Skip to main content
Top
Published in: Journal of Inequalities and Applications 1/2018

Open Access 01-12-2018 | Research

Ostrowski type inequalities involving conformable fractional integrals

Authors: Muhammad Adil Khan, Sumbel Begum, Yousaf Khurshid, Yu-Ming Chu

Published in: Journal of Inequalities and Applications | Issue 1/2018

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the article, we establish several Ostrowski type inequalities involving the conformable fractional integrals. As applications, we find new inequalities for the arithmetic and generalized logarithmic means.
Notes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

Let \(I\subseteq\mathbb{R}\) be an interval and \(I^{\circ}\) the interior of I. Then the classical Ostrowski inequality [1] states that a real-valued function \(f: I\rightarrow\mathbb{R}\) satisfies the inequality
$$ \biggl\vert f(x)-\frac{1}{a_{2}-a_{1}} \int_{a_{1}}^{a_{2}}f(x)\,dx \biggr\vert \leq \biggl[ \frac{1}{4}+\frac{ (x-\frac{a_{1}+a_{2}}{2} )^{2}}{(a_{2}-a_{1})^{2}} \biggr] (a_{2}-a_{1})\big\| f^{\prime}\big\| _{\infty} $$
with the best possible constant \(1/4\) if \(a_{1}, a_{2}\in I^{\circ}\) with \(a_{1}< a_{2}\) and \(|f^{\prime}(x)|\leq M\) for all \(x\in[a_{1}, a_{2}]\).
Recently, the Ostrowski inequality has attracted the attention of many researchers, many remarkable generalizations, extensions, variants and applications can be found in the literature [224].
Let \(0<\alpha\leq1\) and g be a real-valued function defined on \([0, \infty)\). Then the (conformable) fractional derivative \(D_{\alpha }(g)(t)\) [23] of order α of g at \(t>0\) is defined by
$$ D_{\alpha}(g) (t)=\lim_{\epsilon\rightarrow0}\frac{g(t+\epsilon t^{1-\alpha})-g(t)}{\epsilon}. $$
g is said to be α-differentiable if the conformable fractional derivative of order α of g exists. In what follows, we write \(g^{\alpha}(t)\) or \(\frac{d_{\alpha}}{d_{\alpha}t}(g)\) for \(D_{\alpha }(g)(t)\) to denote the conformable fractional derivative of order α of g. The conformable fractional derivative at 0 is defined as \(g^{\alpha}(0)=\lim_{t\rightarrow0^{+}}g^{\alpha}(t)\).
Let \(\alpha\in(0, 1]\) and \(0\leq a< b\). Then the function \(h: [a, b]\rightarrow\mathbb{R}\) is said to be α-fractional integrable on \([a, b]\) if the integral
$$ \int_{a}^{b}h(x)\,d_{\alpha}x:= \int_{a}^{b}h(x)x^{\alpha-1}\,dx $$
exists and is finite. All α-fractional integrable functions on \([a, b]\) are denoted by \(L_{\alpha}^{1}([a, b])\).
Remark 1.1
Note that the relation between the Riemann integral and the conformable fractional integral is given by
$$ I_{\alpha}^{a}(h) (t)=I_{1}^{a} \bigl(t^{\alpha-1}h\bigr)= \int_{a}^{t}\frac {h(x)}{x^{1-\alpha}}\,dx. $$
Let \(\alpha\in(0, 1]\) and f, g be α-differentiable at \(t>0\). Then it is well known that
$$ (1) \quad\frac{d_{\alpha}}{d_{\alpha}t}\bigl(t^{n}\bigr)=nt^{n-\alpha} $$
for all \(n\in\mathbb{R}\);
$$ (2) \quad\frac{d_{\alpha}}{d_{\alpha}t}(c)=0 $$
for all constant \(c\in\mathbb{R}\);
$$ (3) \quad\frac{d_{\alpha}}{d_{\alpha}t}\bigl(af(t)+bg(t)\bigr)=a\frac{d_{\alpha }}{d_{\alpha}t}\bigl(f(t) \bigr)+b\frac{d_{\alpha}}{d_{\alpha}t}\bigl(g(t)\bigr) $$
for all \(a, b\in\mathbb{R}\);
$$\begin{gathered} (4) \quad\frac{d_{\alpha}}{d_{\alpha}t}\bigl(f(t)g(t)\bigr)=f(t)\frac{d_{\alpha }}{d_{\alpha}t}\bigl(g(t) \bigr)+g(t)\frac{d_{\alpha}}{d_{\alpha}t}\bigl(f(t)\bigr); \\ (5) \quad\frac{d_{\alpha}}{d_{\alpha}t} \biggl(\frac{f(t)}{g(t)} \biggr) =\frac{g(t)\frac{d_{\alpha}}{d_{\alpha}t}(f(t))-f(t)\frac{d_{\alpha }}{d_{\alpha}t}(g(t))}{g^{2}(t)}; \\(6) \quad\frac{d_{\alpha}}{d_{\alpha}t}\bigl(f\bigl(g(t)\bigr)\bigr)=f^{\prime} \bigl(g(t)\bigr)\frac {d_{\alpha}}{d_{\alpha}t}\bigl(g(t)\bigr),\end{gathered} $$
if f is differentiable at \(g(t)\).
The main purpose of the article is to find the Ostrowski type inequalities involving the conformable fractional integrals and give their applications in certain bivariate means.

