Skip to main content
Erschienen in: Journal of Inequalities and Applications 1/2017

Open Access 01.12.2017 | Research

Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parameters

verfasst von: Wei-Mao Qian, Yu-Ming Chu

Erschienen in: Journal of Inequalities and Applications | Ausgabe 1/2017

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN
loading …

Abstract

In the article, we present the best possible parameters \(\lambda=\lambda (p)\) and \(\mu=\mu(p)\) on the interval \([0, 1/2]\) such that the double inequality
$$\begin{aligned}& G^{p}\bigl[\lambda a+(1-\lambda)b, \lambda b+(1-\lambda)a \bigr]A^{1-p}(a,b) \\& \quad< E(a,b) < G^{p}\bigl[\mu a+(1-\mu)b, \mu b+(1-\mu)a \bigr]A^{1-p}(a,b) \end{aligned}$$
holds for any \(p\in[1, \infty)\) and all \(a, b>0\) with \(a\neq b\), where \(A(a, b)=(a+b)/2\), \(G(a,b)=\sqrt{ab}\) and \(E(a,b)=[2\int_{0}^{\pi /2}\sqrt{a\cos^{2}\theta+b\sin^{2}\theta}\,d\theta/\pi]^{2}\) are the arithmetic, geometric and special quasi-arithmetic means of a and b, respectively.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

