36:823–829CrossRef
25.
go back to reference Meng XY, Wang Z, Zhao ZF, Du XH, Bi WG, Tang T (2007) Morphology evolutions of organically modified montmorillonite/polyamide 12 nanocomposites. Polymer 48:2508–2519CrossRef Meng XY, Wang Z, Zhao ZF, Du XH, Bi WG, Tang T (2007) Morphology evolutions of organically modified montmorillonite/polyamide 12 nanocomposites. Polymer 48:2508–2519CrossRef
26.
go back to reference Ahmadizadegan H, Ghavvas F, Ranjbar M et al (2018) Synthesis and characterization of fluorinated polyimide/TiO2 nanocomposites: enhancement of separation of four gases, thermal, optical and mechanical properties. Polym Bull 75:2729–2750CrossRef Ahmadizadegan H, Ghavvas F, Ranjbar M et al (2018) Synthesis and characterization of fluorinated polyimide/TiO2 nanocomposites: enhancement of separation of four gases, thermal, optical and mechanical properties. Polym Bull 75:2729–2750CrossRef
27.
go back to reference Ahmadizadegan H, Esmaielzadeh S (2020) The role of organically modified clay particle on thermal, mechanical and gas barrier properties of polyimide nanocomposites and toward improvement of gas selectivities. Polym Technol Mater 59:1855–1918 Ahmadizadegan H, Esmaielzadeh S (2020) The role of organically modified clay particle on thermal, mechanical and gas barrier properties of polyimide nanocomposites and toward improvement of gas selectivities. Polym Technol Mater 59:1855–1918
28.
go back to reference Zulhairun AK, Ismail AF (2014) The role of layered silicate loadings and their dispersion states on the gas separation performance of mixed matrix membrane. J Membr Sci 468:20–30CrossRef Zulhairun AK, Ismail AF (2014) The role of layered silicate loadings and their dispersion states on the gas separation performance of mixed matrix membrane. J Membr Sci 468:20–30CrossRef
29.
go back to reference Moore TT, Koros WJ (2005) Non-ideal effects in organic-inorganic materials for gas separation membranes. J Mol Struct 739:87–98CrossRef Moore TT, Koros WJ (2005) Non-ideal effects in organic-inorganic materials for gas separation membranes. J Mol Struct 739:87–98CrossRef
30.
go back to reference Dinari M, Ahmadizadegan H, Asadi P (2015) Fabrication and characterization of novel highly transparent and organo-soluble poly(ether imide)s thin film for gas separation. New J Chem 39:4478–4487CrossRef Dinari M, Ahmadizadegan H, Asadi P (2015) Fabrication and characterization of novel highly transparent and organo-soluble poly(ether imide)s thin film for gas separation. New J Chem 39:4478–4487CrossRef
31.
go back to reference Tsai TY, Lin MJ, Chuang YCh, Chou P-C (2013) Effects of modified clay on the morphology and thermal stability of PMMA/clay nanocomposites. Mater Chem Phys 138:230–237CrossRef Tsai TY, Lin MJ, Chuang YCh, Chou P-C (2013) Effects of modified clay on the morphology and thermal stability of PMMA/clay nanocomposites. Mater Chem Phys 138:230–237CrossRef
32.
go back to reference Tsai T-Y, Lin M-J, Chang C-W, Li C-C (2010) Morphology and properties of poly (methylmethacrylate)/clay nanocomposites by in-situ solution polymerization. J Phys Chem Solids 71:590–594CrossRef Tsai T-Y, Lin M-J, Chang C-W, Li C-C (2010) Morphology and properties of poly (methylmethacrylate)/clay nanocomposites by in-situ solution polymerization. J Phys Chem Solids 71:590–594CrossRef
33.
go back to reference Choi IH, Chang J-H (2011) Colorless polyimide nanocomposite films containing hexafluoroisopropylidene group. Polym Adv Technol 22:682–689CrossRef Choi IH, Chang J-H (2011) Colorless polyimide nanocomposite films containing hexafluoroisopropylidene group. Polym Adv Technol 22:682–689CrossRef
34.
go back to reference Yano K, Usuki A, Okada A, Kurauchi T, Kamigaito P (1997) Synthesis and properties of polyimide–clay hybrid films. J Polym Sci Part A Polym Chem 35:2289CrossRef Yano K, Usuki A, Okada A, Kurauchi T, Kamigaito P (1997) Synthesis and properties of polyimide–clay hybrid films. J Polym Sci Part A Polym Chem 35:2289CrossRef
35.
go back to reference Agag T, Koga T, Takeichi T (2001) Studies on thermal and mechanical properties of polyimide/clay nanocomposites. Polym 42:3399–3408CrossRef Agag T, Koga T, Takeichi T (2001) Studies on thermal and mechanical properties of polyimide/clay nanocomposites. Polym 42:3399–3408CrossRef
36.
go back to reference Choudalakis G, Gotsis AD (2012) Free volume and mass transport in polymer nanocomposites. Curr Opin Colloid Interface Sci 17:132–140CrossRef Choudalakis G, Gotsis AD (2012) Free volume and mass transport in polymer nanocomposites. Curr Opin Colloid Interface Sci 17:132–140CrossRef
37.
go back to reference Koh HC, Park JS, Jeong MA, Hwang HY, Hong YT, Ha SY, Nam SY (2008) Preparation and gas permeation properties of biodegradable layered silicate nanocomposite membranes. Desalination 233:201–209CrossRef Koh HC, Park JS, Jeong MA, Hwang HY, Hong YT, Ha SY, Nam SY (2008) Preparation and gas permeation properties of biodegradable layered silicate nanocomposite membranes. Desalination 233:201–209CrossRef
38.
go back to reference Bertelle S, Gupta T, Roizard D, Vallieres C, Favre E (2006) Study of polymer–carbon mixed matrix membranes for CO2 separation from flue gas. Desalination 199:401–402CrossRef Bertelle S, Gupta T, Roizard D, Vallieres C, Favre E (2006) Study of polymer–carbon mixed matrix membranes for CO2 separation from flue gas. Desalination 199:401–402CrossRef
39.
go back to reference Bhole YS, Wanjale SD, Kharul UK, Jog JP (2007) Assessing feasibility of polyarylate–clay nanocomposites towards improvement of gas selectivity. J Membr Sci 306:277–286CrossRef Bhole YS, Wanjale SD, Kharul UK, Jog JP (2007) Assessing feasibility of polyarylate–clay nanocomposites towards improvement of gas selectivity. J Membr Sci 306:277–286CrossRef
40.
go back to reference Ahmadizadegan H, Esmaielzadeh S (2019) Preparation and application of novel bionanocomposite green membranes for gas separation. Polym Bull 76:4903–4927CrossRef Ahmadizadegan H, Esmaielzadeh S (2019) Preparation and application of novel bionanocomposite green membranes for gas separation. Polym Bull 76:4903–4927CrossRef
Metadata
Title
Organically modified clay as an enhancement filler in novel polyimide mixed matrix membranes for gas separation
Authors
Hashem Ahmadizadegan
Sheida Esmaielzadeh
Publication date
04-06-2023
Publisher
Springer Berlin Heidelberg
Published in
Polymer Bulletin / Issue 4/2024
Print ISSN: 0170-0839
Electronic ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-023-04882-7

Other articles of this Issue 4/2024

Polymer Bulletin 4/2024 Go to the issue

Premium Partners