2 Main results

Lemma 2.1
Let \(0<\alpha\leq1\), \(0\leq a_{1}< a_{2}\) and \(h: [a_{1}, a_{2}]\rightarrow\mathbb{R}\) be an α-fractional differentiable function. Then the identity
$$ \begin{aligned} h(x)-\frac{\alpha}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int _{a_{1}}^{a_{2}}h(s)\,d_{\alpha}s ={}&\frac{x-a_{1}}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int_{0}^{1} \bigl[\bigl((1-t)a_{1}+tx \bigr)^{2\alpha-1}-a_{1}^{\alpha}\bigl((1-t)a_{1}+tx \bigr)^{\alpha -1} \bigr] \\ &\times D_{\alpha}(h) \bigl((1-t)a_{1}+tx \bigr)t^{1-\alpha}\,d_{\alpha}t \\&+\frac{a_{2}-x}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int_{0}^{1} \bigl[\bigl((1-t)a_{2}+tx \bigr)^{2\alpha-1}-a_{2}^{\alpha}\bigl((1-t)a_{2}+tx \bigr)^{\alpha -1} \bigr] \\ &\times D_{\alpha}(h) \bigl((1-t)a_{2}+tx \bigr)t^{1-\alpha}\,d_{\alpha}t\end{aligned} $$
holds if \(D_{\alpha}(h)\in L_{\alpha}^{1}([a_{1}, a_{2}])\).
Proof
It follows from integration by parts that
$$\begin{gathered} \frac{x-a_{1}}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int_{0}^{1} \bigl[\bigl((1-t)a_{1}+tx \bigr)^{2\alpha-1}-a_{1}^{\alpha}\bigl((1-t)a_{1}+tx \bigr)^{\alpha -1} \bigr] D_{\alpha}(h) \bigl((1-t)a_{1}+tx \bigr)t^{1-\alpha}\,d_{\alpha}t \\\qquad{}+\frac{a_{2}-x}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int_{0}^{1} \bigl[\bigl((1-t)a_{2}+tx \bigr)^{2\alpha-1}-a_{2}^{\alpha}\bigl((1-t)a_{2}+tx \bigr)^{\alpha -1} \bigr]\\ \qquad{}\times D_{\alpha}(h) \bigl((1-t)a_{2}+tx \bigr)t^{1-\alpha}\,d_{\alpha}t \\\quad=\frac{x-a_{1}}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int_{0}^{1} \bigl[\bigl((1-t)a_{1}+tx \bigr)^{2\alpha-1}-a_{1}^{\alpha}\bigl((1-t)a_{1}+tx \bigr)^{\alpha -1} \bigr] D_{\alpha}(h) \bigl((1-t)a_{1}+tx \bigr)\,dt \\\qquad{}+\frac{a_{2}-x}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int_{0}^{1} \bigl[\bigl((1-t)a_{2}+tx \bigr)^{2\alpha-1}-a_{2}^{\alpha}\bigl((1-t)a_{2}+tx \bigr)^{\alpha -1} \bigr]\\ \qquad{}\times D_{\alpha}(h) \bigl((1-t)a_{2}+tx \bigr)\,dt \\\quad=\frac{x-a_{1}}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int _{0}^{1}\bigl[\bigl((1-t)a_{1}+tx \bigr)^{\alpha}-a_{1}^{\alpha}\bigr]h^{\prime} \bigl((1-t)a_{1}+tx\bigr)\,dt \\\qquad{}+\frac{a_{2}-x}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int _{0}^{1}\bigl[\bigl((1-t)a_{2}+tx \bigr)^{\alpha}-a_{2}^{\alpha}\bigr]h^{\prime} \bigl((1-t)a_{2}+tx\bigr)\,dt \\\quad=\frac{x-a_{1}}{a_{2}^{\alpha}-a_{1}^{\alpha}} \bigl(\bigl((1-t)a_{1}+tx\bigr)^{\alpha}-a_{1}^{\alpha} \bigr) \frac{h((1-t)a_{1}+tx)}{x-a_{1}} \bigg|_{0}^{1} \\\qquad{}-\frac{x-a_{1}}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int_{0}^{1}\alpha \bigl((1-t)a_{1}+tx \bigr)^{\alpha-1}h\bigl((1-t)a_{1}+tx\bigr)\,dt \\\qquad{}+\frac{a_{2}-x}{a_{2}^{\alpha}-a_{1}^{\alpha}} \bigl(\bigl((1-t)a_{2}+tx\bigr)^{\alpha}-a_{2}^{\alpha} \bigr) \frac{h((1-t)a_{2}+tx)}{x-a_{2}} \bigg|_{0}^{1} \\\qquad{}-\frac{a_{2}-x}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int_{0}^{1}\alpha \bigl((1-t)a_{2}+tx \bigr)^{\alpha-1}h\bigl((1-t)a_{2}+tx\bigr)\,dt \\\quad=\frac{x-a_{1}}{a_{2}^{\alpha}-a_{1}^{\alpha}} \biggl(\frac{x^{\alpha }-a_{1}^{\alpha}}{x-a_{1}}h(x) -\frac{\alpha}{x-a_{1}} \int_{a_{1}}^{x}h(s)\,d_{\alpha}s \biggr) \\\qquad{}+\frac{a_{2}-x}{a_{2}^{\alpha}-a_{1}^{\alpha}} \biggl(\frac{a_{2}^{\alpha }-x^{\alpha}}{a_{2}-x}h(x) -\frac{\alpha}{a_{2}-x} \int_{x}^{a_{2}}h(s)\,d_{\alpha}s \biggr) \\\quad=h(x)-\frac{\alpha}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int _{a_{1}}^{a_{2}}h(s)\,d_{\alpha}s.\end{gathered} $$
 □
Theorem 2.2
Let \(0<\alpha\leq1\), \(0\leq a_{1}< a_{2}\), \(h: [a_{1}, a_{2}]\rightarrow\mathbb{R}\) be an α-fractional differentiable function and \(D_{\alpha}(h)\in L_{\alpha}^{1}([a_{1}, a_{2}])\). Then the inequality
$$ \biggl\vert h(x)-\frac{\alpha}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int _{a_{1}}^{a_{2}}h(s)\,d_{\alpha}s \biggr\vert \leq \frac{x-a_{1}}{a_{2}^{\alpha}-a_{1}^{\alpha}}\triangle_{1}+\frac {a_{2}-x}{a_{2}^{\alpha}-a_{1}^{\alpha}}\triangle_{2} $$
holds if \(|h^{\prime}(x)|\) is convex, where
$$\begin{gathered}\begin{aligned} \triangle_{1}={}&\frac{1}{6}a_{1}^{\alpha-1}x\big|h^{\prime}(a_{1})\big| +\frac{1}{12}x^{\alpha-1}a_{1}\big|h^{\prime}(a_{1})\big|+ \frac {1}{12}x\big|h^{\prime}(a_{1})\big|-\frac{1}{4}a_{1}^{\alpha}\big|h^{\prime}(a_{1})\big| \\&+\frac{1}{12}a_{1}\big|h^{\prime}(x)\big|+\frac{1}{12}x^{\alpha -1}a_{1}\big|h^{\prime}(x)\big| +\frac{1}{4}x\big|h^{\prime}(x)\big|-\frac{1}{2}a_{1}^{\alpha}\big|h^{\prime}(x)\big|,\end{aligned} \\\triangle_{2}=\frac{1}{6}a_{2}^{\alpha}\big|h^{\prime}(a_{2})\big|- \frac {1}{6}x^{\alpha}\big|h^{\prime}(a_{2})\big|+ \frac{1}{3}a_{2}^{\alpha}\big|h^{\prime}(x)\big| - \frac{1}{3}x^{\alpha}\big|h^{\prime}(x)\big|.\end{gathered} $$
Proof
Let \(y>0\), \(\varphi_{1}(y)=y^{\alpha-1}\) and \(\varphi_{2}(y)=-y^{\alpha }\). Then we clearly see that the functions \(\varphi_{1}\) and \(\varphi _{2}\) both are convex. It follows from Lemma 2.1 and the convexity of \(\varphi_{1}\), \(\varphi_{2}\) and \(|h'|\) that
$$\begin{gathered} \biggl\vert h(x)-\frac{\alpha}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int _{a_{1}}^{a_{2}}h(s)\,d_{\alpha}s \biggr\vert \\ \quad\leq\frac{x-a_{1}}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int_{0}^{1} \bigl(\bigl((1-t)a_{1}+tx \bigr)^{\alpha}-a_{1}^{\alpha} \bigr)\big|h' \bigl((1-t)a_{1}+tx\bigr)\big|\,dt \\ \qquad{}+\frac{a_{2}-x}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int_{0}^{1} \bigl(a_{2}^{\alpha }- \bigl((1-t)a_{2}+tx\bigr)^{\alpha} \bigr)\big|h' \bigl((1-t)a_{2}+tx\bigr)\big|\,dt \\ \quad\leq\frac{x-a_{1}}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int_{0}^{1} \bigl(\bigl((1-t)a_{1}+tx \bigr)^{\alpha-1}\bigl((1-t)a_{1}+tx\bigr)-a_{1}^{\alpha} \bigr)\big|h'\bigl((1-t)a_{1}+tx\bigr)\big|\,dt \\ \qquad{}+\frac{a_{2}-x}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int_{0}^{1} \bigl(a_{2}^{\alpha }- \bigl((1-t)a_{2}^{\alpha}+tx^{\alpha}\bigr) \bigr)\big|h'\bigl((1-t)a_{2}+tx\bigr)\big|\,dt \\ \quad\leq\frac{x-a_{1}}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int_{0}^{1} \bigl(\bigl((1-t)a_{1}^{\alpha-1}+tx^{\alpha-1} \bigr) \bigl((1-t)a_{1}+tx\bigr)-a_{1}^{\alpha} \bigr)\big|h'\bigl((1-t)a_{1}+tx\bigr)\big|\,dt \\ \qquad{}+\frac{a_{2}-x}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int_{0}^{1} \bigl(a_{2}^{\alpha}- \bigl((1-t)a_{2}^{\alpha}+tx^{\alpha} \bigr) \bigr)\big|h'\bigl((1-t)a_{2}+tx\bigr)\big|\,dt \\ \quad\leq\frac{x-a_{1}}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int_{0}^{1} \bigl(\bigl((1-t)a_{1}^{\alpha-1}+tx^{\alpha-1} \bigr) \bigl((1-t)a_{1}+tx\bigr)-a_{1}^{\alpha} \bigr)\\ \qquad{}\times \bigl[(1-t)\big|h'(a_{1})\big|+t\big|h'(x)\big| \bigr]\,dt \\ \qquad{}+\frac{a_{2}-x}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int_{0}^{1} \bigl(a_{2}^{\alpha}- \bigl((1-t)a_{2}^{\alpha}+tx^{\alpha}\bigr) \bigr) \bigl[(1-t)\big|h'(a_{2})\big| +t\big|h'(x)\big| \bigr]\,dt \\ \quad=\frac{x-a_{1}}{a_{2}^{\alpha}-a_{1}^{\alpha}}\triangle_{1}+\frac {a_{2}-x}{a_{2}^{\alpha}-a_{1}^{\alpha}} \triangle_{2}.\end{gathered} $$
 □
Corollary 2.3
Let \(x=(a_{1}+a_{2})/2\). Then Theorem 2.2 leads to
$$\begin{gathered} \biggl\vert h \biggl(\frac{a_{1}+a_{2}}{2} \biggr)-\frac{\alpha}{a_{2}^{\alpha }-a_{1}^{\alpha}} \int_{a_{1}}^{a_{2}}h(s)\,d_{\alpha}s \biggr\vert \\ \quad\leq\frac{a_{2}-a_{1}}{2(a_{2}^{\alpha}-a_{1}^{\alpha})} \biggl[ \biggl(\frac {2a_{1}^{\alpha-1}a_{2}-10a_{1}^{\alpha}+a_{1} +a_{2}}{24} \biggr)\big|h'(a_{1})\big|+ \frac{a_{1}}{12} \biggl(\frac {a_{1}+a_{2}}{2} \biggr)^{\alpha-1}\big|h'(a_{1})\big| \\ \qquad{}+ \biggl(\frac{5a_{1}+3a_{2}-12a_{1}^{\alpha}}{24} \biggr) \bigg|h' \biggl(\frac {a_{1}+a_{2}}{2} \biggr) \bigg| +\frac{a_{1}}{12} \biggl(\frac{a_{1}+a_{2}}{2} \biggr)^{\alpha-1} \bigg|h' \biggl(\frac{a_{1}+a_{2}}{2} \biggr) \bigg| \\ \qquad{}+\frac{1}{6}a_{2}^{\alpha}\big|h'(a_{2})\big| -\frac{1}{6} \biggl(\frac{a_{1}+a_{2}}{2} \biggr)^{\alpha}\big|h'(a_{2})\big| \\ \qquad{}+\frac{a_{2}^{\alpha}}{3} \bigg|h' \biggl(\frac{a_{1}+a_{2}}{2} \biggr) \bigg| - \frac{1}{3} \biggl(\frac{a_{1}+a_{2}}{2} \biggr)^{\alpha} \bigg|h' \biggl(\frac {a_{1}+a_{2}}{2} \biggr) \bigg| \biggr].\end{gathered} $$
Remark 2.4
If \(\alpha=1\), then Corollary 2.3 becomes
$$ \begin{aligned} \biggl\vert h \biggl(\frac{a_{1}+a_{2}}{2} \biggr)-\frac{\alpha}{a_{2}^{\alpha }-a_{1}^{\alpha}} \int_{a_{1}}^{a_{2}}h(s)\,d_{\alpha}s \biggr\vert &\leq\frac{a_{2}-a_{1}}{24} \biggl(\big|h'(a_{1})\big|+4 \bigg|h' \biggl(\frac {a_{1}+a_{2}}{2} \biggr) \bigg|+\big|h'(a_{2})\big| \biggr) \\ &\leq\frac{a_{2}-a_{1}}{8} \bigl(\big|h'(a_{1})\big|+\big|h'(a_{2})\big| \bigr),\end{aligned} $$
where the second inequality is obtained by using the convexity of \(|h'|\).
Theorem 2.5
Let \(q>1\), \(M>0\), \(0<\alpha\leq1\), \(0\leq a_{1}< a_{2}\), \(h: [a_{1}, a_{2}]\rightarrow\mathbb{R}\) be an α-fractional differentiable function and \(D_{\alpha}(h)\in L_{\alpha}^{1}([a_{1}, a_{2}])\). Then the inequality
$$\begin{gathered} \bigg|h(x)-\frac{\alpha}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int _{a_{1}}^{a_{2}}h(s)\,d_{\alpha}s \bigg| \\\quad\leq M\frac{x-a_{1}}{a_{2}^{\alpha}-a_{1}^{\alpha}} \bigl(A_{1}(\alpha) \bigr)^{1-1/q} \bigl(A_{2}(\alpha)+A_{3}(\alpha ) \bigr)^{1/q} \\\qquad{}+M\frac{a_{2}-x}{a_{2}^{\alpha}-a_{1}^{\alpha}} \bigl(B_{1}(\alpha) \bigr)^{1-1/q} \bigl(B_{2}(\alpha)+B_{3}(\alpha) \bigr)^{1/q}\end{gathered} $$
holds if \(|h^{\prime}|^{q}\) is convex on \([a_{1}, a_{2}]\) and \(|h^{\prime}(x)|^{q}\leq M\), where
$$\begin{gathered} A_{1}(\alpha)=\frac{x^{\alpha+1}-a_{1}^{\alpha+1}}{(\alpha +1)(x-a_{1})}-a_{1}^{\alpha}, \qquad B_{1}(\alpha)=a_{2}^{\alpha}-\frac {x^{\alpha+1}-a_{2}^{\alpha+1}}{(\alpha+1)(a_{2}-x)}, \\A_{2}(\alpha)=-\frac{a_{1}^{\alpha+1}}{(\alpha+1)(x-a_{1})}\frac{(\alpha +2)(x-a_{1})+a_{1}}{ (\alpha+2)(x-a_{1})}+ \frac{x^{\alpha+2}}{(\alpha+1)(x-a_{1})^{2}(\alpha +2)}-\frac{a_{1}^{\alpha}}{2}, \\B_{2}(\alpha)=\frac{a_{2}^{\alpha}}{2}+\frac{a_{2}^{\alpha+1}}{(\alpha +1)(a_{2}-x)}\frac{(\alpha+2)(a_{2}-x)+a_{2}}{ (\alpha+2)(a_{2}-x)}- \frac{x^{\alpha+2}}{(\alpha+1)(a_{2}-x)^{2}(\alpha+2)}, \\A_{3}(\alpha)=\frac{x^{\alpha+1}}{(\alpha+1)(x-a_{1})}\frac{(\alpha +2)(x-a_{1})-x}{(\alpha+2)(x-a_{1})} + \frac{a_{1}^{\alpha+2}}{(\alpha+1)(x-a_{1})^{2}(\alpha+2)}-\frac {a_{1}^{\alpha}}{2}, \\B_{3}(\alpha)=\frac{a_{2}^{\alpha}}{2}-\frac{x^{\alpha+1}}{(\alpha +1)(a_{2}-x)} \frac{(\alpha+2)(a_{2}-x)-x}{ (\alpha+2)(a_{2}-x)}-\frac{a_{2}^{\alpha+2}}{(\alpha +1)(a_{2}-x)^{2}(\alpha+2)}.\end{gathered} $$
Proof
From Lemma 2.1, power-mean inequality and the convexity of \(|h^{\prime }|^{q}\) together with the identities
$$ \int_{0}^{1} \bigl(\bigl((1-t)a_{1}+tx \bigr)^{\alpha}-a_{1}^{\alpha} \bigr)\,dt = \frac{x^{\alpha+1}-a_{1}^{\alpha+1}}{(\alpha+1)(x-a_{1})}-a_{1}^{\alpha} $$
and
$$ \int_{0}^{1} \bigl(a_{2}^{\alpha}- \bigl((1-t)a_{2}+tx\bigr)^{\alpha} \bigr)\,dt =a_{2}^{\alpha}- \frac{x^{\alpha+1}-a_{2}^{\alpha+1}}{(\alpha+1)(a_{2}-x)} $$
we clearly see that
$$\begin{aligned}& \begin{aligned}[t] &\biggl\vert h(x)-\frac{\alpha}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int _{a_{1}}^{a_{2}}h(s)\,d_{\alpha}s \biggr\vert \\&\quad\leq\frac{x-a_{1}}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int_{0}^{1} \bigl(\bigl((1-t)a_{1}+tx \bigr)^{\alpha}-a_{1}^{\alpha} \bigr) \big|h' \bigl((1-t)a_{1}+tx\bigr) \big|\,dt \\&\qquad+\frac{a_{2}-x}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int_{0}^{1} \bigl(a_{2}^{\alpha}- \bigl((1-t)a_{2}+tx\bigr)^{\alpha} \bigr) \big|h' \bigl((1-t)a_{2}+tx\bigr) \big|\,dt,\end{aligned} \end{aligned}$$
(2.1)
$$\begin{aligned}& \begin{aligned}[t] &\int_{0}^{1} \bigl(\bigl((1-t)a_{1}+tx \bigr)^{\alpha}-a_{1}^{\alpha} \bigr) \big|h' \bigl((1-t)a_{1}+tx\bigr) \big|\,dt \\&\quad\leq \biggl( \int_{0}^{1} \bigl(\bigl((1-t)a_{1}+tx \bigr)^{\alpha}-a_{1}^{\alpha} \bigr)\,dt \biggr)^{1-1/q}\\ &\qquad\times \biggl( \int_{0}^{1} \bigl(\bigl((1-t)a_{1}+tx \bigr)^{\alpha}-a_{1}^{\alpha} \bigr) \big|h' \bigl((1-t)a_{1}+tx\bigr) \big|^{q}\,dt \biggr)^{1/q},\end{aligned} \end{aligned}$$
(2.2)
$$\begin{aligned}& \begin{aligned}[t] &\int_{0}^{1} \bigl(a_{2}^{\alpha}- \bigl((1-t)a_{2}+tx\bigr)^{\alpha} \bigr) \big|h' \bigl((1-t)a_{2}+tx\bigr) \big|\,dt \\&\quad\leq \biggl( \int_{0}^{1} \bigl( a_{2}^{\alpha}- \bigl((1-t)a_{2}+tx\bigr)^{\alpha} \bigr)\,dt \biggr)^{1-1/q}\\ &\qquad\times \biggl( \int_{0}^{1} \bigl(a_{2}^{\alpha}- \bigl((1-t)a_{2}+tx\bigr)^{\alpha} \bigr) \bigl\vert h'\bigl((1-t)a_{2}+tx\bigr) \bigr\vert ^{q}\,dt \biggr)^{1/q},\end{aligned} \end{aligned}$$
(2.3)
$$\begin{aligned}& \begin{aligned}[t] &\int_{0}^{1} \bigl(\bigl((1-t)a_{1}+tx \bigr)^{\alpha}-a_{1}^{\alpha} \bigr) \bigl\vert h'\bigl((1-t)a_{1}+tx\bigr) \bigr\vert ^{q}\,dt \\&\quad\leq \int_{0}^{1} \bigl(\bigl((1-t)a_{1}+tx \bigr)^{\alpha}-a_{1}^{\alpha} \bigr) \bigl[(1-t)\big|h'(a_{1})\big|^{q}+t\big|h'(x)\big|^{q} \bigr]\,dt \\&\quad=\big|h'(a)\big|^{q} \int_{0}^{1} \bigl(\bigl((1-t)a_{1}+tx \bigr)^{\alpha}-a_{1}^{\alpha} \bigr) (1-t)\,dt+\big|h'(x)\big|^{q} \int_{0}^{1} \bigl(\bigl((1-t)a_{1}+tx \bigr)^{\alpha}-a_{1}^{\alpha} \bigr)t \,dt \\&\quad=\big|h'(a)\big|^{q} \biggl(-\frac{a_{1}^{\alpha+1}}{(\alpha+1)(x-a_{1})} \frac{(\alpha +2)(x-a_{1})+a_{1}}{ (\alpha+2)(x-a_{1})}+\frac{x^{\alpha+2}}{(\alpha+1)(x-a_{1})^{2}(\alpha +2)}-\frac{a_{1}^{\alpha}}{2} \biggr) \\&\qquad+\big|h'(x)\big|^{q} \biggl(\frac{x^{\alpha+1}}{(\alpha+1)(x-a_{1})} \frac{(\alpha +2)(x-a_{1})-x}{ (\alpha+2)(x-a_{1})}+\frac{a_{1}^{\alpha+2}}{(\alpha+1)(x-a_{1})^{2}(\alpha +2)}-\frac{a_{1}^{\alpha}}{2} \biggr) \\&\quad\leq M^{q} \biggl(-\frac{a_{1}^{\alpha+1}}{(\alpha+1)(x-a_{1})}\frac{(\alpha +2)(x-a_{1})+a_{1}}{(\alpha+2)(x-a_{1})} + \frac{x^{\alpha+2}}{(\alpha+1)(x-a_{1})^{2}(\alpha+2)}-\frac {a_{1}^{\alpha}}{2} \biggr) \\&\qquad+M^{q} \biggl(\frac{x^{\alpha+1}}{(\alpha+1)(x-a_{1})}\frac{(\alpha +2)(x-a_{1})-x}{(\alpha+2)(x-a_{1})} + \frac{a_{1}^{\alpha+2}}{(\alpha+1)(x-a_{1})^{2}(\alpha+2)}-\frac {a_{1}^{\alpha}}{2} \biggr),\end{aligned} \end{aligned}$$
(2.4)
$$\begin{aligned}& \begin{aligned}[t] &\int_{0}^{1} \bigl(a_{2}^{\alpha}- \bigl((1-t)a_{2}+tx\bigr)^{\alpha} \bigr) \bigl\vert h'\bigl((1-t)a_{2}+tx\bigr) \bigr\vert ^{q}\,dt \\&\quad\leq \int_{0}^{1} \bigl(a_{2}^{\alpha}- \bigl((1-t)a_{2}+tx\bigr)^{\alpha} \bigr) \bigl[(1-t)\big|h'(a_{2})\big|^{q}+t\big|h'(x)\big|^{q} \bigr]\,dt \\&\quad=\big|h'(a_{2})\big|^{q} \int_{0}^{1} \bigl(a_{2}^{\alpha}- \bigl((1-t)a_{2}+tx\bigr)^{\alpha } \bigr) (1-t)\,dt\\ &\qquad +\big|h'(x)\big|^{q} \int_{0}^{1} \bigl(a_{2}^{\alpha}- \bigl((1-t)a_{2}+tx\bigr)^{\alpha} \bigr)t \,dt \\&\quad=\big|h'(a_{2})\big|^{q} \biggl(\frac{a_{2}^{\alpha}}{2}+ \frac{a_{2}^{\alpha +1}}{(\alpha+1)(a_{2}-x)} \frac{(\alpha+2)(a_{2}-x)+a_{2}}{(\alpha+2)(a_{2}-x)}-\frac{x^{\alpha +2}}{(\alpha+1)(a_{2}-x)^{2}(\alpha+2)} \biggr) \\&\qquad+\big|h'(x)\big|^{q} \biggl(\frac{a_{2}^{\alpha}}{2}- \frac{x^{\alpha+1}}{(\alpha +1)(a_{2}-x)} \frac{(\alpha+2)(a_{2}-x)-x}{(\alpha+2)(a_{2}-x)}-\frac{a_{2}^{\alpha+2}}{ (\alpha+1)(a_{2}-x)^{2}(\alpha+2)} \biggr) \\&\quad\leq M^{q} \biggl(\frac{a_{2}^{\alpha}}{2}+\frac{a_{2}^{\alpha+1}}{(\alpha +1)(a_{2}-x)} \frac{(\alpha+2)(a_{2}-x)+a_{2}}{(\alpha+2)(a_{2}-x)}-\frac{x^{\alpha +2}}{(\alpha+1)(a_{2}-x)^{2}(\alpha+2)} \biggr) \\&\qquad+M^{q} \biggl(\frac{a_{2}^{\alpha}}{2}-\frac{x^{\alpha+1}}{(\alpha+1)(a_{2}-x)} \frac{(\alpha+2)(a_{2}-x)-x}{(\alpha+2)(a_{2}-x)}-\frac{a_{2}^{\alpha+2}}{ (\alpha+1)(a_{2}-x)^{2}(\alpha+2)} \biggr).\end{aligned} \end{aligned}$$
(2.5)
Therefore, Theorem 2.5 follows easily from (2.1)–(2.5). □
Remark 2.6
Let \(\alpha=1\). Then Theorem 2.5 leads to
$$\begin{aligned} \bigg|h(x)-\frac{1}{a_{2}-a_{1}} \int_{a_{1}}^{a_{2}}h(s)\,ds \bigg| \leq{}& M\frac{x-a_{1}}{a_{2}-a_{1}} \bigl(A_{1}(1) \bigr)^{1-1/q} \bigl[A_{2}(1)+ A_{3}(1) \bigr]^{1/q} \\&+M\frac{a_{2}-x}{a_{2}-a_{1}} \bigl(B_{1}(1) \bigr)^{1-1/q} \bigl[B_{2}(1)+B_{3}(1) \bigr]^{1/q},\end{aligned} $$
where
$$\begin{gathered} A_{1}(1)=\frac{x-a_{1}}{2}, \qquad B_{1}(1)= \frac{a_{2}-x}{2}, \\ A_{2}(1)=\frac {3a_{1}^{2}x+6a_{1}^{2}+x^{3}-3a_{1}x^{2}-3a_{1}^{3}}{6(x-a_{1})^{2}}, \qquad B_{2}(1)= \frac{7a_{2}^{3}+3a_{2}x^{2}-9a_{2}^{2}x-x^{3}}{6(a_{2}-x)^{2}}, \\ A_{3}(1)=\frac{2x^{3}-2a_{1}^{3}-6a_{1}x^{2}+6a_{1}^{2}x}{6(x-a_{1})^{2}}, \qquad B_{3}(1)= \frac{2a_{2}^{3}-6a_{2}x+2x^{3}}{6(a_{2}-x)^{2}}.\end{gathered} $$
Theorem 2.7
Let \(q>1\), \(M>0\), \(0<\alpha\leq1\), \(0\leq a_{1}< a_{2}\), \(h: [a_{1}, a_{2}]\rightarrow\mathbb{R}\) be an α-fractional differentiable function and \(D_{\alpha}(h)\in L_{\alpha}^{1}([a_{1}, a_{2}])\). Then the inequality
$$\begin{gathered} \bigg|h(x)-\frac{\alpha}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int _{a_{1}}^{a_{2}}h(s)\,d_{\alpha}s \bigg| \\ \quad\leq M\frac{x-a_{1}}{a_{2}^{\alpha}-a_{1}^{\alpha}} \bigl(A_{1}(\alpha) \bigr)^{1-1/q} \biggl(\frac{-8a_{1}^{\alpha }+2a_{1}^{\alpha-1}x+2x^{\alpha-1}a_{1}+4x^{\alpha}}{12} \biggr)^{1/q} \\ \qquad{}+M\frac{a_{2}-x}{a_{2}^{\alpha}-a_{1}^{\alpha}} \bigl(B_{1}(\alpha) \bigr)^{1-1/q} \biggl(\frac{a_{2}^{\alpha}-x^{\alpha}}{2} \biggr)^{1/q}\end{gathered} $$
holds if \(|h^{\prime}|^{q}\) is convex on \([a_{1}, a_{2}]\) and \(|h^{\prime}(x)|^{q}\leq M\), where
$$ A_{1}(\alpha)=\frac{2a_{1}^{\alpha}+a_{1}^{\alpha-1}x+x^{\alpha -1}a_{1}+2x^{\alpha}-6a_{1}^{\alpha}}{6},\qquad B_{1}(\alpha)= \frac {a_{2}^{\alpha}-x^{\alpha}}{2}. $$
Proof
It follows from the proof of Theorem 2.2 that
$$ \begin{aligned}[t] &\biggl\vert h(x)-\frac{\alpha}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int _{a_{1}}^{a_{2}}h(s)\,d_{\alpha}s \biggr\vert \\ &\quad\leq\frac{x-a_{1}}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int_{0}^{1} \bigl((1-t)a_{1}^{\alpha-1}+tx^{\alpha-1} \bigr) \bigl(\bigl((1-t)a_{1}+tx\bigr)-a_{1}^{\alpha} \bigr)\big|h'\bigl((1-t)a_{1}+tx\bigr)\big|\,dt \\ &\qquad+\frac{a_{2}-x}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int_{0}^{1} \bigl(a_{2}^{\alpha}- \bigl((1-t)a_{2}^{\alpha}+tx^{\alpha}\bigr) \bigr)\big|h'\bigl((1-t)a_{2}+tx\bigr)\big|\,dt.\end{aligned} $$
(2.6)
From the power-mean inequality and convexity of \(|h^{\prime}|^{q}\) together with the identities
$$\int^{1}_{0}\bigl((1-t)a_{1}^{\alpha-1}+tx^{\alpha -1} \bigr) \bigl(\bigl((1-t)a_{1}+tx\bigr)-a_{1}^{\alpha} \bigr)\,dt =\frac{2a_{1}^{\alpha}+a_{1}^{\alpha-1}x+x^{\alpha-1}a_{1}+2x^{\alpha }-6a_{1}^{\alpha}}{6}$$
and
$$ \int_{0}^{1} \bigl(a_{2}^{\alpha}- \bigl((1-t)a_{2}^{\alpha}+tx^{\alpha}\bigr) \bigr)\,dt= \frac{a_{2}^{\alpha}-x^{\alpha}}{2} $$
we get
$$\begin{aligned}& \begin{aligned}[t] &\int_{0}^{1} \bigl((1-t)a_{1}^{\alpha-1}+tx^{\alpha -1} \bigr) \bigl(\bigl((1-t)a_{1}+tx\bigr)-a_{1}^{\alpha} \bigr)\big|h'\bigl((1-t)a_{1}+tx\bigr)\big|\,dt \\ &\quad\leq \biggl( \int_{0}^{1} \bigl((1-t)a_{1}^{\alpha-1}+tx^{\alpha -1} \bigr) \bigl(\bigl((1-t)a_{1}+tx\bigr)-a_{1}^{\alpha} \bigr)\,dt \biggr)^{1-1/q} \\ &\qquad\times \biggl( \int_{0}^{1} \bigl((1-t)a_{1}^{\alpha-1}+tx^{\alpha -1} \bigr) \bigl(\bigl((1-t)a_{1}+tx\bigr)-a_{1}^{\alpha} \bigr)\big|h'\bigl((1-t)a_{1}+tx\bigr)\big|^{q}\,dt \biggr)^{1/q}, \end{aligned} \end{aligned}$$
(2.7)
$$\begin{aligned}& \begin{aligned}[t] &\int_{0}^{1} \bigl(a_{2}^{\alpha}- \bigl((1-t)a_{2}^{\alpha}+tx^{\alpha}\bigr) \bigr) \big|h'\bigl((1-t)a_{2}+tx\bigr) \big|\,dt \\&\quad\leq \biggl( \int_{0}^{1} \bigl( a_{2}^{\alpha}- \bigl((1-t)a_{2}^{\alpha }+tx^{\alpha}\bigr) \bigr)\,dt \biggr)^{1-1/q} \\&\qquad\times \biggl( \int_{0}^{1} \bigl(a_{2}^{\alpha}- \bigl((1-t)a_{2}^{\alpha }+tx^{\alpha}\bigr) \bigr) \bigl\vert h'\bigl((1-t)a_{2}+tx\bigr) \bigr\vert ^{q}\,dt \biggr)^{1/q},\end{aligned} \end{aligned}$$
(2.8)
$$\begin{aligned}& \begin{aligned}[t] &\int_{0}^{1} \bigl((1-t)a_{1}^{\alpha-1}+tx^{\alpha -1} \bigr) \bigl(\bigl((1-t)a_{1}+tx\bigr)-a_{1}^{\alpha} \bigr)\big|h'\bigl((1-t)a_{1}+tx\bigr)\big|^{q}\,dt \\&\quad\leq \int_{0}^{1} \bigl((1-t)a_{1}^{\alpha-1}+tx^{\alpha -1} \bigr) \bigl(\bigl((1-t)a_{1}+tx\bigr)-a_{1}^{\alpha} \bigr) \bigl[(1-t)\big|h'(a_{1})\big|^{q}+t\big|h'(x)\big|^{q} \bigr]\,dt \\&\quad=\big|h'(a_{1})\big|^{q} \int_{0}^{1}\bigl((1-t)a_{1}^{\alpha-1}+tx^{\alpha -1} \bigr) \bigl(\bigl((1-t)a_{1}+tx\bigr)-a_{1}^{\alpha} \bigr) (1-t)\,dt \\&\qquad+\big|h'(x)\big|^{q} \int_{0}^{1}\bigl((1-t)a_{1}^{\alpha-1}+tx^{\alpha -1} \bigr) \bigl(\bigl((1-t)a_{1}+tx\bigr)-a_{1}^{\alpha} \bigr)t\,dt \\&\quad=\big|h'(a_{1})\big|^{q} \biggl( \frac{1}{4}a_{1}^{\alpha}+\frac{1}{12}a_{1}^{\alpha -1}x+ \frac{1}{12}x^{\alpha-1}a_{1}+\frac{1}{12}x^{\alpha}- \frac {1}{2}a_{1}^{\alpha} \biggr) \\&\qquad+\big|h'(x)\big|^{q} \biggl(\frac{1}{12}a_{1}^{\alpha}+ \frac{1}{12}a_{1}^{\alpha -1}x+\frac{1}{12}x^{\alpha-1}a_{1}+ \frac{1}{4}x^{\alpha}-\frac {1}{2}a_{1}^{\alpha} \biggr) \\&\quad\leq M^{q} \biggl(\frac{-8a_{1}^{\alpha}+2a_{1}^{\alpha-1}x+2x^{\alpha -1}a_{1}+4x^{\alpha}}{12} \biggr),\end{aligned} \end{aligned}$$
(2.9)
$$\begin{aligned}& \begin{aligned}[t] &\int_{0}^{1} \bigl(a_{2}^{\alpha}- \bigl((1-t)a_{2}^{\alpha}+tx^{\alpha}\bigr) \bigr) \bigl\vert h'\bigl((1-t)a_{2}+tx\bigr) \bigr\vert ^{q}\,dt \\&\quad\leq \int_{0}^{1} \bigl(a_{2}^{\alpha}- \bigl((1-t)a_{2}^{\alpha}+tx^{\alpha }\bigr) \bigr) \bigl[(1-t)\big|h'(a_{2})\big|^{q}+t\big|h'(x)\big|^{q} \bigr]\,dt \\&\quad=\big|h'(a_{2})\big|^{q} \biggl(\frac{a_{2}^{\alpha}-x^{\alpha}}{6} \biggr)+\big|h'(x)\big|^{q} \biggl(\frac{a_{2}^{\alpha}-x^{\alpha}}{3} \biggr) \\&\quad\leq M^{q} \biggl(\frac{a_{2}^{\alpha}-x^{\alpha}}{2} \biggr).\end{aligned} \end{aligned}$$
(2.10)
Therefore, Theorem 2.7 follows easily from (2.6)–(2.10). □
Theorem 2.8
Let \(q>1\), \(0<\alpha\leq1\), \(0\leq a_{1}< a_{2}\), \(h: [a_{1}, a_{2}]\rightarrow\mathbb{R}\) be an α-fractional differentiable function and \(D_{\alpha}(h)\in L_{\alpha}^{1}([a_{1}, a_{2}])\). Then the inequality
$$\begin{gathered} \bigg|h(x)-\frac{\alpha}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int _{a_{1}}^{a_{2}}h(s)\,d_{\alpha}s \bigg| \\\quad\leq\frac{x-a_{1}}{a_{2}^{\alpha}-a_{1}^{\alpha}}A_{1}(\alpha) \bigg|h' \biggl( \frac{C_{1}(\alpha)}{A_{1}(\alpha)} \biggr) \bigg| +\frac{a_{2}-x}{a_{2}^{\alpha}-a_{1}^{\alpha}}B_{1}(\alpha) \bigg|h' \biggl(\frac{C_{2}(\alpha)}{B_{1}(\alpha)} \biggr) \bigg|\end{gathered} $$
holds if \(|h^{\prime}|^{q}\) is concave on \([a_{1}, a_{2}]\), where
$$\begin{aligned}& A_{1}(\alpha)=\frac{x^{\alpha+1}-a_{1}^{\alpha+1}}{(\alpha +1)(x-a_{1})}-a_{1}^{\alpha},\\& B_{1}(\alpha)=a_{2}^{\alpha}-\frac{x^{\alpha+1}-a_{2}^{\alpha +1}}{(\alpha+1)(a_{2}-x)}, \\& \begin{aligned}C_{1}(\alpha)={}&\frac{x^{\alpha+2}-a_{1}^{\alpha+2}}{(\alpha +1)(x-a_{1})}-\frac{x^{\alpha+3}+a_{1}^{\alpha+3}}{(\alpha +1)(x-a_{1})^{2}(\alpha+2)} \\&+\frac{a_{1}x}{(\alpha+1)(x-a_{1})^{2}(\alpha+2)} \bigl(x^{\alpha +1}+a_{1}^{\alpha+1} \bigr)-a_{1}^{\alpha}\frac{(a_{1}+x)}{2},\end{aligned} \\& \begin{aligned}C_{2}(\alpha)={}&a_{2}^{\alpha}\frac{(a_{2}+x)}{2}+ \frac{a_{2}^{\alpha +3}+x^{\alpha+3}}{(\alpha+1)(a_{2}-x)^{2}(\alpha+2)} \\&-\frac{a_{2}x}{(\alpha+1)(a_{2}-x)^{2}(\alpha+2)} \bigl(x^{\alpha +1}+a_{2}^{\alpha+1} \bigr)+\frac{a_{2}^{\alpha+2}-x^{\alpha+2}}{(\alpha +1)(a_{2}-x)}.\end{aligned} \end{aligned}$$
Proof
It is well known that \(|h^{\prime}|\) is concave due to \(|h^{\prime }|^{q}\) being concave. It follows from Lemma 2.1 that
$$\begin{gathered} \bigg|h(x)-\frac{\alpha}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int _{a_{1}}^{a_{2}}h(s)\,d_{\alpha}s \bigg| \\\quad\leq\frac{x-a_{1}}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int_{0}^{1} \bigl(\bigl((1-t)a_{1}+tx \bigr)^{\alpha}-a_{1}^{\alpha} \bigr)\big|h' \bigl((1-t)a_{1}+tx\bigr)\big|\,dt \\\qquad{}+\frac{a_{2}-x}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int_{0}^{1} \bigl(a_{2}^{\alpha}- \bigl((1-t)a_{2}+tx\bigr)^{\alpha} \bigr)\big|h' \bigl((1-t)a_{2}+tx\bigr)\big|\,dt.\end{gathered} $$
Making use of Jensen’s integral inequality, we have
$$\begin{gathered} \int_{0}^{1} \bigl(\bigl((1-t)a_{1}+tx \bigr)^{\alpha}-a_{1}^{\alpha} \bigr) \bigl\vert h'\bigl((1-t)a_{1}+tx\bigr) \bigr\vert \,dt \\\quad\leq \int_{0}^{1} \bigl(\bigl((1-t)a_{1}+tx \bigr)^{\alpha}-a_{1}^{\alpha} \bigr) \bigg|h' \biggl(\frac{\int_{0}^{1} (((1-t)a_{1}+tx)^{\alpha}-a_{1}^{\alpha } )((1-t)a_{1}+tx)\,dt}{ \int_{0}^{1} (((1-t)a_{1}+tx)^{\alpha}-a_{1}^{\alpha} )\,dt} \biggr) \bigg|\,dt \\\quad=A_{1}(\alpha) \bigg|h' \biggl(\frac{C_{1}(\alpha)}{A_{1}(\alpha)} \biggr) \bigg|, \\\int_{0}^{1} \bigl(a_{2}^{\alpha}- \bigl((1-t)a_{2}+tx\bigr)^{\alpha} \bigr) \bigl\vert h'\bigl((1-t)a_{2}+tx\bigr) \bigr\vert \,dt \\\quad\leq \int_{0}^{1} \bigl(a_{2}^{\alpha}- \bigl((1-t)a_{2}+tx\bigr)^{\alpha} \bigr) \bigg|h' \biggl( \frac{\int_{0}^{1} (a_{2}^{\alpha }-((1-t)a_{2}+tx)^{\alpha} )((1-t)a_{2}+tx)\,dt}{ \int_{0}^{1} (a_{2}^{\alpha}-((1-t)a_{2}+tx)^{\alpha} )\,dt} \biggr) \bigg|\,dt \\\quad=B_{1}(\alpha) \bigg|h' \biggl(\frac{C_{2}(\alpha)}{B_{1}(\alpha)} \biggr)\bigg|,\end{gathered} $$
where we have used the identities
$$\begin{gathered} \int_{0}^{1} \bigl(\bigl((1-t)a_{1}+tx \bigr)^{\alpha}-a_{1}^{\alpha} \bigr)\,dt=A_{1}( \alpha ), \\ \int_{0}^{1} \bigl(a_{2}^{\alpha}- \bigl((1-t)a_{2}+tx\bigr)^{\alpha} \bigr)\,dt =B_{1}( \alpha), \\\int_{0}^{1} \bigl(\bigl((1-t)a_{1}+tx \bigr)^{\alpha}-a_{1}^{\alpha} \bigr) \bigl((1-t)a_{1}+tx \bigr)\,dt=C_{1}(\alpha), \\\int_{0}^{1} \bigl(a_{2}^{\alpha}- \bigl((1-t)x+ta_{2}\bigr)^{\alpha} \bigr) \bigl((1-t)a_{2}+tx \bigr)\,dt=C_{2}(\alpha).\end{gathered} $$
 □
Remark 2.9
If \(\alpha=1\), then Theorem 2.8 becomes
$$\begin{gathered} \bigg|h(x)-\frac{\alpha}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int _{a_{1}}^{a_{2}}h(s)\,d_{\alpha}s \bigg| \\\quad\leq\frac{(x-a_{1})^{2}}{2(a_{2}-a_{1})} \bigg|h' \biggl(\frac {2x^{4}-5a_{1}x^{3}+3a_{1}^{2}x^{2}+xa_{1}^{3}-a_{1}^{4}}{3(x-a_{1})} \biggr) \bigg| \\\qquad{}+\frac{(a_{2}-x)^{2}}{2(a_{2}-a_{1})} \bigg|h' \biggl(\frac {4x^{4}-a_{2}x^{3}-3x^{2}a_{2}^{2}-7a_{2}^{3}x+7a_{2}^{4}}{3(a_{2}-x)} \biggr) \bigg|.\end{gathered} $$
Theorem 2.10
Let \(q>1\), \(0<\alpha\leq1\), \(0\leq a_{1}< a_{2}\), \(h: [a_{1}, a_{2}]\rightarrow\mathbb{R}\) be an α-fractional differentiable function and \(D_{\alpha}(h)\in L_{\alpha}^{1}([a_{1}, a_{2}])\). Then the inequality
$$\begin{gathered} \bigg|h(x)-\frac{\alpha}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int _{a_{1}}^{a_{2}}h(s)\,d_{\alpha}s \bigg| \\\quad\leq\frac{x-a_{1}}{a_{2}^{\alpha}-a_{1}^{\alpha}}A_{1}(\alpha) \bigg|h' \biggl( \frac{C_{1}(\alpha)}{A_{1}(\alpha)} \biggr) \bigg| +\frac{a_{2}-x}{a_{2}^{\alpha}-a_{1}^{\alpha}}B_{1}(\alpha) \bigg|h' \biggl(\frac{C_{2}(\alpha)}{B_{1}(\alpha)} \biggr) \bigg|\end{gathered} $$
holds if \(|h^{\prime}|^{q}\) is concave on \([a_{1}, a_{2}]\), where
$$\begin{gathered} A_{1}(\alpha)=\frac{2a_{1}^{\alpha}+a_{1}^{\alpha-1}x+x^{\alpha -1}a_{1}+2x^{\alpha}-6a_{1}^{\alpha}}{6},\qquad B_{1}(\alpha)= \frac {a_{2}^{\alpha}-x^{\alpha}}{2}, \\C_{1}(\alpha)=\frac{-3a_{1}^{\alpha+1}+x+x^{\alpha-1}a_{1}^{\alpha +1}+x^{\alpha}a_{1}-5xa_{1}^{\alpha}+x^{2}a_{1}^{\alpha-1}+x a_{1}+3x^{\alpha+1}}{12}, \\C_{2}(\alpha)=\frac{a_{2}^{\alpha+1}-x^{\alpha}a_{2}+2xa_{2}^{\alpha }-2x^{\alpha+1}}{6}.\end{gathered} $$
Proof
From the concavity of \(|h^{\prime}|^{q}\) we know that \(|h^{\prime}|\) is also concave, then from Lemma 2.1 we have
$$\begin{gathered} \biggl\vert h(x)-\frac{\alpha}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int _{a_{1}}^{a_{2}}h(s)\,d_{\alpha}s \biggr\vert \\\quad\leq\frac{x-a_{1}}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int _{0}^{1}\bigl((1-t)a_{1}^{\alpha-1}+tx^{\alpha-1} \bigr) \bigl(\bigl((1-t)a_{1}+tx\bigr)-a_{1}^{\alpha } \bigr)\big|h'\bigl((1-t)a_{1}+tx\bigr)\big|\,dt \\\qquad{}+\frac{a_{2}-x}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int_{0}^{1} \bigl(a_{2}^{\alpha}- \bigl((1-t)a_{2}^{\alpha}+tx^{\alpha}\bigr) \bigr)\big|h'\bigl((1-t)a_{2}+tx\bigr)\big|\,dt.\end{gathered} $$
It follows from the Jensen integral inequality that
$$\begin{aligned}& \int_{0}^{1}\bigl((1-t)a_{1}^{\alpha-1}+tx^{\alpha -1} \bigr) \bigl(\bigl((1-t)a_{1}+tx\bigr)-a_{1}^{\alpha} \bigr)\big|h'\bigl((1-t)a_{1}+tx\bigr)\big|\,dt \\& \quad\leq \int_{0}^{1}\bigl((1-t)a_{1}^{\alpha-1}+tx^{\alpha -1} \bigr) \bigl(\bigl((1-t)a_{1}+tx\bigr)-a_{1}^{\alpha} \bigr) \\& \qquad{}\times \bigg|h' \biggl(\frac{\int_{0}^{1}((1-t)a_{1}^{\alpha-1}+tx^{\alpha -1})(((1-t)a_{1}+tx)-a_{1}^{\alpha})((1-t)a_{1}+tx)\,dt}{ \int_{0}^{1}((1-t)a_{1}^{\alpha-1}+tx^{\alpha -1})(((1-t)a_{1}+tx)-a_{1}^{\alpha})\,dt} \biggr)\bigg|\,dt \\& \quad=A_{1}(\alpha)h' \biggl(\frac{C_{1}(\alpha)}{A_{1}(\alpha)} \biggr), \\& \int_{0}^{1} \bigl(a_{2}^{\alpha}- \bigl((1-t)a_{2}^{\alpha}+tx^{\alpha}\bigr) \bigr) \bigl\vert h'\bigl((1-t)a_{2}+tx\bigr) \bigr\vert \,dt \\& \quad\leq \int_{0}^{1} \bigl(a_{2}^{\alpha}- \bigl((1-t)a_{2}^{\alpha}+tx^{\alpha }\bigr) \bigr) \bigg|h' \biggl(\frac{\int_{0}^{1} (a_{2}^{\alpha}-((1-t)a_{2}^{\alpha }+tx^{\alpha}) )((1-t)a_{2}+tx)\,dt}{ \int_{0}^{1} (a_{2}^{\alpha}-((1-t)a_{2}^{\alpha}+tx^{\alpha }) )\,dt} \biggr) \bigg| \\& \quad=B_{1}(\alpha)h' \biggl(\frac{C_{2}(\alpha)}{B_{1}(\alpha)} \biggr). \end{aligned}$$
 □
Remark 2.11
If \(\alpha=1\), then Theorem 2.10 leads to
$$\begin{gathered} \bigg|h(x)-\frac{1}{a_{2}-a_{1}} \int_{a_{1}}^{a_{2}}h(s)\,ds \bigg| \\\quad\leq\frac{(x-a_{1})^{2}}{2(a_{2}-a_{1})} \bigg|h' \biggl(\frac {2x^{2}-a_{1}x-a_{1}^{2}}{3(x-a_{1})} \biggr) \bigg| + \frac{(a_{2}-x)^{2}}{2(a_{2}-a_{1})} \bigg|h' \biggl(\frac {a_{2}^{2}+a_{2}x-2x^{2}}{3(a_{2}-x)} \biggr) \bigg|.\end{gathered} $$
Remark 2.12
If \(\alpha=1\) and \(x=(a_{1}+a_{2})/2\), then Theorem 2.10 becomes
$$ \bigg|h(x)-\frac{1}{a_{2}-a_{1}} \int_{a_{1}}^{a_{2}}h(s)\,ds \bigg| \leq\frac{a_{2}-a_{1}}{8} \biggl[ \bigg|h' \biggl(\frac{2a_{1}+a_{2}}{3} \biggr) \bigg| + \bigg|h' \biggl(\frac{a_{1}+2a_{2}}{3} \biggr) \bigg| \biggr]. $$

3 Applications to means

Let \(a, b>0\) with \(a\neq b\). Then the arithmetic mean \(A(a, b)\), logarithmic mean \(L(a,b)\) and generalized logarithmic mean \(L_{(\alpha, r)}(a,b)\) of a and b are defined by
$$ A(a,b)=\frac{a+b}{2}, \qquad L(a,b)=\frac{b-a}{\log b-\log a}, \qquad L_{(\alpha, r)}(a,b)= \biggl[\frac{\alpha (b^{r+\alpha}-a^{r+\alpha } )}{(r+\alpha)(b^{\alpha}-a^{\alpha})} \biggr]^{1/r}, $$
respectively.
Recently, the bivariate means have been the subject of intensive research, many remarkable inequalities for the bivariate means can be found in the literature [2560].
Let \(h(x)=x^{r}\) and \(h(x)=1/x\). Then Corollary 2.3 immediately leads to Theorems 3.1 and 3.2.
Theorem 3.1
Let \(r>1\) and \(\alpha\in(0, 1]\). Then the inequality
$$\begin{gathered} \big|A^{r}(a_{1},a_{2})-L^{r}_{(\alpha,r)}(a_{1},a_{2})\big| \\\quad\leq\frac{r(a_{2}-a_{1})}{2(a_{2}^{\alpha}-a_{1}^{\alpha})} \biggl[ \biggl(\frac {2a_{1}^{\alpha-1}a_{2}-10a_{1}^{\alpha}+a_{1} +a_{2}}{24} \biggr)|a_{1}|^{r-1}+ \frac{a_{1}}{12} \biggl(\frac {a_{1}+a_{2}}{2} \biggr)^{\alpha-1}|a_{1}|^{r-1} \\\qquad{}+ \biggl(\frac{5a_{1}+3a_{2}-12a_{1}^{\alpha}}{24} \biggr) \bigg|\frac {a_{1}+a_{2}}{2} \bigg|^{r-1}+ \frac{a_{1}}{12} \biggl(\frac{a_{1}+a_{2}}{2} \biggr)^{\alpha-1} \bigg| \frac{a_{1}+a_{2}}{2} \bigg|^{r-1} \\\qquad{}+\frac{1}{6}a_{2}^{\alpha}|a_{2}|^{r-1}- \frac{1}{6} \biggl(\frac {a_{1}+a_{2}}{2} \biggr)^{\alpha}|a_{2}|^{r-1}+ \frac{a_{2}^{\alpha}}{3} \bigg|\frac{a_{1}+a_{2}}{2} \bigg|^{r-1} \\\qquad{}-\frac{1}{3} \biggl(\frac{a_{1}+a_{2}}{2} \biggr)^{\alpha} \bigg| \frac {a_{1}+a_{2}}{2} \bigg|^{r-1} \biggr]\end{gathered} $$
holds for all \(a_{1}, a_{2}>0\).
Theorem 3.2
Let \(r>1\) and \(\alpha\in(0, 1]\). Then the inequality
$$\begin{gathered} \big|A^{r}(a_{1},a_{2})-L^{r}_{(\alpha,r)}(a_{1},a_{2})\big| \\\quad\leq\frac{(a_{2}-a_{1})}{2(a_{2}^{\alpha}-a_{1}^{\alpha})} \biggl[ \biggl(\frac {2a_{1}^{\alpha-1}b-10a_{1}^{\alpha}+a_{1} +a_{2}}{24} \biggr)|a_{1}|^{-2}+ \frac{a_{1}}{12} \biggl(\frac {a_{1}+a_{2}}{2} \biggr)^{\alpha-1}|a_{1}|^{-2} \\\qquad{}+ \biggl(\frac{5a_{1}+3a_{2}-12a_{1}^{\alpha}}{24} \biggr) \bigg|\frac {a_{1}+a_{2}}{2} \bigg|^{-2}+ \frac{a_{1}}{12} \biggl(\frac{a_{1}+a_{2}}{2} \biggr)^{\alpha-1} \bigg| \frac {a_{1}+a_{2}}{2} \bigg|^{-2} \\\qquad{}+\frac{1}{6}a_{2}^{\alpha}|a_{2}|^{-2}- \frac{1}{6} \biggl(\frac {a_{1}+a_{2}}{2} \biggr)^{\alpha}|a_{2}|^{-2}+ \frac{a_{2}^{\alpha}}{3} \bigg|\frac{a_{1}+a_{2}}{2} \bigg|^{-2}\\ \qquad{}-\frac{1}{3} \biggl(\frac{a_{1}+a_{2}}{2} \biggr)^{\alpha} \bigg|\frac {a_{1}+a_{2}}{2} \bigg|^{-2} \biggr]\end{gathered} $$
holds for all \(a_{1}, a_{2}>0\).

4 Results and discussion

There are many results devoted to the well-known Ostrowski inequality. This inequality has many applications in the area of numerical analysis. In this paper, we give results for Ostrowski inequality containing conformable fractional integrals and their applications for means. First, we prove an identity associated with the Ostrowski inequality for conformable fractional integrals. By using this identity and convexity of different classes of functions and some well-known inequalities, we obtain several results for the inequality. The inequalities derived here are also pointed out to correspond to some known results, being special cases. At the end, we also present applications for means. The presented idea may stimulate further research in the theory of conformable fractional integrals.

5 Conclusion

In this paper, we prove an identity associated with the Ostrowski inequality for conformable fractional integral, present several Ostrowski type inequalities involving the conformable fractional integrals, and provide the applications in bivariate means theory. The idea and results presented are novel and interesting.

Acknowledgements

The research was supported by the Natural Science Foundation of China (Grants Nos. 61673169, 61374086, 11371125, 11401191), the Tianyuan Special Funds of the National Natural Science Foundation of China (Grant No. 11626101) and the Natural Science Foundation of the Department of Education of Zhejiang Province (Grant No. Y201635325).

Competing interests

The authors declare that they have no competing interests.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literature
1.
go back to reference Ostrowski, A.: Über die Absolutabweichung einer differentiierbaren Funktion von ihrem Integralmittelwert. Comment. Math. Helv. 10(1), 226–227 (1937) MathSciNetCrossRefMATH Ostrowski, A.: Über die Absolutabweichung einer differentiierbaren Funktion von ihrem Integralmittelwert. Comment. Math. Helv. 10(1), 226–227 (1937) MathSciNetCrossRefMATH
2.
go back to reference Dragomir, S.S.: The Ostrowski integral inequality for mappings of bounded variation. Bull. Aust. Math. Soc. 60(3), 495–508 (1999) MathSciNetCrossRefMATH Dragomir, S.S.: The Ostrowski integral inequality for mappings of bounded variation. Bull. Aust. Math. Soc. 60(3), 495–508 (1999) MathSciNetCrossRefMATH
3.
go back to reference Cerone, P., Cheung, W.S., Dragomir, S.S.: On Ostrowski type inequalities for Stieltjes intergals with absolutely continuous integrands and integrators of bounded variation. Comput. Math. Appl. 54(2), 183–191 (2007) MathSciNetCrossRefMATH Cerone, P., Cheung, W.S., Dragomir, S.S.: On Ostrowski type inequalities for Stieltjes intergals with absolutely continuous integrands and integrators of bounded variation. Comput. Math. Appl. 54(2), 183–191 (2007) MathSciNetCrossRefMATH
4.
go back to reference Dragomir, S.S.: Refinements of the generalised trapezoid and Ostrowski inequalities for functions of bounded variation. Arch. Math. 91(5), 450–460 (2008) MathSciNetCrossRefMATH Dragomir, S.S.: Refinements of the generalised trapezoid and Ostrowski inequalities for functions of bounded variation. Arch. Math. 91(5), 450–460 (2008) MathSciNetCrossRefMATH
5.
go back to reference Alomari, M., Darus, M., Dragomir, S.S., Cerone, P.: Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense. Appl. Math. Lett. 23(9), 1071–1076 (2010) MathSciNetCrossRefMATH Alomari, M., Darus, M., Dragomir, S.S., Cerone, P.: Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense. Appl. Math. Lett. 23(9), 1071–1076 (2010) MathSciNetCrossRefMATH
8.
go back to reference Tseng, K.-L.: Improvements of the Ostrowski integral inequality for mappings of bounded variation II. Appl. Math. Comput. 218(10), 5841–5847 (2012) MathSciNetMATH Tseng, K.-L.: Improvements of the Ostrowski integral inequality for mappings of bounded variation II. Appl. Math. Comput. 218(10), 5841–5847 (2012) MathSciNetMATH
9.
go back to reference Alomari, M.W.: A companion of Dragomir’s generalization of the Ostrowski inequality and applications to numerical integration. Ukr. Math. J. 64(4), 491–510 (2012) MathSciNetCrossRefMATH Alomari, M.W.: A companion of Dragomir’s generalization of the Ostrowski inequality and applications to numerical integration. Ukr. Math. J. 64(4), 491–510 (2012) MathSciNetCrossRefMATH
10.
go back to reference Dragomir, S.S.: A companion of Ostrowski’s inequality for functions of bounded variation and applications. Int. J. Nonlinear Anal. Appl. 5(1), 89–97 (2014) MathSciNetMATH Dragomir, S.S.: A companion of Ostrowski’s inequality for functions of bounded variation and applications. Int. J. Nonlinear Anal. Appl. 5(1), 89–97 (2014) MathSciNetMATH
12.
go back to reference Budak, H., Sarikaya, M.Z.: New weighted Ostrowski type inequalities for mappings with first derivatives of bounded variation. Transylv. J. Math. Mech. 8(1), 21–27 (2016) MathSciNetMATH Budak, H., Sarikaya, M.Z.: New weighted Ostrowski type inequalities for mappings with first derivatives of bounded variation. Transylv. J. Math. Mech. 8(1), 21–27 (2016) MathSciNetMATH
13.
go back to reference Qayyum, A., Shoaib, M., Faye, I.: A companion of Ostrowski type integral inequality using 5-step kernel with some applications. Filomat 30(13), 3601–3614 (2016) MathSciNetCrossRefMATH Qayyum, A., Shoaib, M., Faye, I.: A companion of Ostrowski type integral inequality using 5-step kernel with some applications. Filomat 30(13), 3601–3614 (2016) MathSciNetCrossRefMATH
14.
go back to reference Chu, Y.-M., Adil Khan, M., Khan, T.U., Ali, T.: Generalizations of Hermite–Hadamard type inequalities for MT-convex functions. J. Nonlinear Sci. Appl. 9(6), 4305–4316 (2016) MathSciNetCrossRefMATH Chu, Y.-M., Adil Khan, M., Khan, T.U., Ali, T.: Generalizations of Hermite–Hadamard type inequalities for MT-convex functions. J. Nonlinear Sci. Appl. 9(6), 4305–4316 (2016) MathSciNetCrossRefMATH
15.
go back to reference Wang, M.-K., Chu, Y.-M.: Landen inequalities for a class of hypergeometric functions with applications. Math. Inequal. Appl. 21(2), 521–537 (2018) MathSciNet Wang, M.-K., Chu, Y.-M.: Landen inequalities for a class of hypergeometric functions with applications. Math. Inequal. Appl. 21(2), 521–537 (2018) MathSciNet
16.
go back to reference Adil Khan, M., Chu, Y.-M., Khan, T.U., Khan, J.: Some new inequalities of Hermite–Hadamard type for s-convex functions with applications. Open Math. 15, 1414–1430 (2017) MathSciNetMATH Adil Khan, M., Chu, Y.-M., Khan, T.U., Khan, J.: Some new inequalities of Hermite–Hadamard type for s-convex functions with applications. Open Math. 15, 1414–1430 (2017) MathSciNetMATH
17.
go back to reference Yang, Z.-H., Zhang, W., Chu, Y.-M.: Sharp Gautschi inequality for parameter \(0< p<1\) with applications. Math. Inequal. Appl. 20(4), 1107–1120 (2017) MathSciNetMATH Yang, Z.-H., Zhang, W., Chu, Y.-M.: Sharp Gautschi inequality for parameter \(0< p<1\) with applications. Math. Inequal. Appl. 20(4), 1107–1120 (2017) MathSciNetMATH
18.
19.
go back to reference Yang, Z.-H., Chu, Y.-M.: A monotonicity property involving the generalized elliptic integral of the first kind. Math. Inequal. Appl. 20(3), 729–735 (2017) MathSciNetMATH Yang, Z.-H., Chu, Y.-M.: A monotonicity property involving the generalized elliptic integral of the first kind. Math. Inequal. Appl. 20(3), 729–735 (2017) MathSciNetMATH
20.
go back to reference Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: Monotonicity rule for the quotient of two functions and its applications. J. Inequal. Appl. 2017, Article ID 106 (2017) MathSciNetCrossRefMATH Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: Monotonicity rule for the quotient of two functions and its applications. J. Inequal. Appl. 2017, Article ID 106 (2017) MathSciNetCrossRefMATH
21.
go back to reference Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: On approximating the arithmetic-geometric mean and complete elliptic of the first kind. J. Math. Anal. Appl. 462(2), 1714–1726 (2018) MathSciNetCrossRef Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: On approximating the arithmetic-geometric mean and complete elliptic of the first kind. J. Math. Anal. Appl. 462(2), 1714–1726 (2018) MathSciNetCrossRef
24.
go back to reference Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014) MathSciNetCrossRefMATH Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014) MathSciNetCrossRefMATH
25.
go back to reference Chu, Y.-M., Zhang, X.-M.: Necessary and sufficient conditions such that extended mean values are Schur-convex or Schur-concave. J. Math. Kyoto Univ. 48(1), 229–238 (2008) MathSciNetCrossRefMATH Chu, Y.-M., Zhang, X.-M.: Necessary and sufficient conditions such that extended mean values are Schur-convex or Schur-concave. J. Math. Kyoto Univ. 48(1), 229–238 (2008) MathSciNetCrossRefMATH
26.
go back to reference Chu, Y.-M., Zhang, X.-M., Wang, G.-D.: The Schur geometrical convexity of the extended mean values. J. Convex Anal. 15(4), 707–718 (2008) MathSciNetMATH Chu, Y.-M., Zhang, X.-M., Wang, G.-D.: The Schur geometrical convexity of the extended mean values. J. Convex Anal. 15(4), 707–718 (2008) MathSciNetMATH
27.
go back to reference Shi, M.-Y., Chu, Y.-M., Jiang, Y.-P.: Optimal inequalities among various means of two arguments. Abstr. Appl. Anal. 2009, Article ID 694394 (2009) MathSciNetCrossRefMATH Shi, M.-Y., Chu, Y.-M., Jiang, Y.-P.: Optimal inequalities among various means of two arguments. Abstr. Appl. Anal. 2009, Article ID 694394 (2009) MathSciNetCrossRefMATH
28.
go back to reference Wang, M.-K., Qiu, S.-L., Chu, Y.-M.: Infinite series formula for Hübner upper bound function with applications to Hersch–Pfluger distortion function. Math. Inequal. Appl. 21(3), 629–648 (2018) Wang, M.-K., Qiu, S.-L., Chu, Y.-M.: Infinite series formula for Hübner upper bound function with applications to Hersch–Pfluger distortion function. Math. Inequal. Appl. 21(3), 629–648 (2018)
29.
go back to reference Zhang, X.-H., Wang, G.-D., Chu, Y.-M.: Convex with respect to Hölder mean involving zero-balanced hypergeometric functions. J. Math. Anal. Appl. 353(1), 256–259 (2009) MathSciNetCrossRefMATH Zhang, X.-H., Wang, G.-D., Chu, Y.-M.: Convex with respect to Hölder mean involving zero-balanced hypergeometric functions. J. Math. Anal. Appl. 353(1), 256–259 (2009) MathSciNetCrossRefMATH
30.
go back to reference Chu, Y.-M., Xia, W.-F.: Two sharp inequalities for power mean, geometric mean, and harmonic mean. J. Inequal. Appl. 2009, Article ID 741923 (2009) MathSciNetCrossRefMATH Chu, Y.-M., Xia, W.-F.: Two sharp inequalities for power mean, geometric mean, and harmonic mean. J. Inequal. Appl. 2009, Article ID 741923 (2009) MathSciNetCrossRefMATH
31.
go back to reference Chu, Y.-M., Xia, W.-F.: Two optimal double inequalities between power mean and logarithmic mean. Comput. Math. Appl. 60(1), 83–89 (2010) MathSciNetCrossRefMATH Chu, Y.-M., Xia, W.-F.: Two optimal double inequalities between power mean and logarithmic mean. Comput. Math. Appl. 60(1), 83–89 (2010) MathSciNetCrossRefMATH
32.
go back to reference Xia, W.-F., Chu, Y.-M., Wang, G.-D.: The optimal upper and lower power mean bounds for a convex combination of the arithmetic and logarithmic means. Abstr. Appl. Anal. 2010, Article ID 604804 (2010) MathSciNetMATH Xia, W.-F., Chu, Y.-M., Wang, G.-D.: The optimal upper and lower power mean bounds for a convex combination of the arithmetic and logarithmic means. Abstr. Appl. Anal. 2010, Article ID 604804 (2010) MathSciNetMATH
33.
go back to reference Chu, Y.-M., Qiu, Y.-F., Wang, M.-K.: Sharp power mean bounds for the combination of Seiffert and geometric means. Abstr. Appl. Anal. 2010, Article ID 108920 (2010) MathSciNetMATH Chu, Y.-M., Qiu, Y.-F., Wang, M.-K.: Sharp power mean bounds for the combination of Seiffert and geometric means. Abstr. Appl. Anal. 2010, Article ID 108920 (2010) MathSciNetMATH
34.
go back to reference Chu, Y.-M., Qiu, Y.-F., Wang, M.-K., Wang, G.-D.: The optimal convex combination bounds of arithmetic and harmonic means for the Seiffert’s mean. J. Inequal. Appl. 2010, Article ID 436457 (2010) MathSciNetCrossRefMATH Chu, Y.-M., Qiu, Y.-F., Wang, M.-K., Wang, G.-D.: The optimal convex combination bounds of arithmetic and harmonic means for the Seiffert’s mean. J. Inequal. Appl. 2010, Article ID 436457 (2010) MathSciNetCrossRefMATH
35.
go back to reference Chu, Y.-M., Wang, M.-K., Qiu, Y.-F.: An optimal double inequality between power-type Heron and Seiffert means. J. Inequal. Appl. 2010, Article ID 146945 (2010) MathSciNetCrossRefMATH Chu, Y.-M., Wang, M.-K., Qiu, Y.-F.: An optimal double inequality between power-type Heron and Seiffert means. J. Inequal. Appl. 2010, Article ID 146945 (2010) MathSciNetCrossRefMATH
36.
go back to reference Wang, M.-K., Qiu, Y.-F., Chu, Y.-M.: Sharp bounds for Seiffert means in terms of Lehmer means. J. Math. Inequal. 4(4), 581–586 (2010) MathSciNetCrossRefMATH Wang, M.-K., Qiu, Y.-F., Chu, Y.-M.: Sharp bounds for Seiffert means in terms of Lehmer means. J. Math. Inequal. 4(4), 581–586 (2010) MathSciNetCrossRefMATH
37.
go back to reference Chu, Y.-M., Long, B.-Y.: Best possible inequalities between generalized logarithmic mean and classical means. Abstr. Appl. Anal. 2010, Article ID 303286 (2010) MathSciNetMATH Chu, Y.-M., Long, B.-Y.: Best possible inequalities between generalized logarithmic mean and classical means. Abstr. Appl. Anal. 2010, Article ID 303286 (2010) MathSciNetMATH
38.
go back to reference Long, B.-Y., Chu, Y.-M.: Optimal inequalities for generalized logarithmic, arithmetic, and geometric means. J. Inequal. Appl. 2010, Article ID 806825 (2010) MathSciNetMATH Long, B.-Y., Chu, Y.-M.: Optimal inequalities for generalized logarithmic, arithmetic, and geometric means. J. Inequal. Appl. 2010, Article ID 806825 (2010) MathSciNetMATH
39.
go back to reference Wang, M.-K., Chu, Y.-M., Qiu, Y.-F., Qiu, S.-L.: An optimal power mean inequality for the complete elliptic integrals. Appl. Math. Lett. 24(6), 887–890 (2011) MathSciNetCrossRefMATH Wang, M.-K., Chu, Y.-M., Qiu, Y.-F., Qiu, S.-L.: An optimal power mean inequality for the complete elliptic integrals. Appl. Math. Lett. 24(6), 887–890 (2011) MathSciNetCrossRefMATH
40.
go back to reference Chu, Y.-M., Zong, C., Wang, G.-D.: Optimal convex combination bounds of Seiffert and geometric means for the arithmetic mean. J. Math. Inequal. 5(3), 429–434 (2011) MathSciNetCrossRefMATH Chu, Y.-M., Zong, C., Wang, G.-D.: Optimal convex combination bounds of Seiffert and geometric means for the arithmetic mean. J. Math. Inequal. 5(3), 429–434 (2011) MathSciNetCrossRefMATH
41.
go back to reference Chu, Y.-M., Wang, M.-K., Qiu, S.-L.: Sharp generalized Seiffert mean bounds for Toader mean. Abstr. Appl. Anal. 2011, Article ID 605259 (2011) MathSciNetMATH Chu, Y.-M., Wang, M.-K., Qiu, S.-L.: Sharp generalized Seiffert mean bounds for Toader mean. Abstr. Appl. Anal. 2011, Article ID 605259 (2011) MathSciNetMATH
42.
go back to reference Chu, Y.-M., Wang, M.-K., Gong, W.-M.: Two sharp double inequalities for Seiffert mean. J. Inequal. Appl. 2011, Article ID 44 (2011) MathSciNetCrossRefMATH Chu, Y.-M., Wang, M.-K., Gong, W.-M.: Two sharp double inequalities for Seiffert mean. J. Inequal. Appl. 2011, Article ID 44 (2011) MathSciNetCrossRefMATH
43.
go back to reference Qiu, Y.-F., Wang, M.-K., Chu, Y.-M., Wang, G.-D.: Two sharp inequalities for Lehmer mean, identric mean and logarithmic mean. J. Math. Inequal. 5(3), 301–306 (2011) MathSciNetCrossRefMATH Qiu, Y.-F., Wang, M.-K., Chu, Y.-M., Wang, G.-D.: Two sharp inequalities for Lehmer mean, identric mean and logarithmic mean. J. Math. Inequal. 5(3), 301–306 (2011) MathSciNetCrossRefMATH
44.
go back to reference Chu, Y.-M., Wang, M.-K., Wang, Z.-K.: Best possible inequalities among harmonic, geometric, logarithmic and Seiffert means. Math. Inequal. Appl. 15(2), 415–422 (2012) MathSciNetMATH Chu, Y.-M., Wang, M.-K., Wang, Z.-K.: Best possible inequalities among harmonic, geometric, logarithmic and Seiffert means. Math. Inequal. Appl. 15(2), 415–422 (2012) MathSciNetMATH
45.
go back to reference Chu, Y.-M., Hou, S.-W.: Sharp bounds for Seiffert mean in terms of contraharmonic mean. Abstr. Appl. Anal. 2012, Article ID 425175 (2012) MathSciNetMATH Chu, Y.-M., Hou, S.-W.: Sharp bounds for Seiffert mean in terms of contraharmonic mean. Abstr. Appl. Anal. 2012, Article ID 425175 (2012) MathSciNetMATH
46.
go back to reference Wang, M.-K., Wang, Z.-K., Chu, Y.-M.: An optimal double inequality between geometric and identric means. Appl. Math. Lett. 25(3), 471–475 (2012) MathSciNetCrossRefMATH Wang, M.-K., Wang, Z.-K., Chu, Y.-M.: An optimal double inequality between geometric and identric means. Appl. Math. Lett. 25(3), 471–475 (2012) MathSciNetCrossRefMATH
47.
go back to reference Chu, Y.-M., Wang, M.-K., Qiu, S.-L.: Optimal combinations bounds of root-square and arithmetic means for Toader mean. Proc. Indian Acad. Sci. Math. Sci. 122(1), 41–51 (2012) MathSciNetCrossRefMATH Chu, Y.-M., Wang, M.-K., Qiu, S.-L.: Optimal combinations bounds of root-square and arithmetic means for Toader mean. Proc. Indian Acad. Sci. Math. Sci. 122(1), 41–51 (2012) MathSciNetCrossRefMATH
48.
go back to reference Li, Y.-M., Long, B.-Y., Chu, Y.-M.: Sharp bounds for the Neuman–Sándor mean in terms of generalized logarithmic mean. J. Math. Inequal. 6(4), 567–577 (2012) MathSciNetCrossRefMATH Li, Y.-M., Long, B.-Y., Chu, Y.-M.: Sharp bounds for the Neuman–Sándor mean in terms of generalized logarithmic mean. J. Math. Inequal. 6(4), 567–577 (2012) MathSciNetCrossRefMATH
49.
go back to reference Wang, M.-K., Chu, Y.-M., Qiu, S.-L., Jiang, Y.-P.: Convexity of the complete elliptic integrals of the first kind with respect to Hölder means. J. Math. Anal. Appl. 388(2), 1141–1146 (2012) MathSciNetCrossRefMATH Wang, M.-K., Chu, Y.-M., Qiu, S.-L., Jiang, Y.-P.: Convexity of the complete elliptic integrals of the first kind with respect to Hölder means. J. Math. Anal. Appl. 388(2), 1141–1146 (2012) MathSciNetCrossRefMATH
50.
go back to reference Zhao, T.-H., Chu, Y.-M., Liu, B.-Y.: Optimal bounds for Neuman–Sándor mean in terms of the convex combinations of harmonic, geometric, quadratic, and contraharmonic means. Abstr. Appl. Anal. 2012, Article ID 302635 (2012) MATH Zhao, T.-H., Chu, Y.-M., Liu, B.-Y.: Optimal bounds for Neuman–Sándor mean in terms of the convex combinations of harmonic, geometric, quadratic, and contraharmonic means. Abstr. Appl. Anal. 2012, Article ID 302635 (2012) MATH
52.
go back to reference Wang, M.-K., Wang, Z.-K., Chu, Y.-M.: Inequalities between arithmetic–geometric, Gini, and Toader means. Abstr. Appl. Anal. 2012, Article ID 830585 (2012) MathSciNetMATH Wang, M.-K., Wang, Z.-K., Chu, Y.-M.: Inequalities between arithmetic–geometric, Gini, and Toader means. Abstr. Appl. Anal. 2012, Article ID 830585 (2012) MathSciNetMATH
53.
go back to reference Chu, Y.-M., Long, B.-Y., Gong, W.-M., Song, Y.-Q.: Sharp bounds for Seiffert and Neuman–Sándor means in terms of generalized logarithmic means. J. Inequal. Appl. 2013, Article ID 10 (2013) CrossRefMATH Chu, Y.-M., Long, B.-Y., Gong, W.-M., Song, Y.-Q.: Sharp bounds for Seiffert and Neuman–Sándor means in terms of generalized logarithmic means. J. Inequal. Appl. 2013, Article ID 10 (2013) CrossRefMATH
54.
go back to reference Chu, Y.-M., Wang, M.-K., Ma, X.-Y.: Sharp bounds for Toader mean in terms of contraharmonic mean with applications. J. Math. Inequal. 7(2), 161–166 (2013) MathSciNetCrossRefMATH Chu, Y.-M., Wang, M.-K., Ma, X.-Y.: Sharp bounds for Toader mean in terms of contraharmonic mean with applications. J. Math. Inequal. 7(2), 161–166 (2013) MathSciNetCrossRefMATH
55.
go back to reference Chu, Y.-M., Long, B.-Y.: Bounds of the Neuman–Sándor mean using power and identric means. Abstr. Appl. Anal. 2013, Article ID 832591 (2013) MATH Chu, Y.-M., Long, B.-Y.: Bounds of the Neuman–Sándor mean using power and identric means. Abstr. Appl. Anal. 2013, Article ID 832591 (2013) MATH
56.
go back to reference Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: On approximating the error function. Math. Inequal. Appl. 21(2), 469–479 (2018) MathSciNet Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: On approximating the error function. Math. Inequal. Appl. 21(2), 469–479 (2018) MathSciNet
57.
go back to reference Wang, M.-K., Chu, Y.-M., Qiu, S.-L.: Sharp bounds for generalized elliptic integrals of the first kind. J. Math. Anal. Appl. 429(2), 744–757 (2015) MathSciNetCrossRefMATH Wang, M.-K., Chu, Y.-M., Qiu, S.-L.: Sharp bounds for generalized elliptic integrals of the first kind. J. Math. Anal. Appl. 429(2), 744–757 (2015) MathSciNetCrossRefMATH
58.
go back to reference Wang, M.-K., Chu, Y.-M., Song, Y.-Q.: Asymptotical formulas for Gaussian and generalized hypergeometric functions. Appl. Math. Comput. 276, 44–60 (2016) MathSciNet Wang, M.-K., Chu, Y.-M., Song, Y.-Q.: Asymptotical formulas for Gaussian and generalized hypergeometric functions. Appl. Math. Comput. 276, 44–60 (2016) MathSciNet
59.
go back to reference Wang, M.-K., Chu, Y.-M., Jiang, Y.-P.: Ramanujan’s cubic transformation inequalities for zero-balanced hypergeometric functions. Rocky Mt. J. Math. 46(2), 679–691 (2016) MathSciNetCrossRefMATH Wang, M.-K., Chu, Y.-M., Jiang, Y.-P.: Ramanujan’s cubic transformation inequalities for zero-balanced hypergeometric functions. Rocky Mt. J. Math. 46(2), 679–691 (2016) MathSciNetCrossRefMATH
60.
go back to reference Qian, W.-M., Chu, Y.-M.: Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parameters. J. Inequal. Appl. 2017, Article ID 274 (2017) MathSciNetCrossRefMATH Qian, W.-M., Chu, Y.-M.: Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parameters. J. Inequal. Appl. 2017, Article ID 274 (2017) MathSciNetCrossRefMATH
Metadata
Title
Ostrowski type inequalities involving conformable fractional integrals
Authors
Muhammad Adil Khan
Sumbel Begum
Yousaf Khurshid
Yu-Ming Chu
Publication date
01-12-2018
Publisher
Springer International Publishing
Published in
Journal of Inequalities and Applications / Issue 1/2018
Electronic ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-018-1664-4

Other articles of this Issue 1/2018

Journal of Inequalities and Applications 1/2018 Go to the issue

Premium Partner