Let \(r\in(0,1)\). Then the Legendre complete elliptic integrals \(\mathcal {K}(r)\) and \(\mathcal{E}(r)\) [1, 2] of the first and second kinds are defined as
$$ \mathcal{K}(r)= \int_{0}^{\pi/2}\frac{dt}{\sqrt{1-r^{2}\sin^{2}(t)}}, \qquad\mathcal{E}(r)= \int_{0}^{\pi/2}\sqrt{1-r^{2} \sin^{2}(t)}\,dt, $$
respectively. It is well known that the function \(r\rightarrow\mathcal {K}(r)\) is strictly increasing from \((0, 1)\) onto \((\pi/2, \infty)\) and the function \(r\rightarrow\mathcal{E}(r)\) is strictly decreasing from \((0, 1)\) onto \((1, \pi/2)\), and they satisfy the formulas (see [3, Appendix E, pp. 474,475])
$$ \begin{gathered} \frac{d{\mathcal{K}(r)}}{dr}=\frac{{\mathcal{E}(r)}-{r'}^{2}{\mathcal {K}}(r)}{r{r'}^{2}},\qquad \frac{d{\mathcal{E}(r)}}{dr}=\frac{{\mathcal{E}(r)}-{\mathcal{K}(r)}}{r}, \\ \mathcal{K} \biggl(\frac{2\sqrt{r}}{1+r} \biggr)=(1+r)\mathcal{K}(r),\qquad \mathcal{E} \biggl(\frac{2\sqrt{r}}{1+r} \biggr)=\frac{2\mathcal {E}(r)-{r'}^{2}\mathcal{K}}{1+r}, \end{gathered} $$
where \(r'=\sqrt{1-r^{2}}\).
The complete elliptic integrals \(\mathcal{K}(r)\) and \(\mathcal{E}(r)\) are the particular cases of the Gaussian hypergeometric function [410]
$$ F(a,b;c;x)=\sum_{n=0}^{\infty}\frac{(a)_{n}(b)_{n}}{(c)_{n}} \frac {x^{n}}{n!}\quad (-1< x< 1), $$
where \((a)_{0}=1\) for \(a\neq0\), \((a)_{n}=a(a+1)(a+2)\cdots (a+n-1)=\Gamma(a+n)/\Gamma(a)\) is the shifted factorial function and \(\Gamma(x)=\int_{0}^{\infty }t^{x-1}e^{-t}\,dt\) (\(x>0\)) is the gamma function [1118]. Indeed,
$$ \begin{gathered} \mathcal{K}(r)=\frac{\pi}{2}F \biggl( \frac{1}{2},\frac{1}{2};1;r^{2} \biggr) = \frac{\pi}{2}\sum_{n=0}^{\infty} \frac{ (\frac{1}{2} )_{n}^{2}}{(n!)^{2}}r^{2n}, \\ \mathcal{E}(r)=\frac{\pi}{2}F \biggl(-\frac{1}{2}, \frac{1}{2};1;r^{2} \biggr) =\frac{\pi}{2}\sum _{n=0}^{\infty}\frac{ (-\frac{1}{2} )_{n} (\frac{1}{2} )_{n}}{(n!)^{2}}r^{2n}. \end{gathered} $$
Recently, the bounds for the complete elliptic integrals have attracted the attention of many researchers. In particular, many remarkable inequalities and properties for \(\mathcal{K}(r)\), \(\mathcal{E}(r)\) and \(F(a,b;c;x)\) can be found in the literature [1952].
In 1998, a class of quasi-arithmetic mean was introduced by Toader [53] which is defined by
$$ M_{p,n}(a,b)=p^{-1} \biggl(\frac{1}{\pi} \int_{0}^{\pi}p\bigl(r_{n}(\theta )\,d \theta\bigr) \biggr)=p^{-1} \biggl(\frac{2}{\pi} \int_{0}^{\pi/2}p\bigl(r_{n}(\theta )\,d \theta\bigr) \biggr), $$
where \(r_{n}(\theta)=(a^{n}\cos^{2}\theta+b^{n}\sin^{2}\theta)^{1/n}\) for \(n\neq0\), \(r_{0}(\theta)=a^{\cos^{2}\theta}b^{\sin^{2}\theta}\), and p is a strictly monotonic function. It is well known that many important means are the special cases of the quasi-arithmetic mean. For example,
$$\begin{aligned} M_{1/x,2}(a,b)= \frac{\pi}{2 \int_{0}^{\pi /2}{\frac{d\theta}{\sqrt{a^{2}\cos^{2}\theta+b^{2}\sin^{2}\theta}}}} = \textstyle\begin{cases} {\pi a} / [2{\mathcal{K}} (\sqrt{1-(b/a)^{2}} ) ],&a\geq b,\\ {\pi b} / [2{\mathcal{K}} (\sqrt{1-(a/b)^{2}} ) ],&a< b, \end{cases}\displaystyle \end{aligned}$$
is the arithmetic-geometric mean of Gauss [5460],
$$ M_{x,2}(a,b))=\frac{2}{\pi} \int_{0}^{\pi/2}\sqrt{a^{2}\cos^{2} \theta +b^{2}\sin^{2}\theta}\,d\theta = \textstyle\begin{cases}2a{\mathcal{E}} (\sqrt{1-(b/a)^{2}} )/\pi,&a\geq b,\\ 2b{\mathcal{E}} (\sqrt{1-(a/b)^{2}} )/\pi,&a< b, \end{cases} $$
is the Toader mean [6170], and
$$ M_{x,0}(a,b))=\frac{2}{\pi} \int_{0}^{\pi/2}a^{\cos^{2}\theta}b^{\sin ^{2}\theta}\,d \theta $$
is the Toader-Qi mean [7174].
Let \(p=\sqrt{x}\) and \(n=1\). Then \(M_{p,n}(a,b)\) reduces to a special quasi-arithmetic mean
$$ E(a,b)=M_{\sqrt{x},1}(a,b))= \textstyle\begin{cases}4a [{\mathcal{E}} (\sqrt{1-b/a} ) ]^{2}/\pi ^{2},&a\geq b,\\ 4b [{\mathcal{E}} (\sqrt{1-a/b} ) ]^{2}/\pi^{2},&a< b. \end{cases} $$
(1.1)
Let
$$ \begin{gathered} A(a,b)=\frac{a+b}{2}, \qquad G(a,b)=\sqrt{ab}, \\ M_{p}(a,b)= \biggl(\frac{a^{p}+b^{p}}{2} \biggr)^{1/p} (p\neq0), \qquad M_{0}(a,b)=\sqrt{ab}, \end{gathered} $$
be the arithmetic, geometric and pth power means of a and b, respectively. Then it is well known that the inequality
$$ G(a,b)=M_{0}(a,b)< A(a,b)=M_{1}(a,b) $$
(1.2)
holds for all \(a, b>0\) with \(a\neq b\), and the double inequality
$$ \frac{\pi}{2}M_{3/2}\bigl(1, r^{\prime}\bigr)< \mathcal{E}(r)< \frac{\pi }{2}M_{2}\bigl(1, r^{\prime}\bigr) $$
(1.3)
holds for all \(r\in(0, 1)\) (see [75, 19.9.4]).
From (1.1)-(1.3) we clearly see that
$$ G(a,b)< E(a,b)< A(a,b) $$
for all \(a, b>0\) with \(a\neq b\).
Let \(p\in[1, \infty)\) and
$$ f(x; p; a, b)=G^{p}\bigl[xa+(1-x)b, xb+(1-x)a\bigr]A^{1-p}(a,b). $$
Then it is not difficult to verify that the function \(x\rightarrow f(x; p; a, b)\) is strictly increasing on \([0, 1/2]\) for fixed \(p\in[1, \infty)\) and \(a, b>0\) with \(a\neq b\). Note that
$$ \begin{aligned}[b] f(0; p; a, b)&=G^{p}(a,b)A^{1-p}(a,b) \leq G(a,b) \\ &< E(a,b)< A(a,b)=f(1/2; p; a, b) \end{aligned} $$
(1.4)
for all \(p\in[1, \infty)\) and \(a, b>0\) with \(a\neq b\).
Motivated by inequalities (1.4) and the monotonicity of the function \(x\rightarrow f(x; p; a, b)\) on the interval \([0, 1/2]\), in the article, we shall find the best possible parameters \(\lambda=\lambda(p), \mu=\mu(p)\) on the interval \([0, 1/2]\) such that the double inequality
$$ \begin{aligned} &G^{p}\bigl[\lambda a+(1-\lambda)b, \lambda b+(1-\lambda)a\bigr]A^{1-p}(a,b) \\ &\quad< E(a,b)< G^{p}\bigl[\mu a+(1-\mu)b, \mu b+(1-\mu)a \bigr]A^{1-p}(a,b) \end{aligned} $$
holds for any \(p\in[1, \infty)\) and all \(a, b>0\) with \(a\neq b\).

2 Lemmas

Lemma 2.1
(see [3, Theorem 1.25])
Let \(-\infty< a< b<+\infty\), \(f, g: [a, b]\rightarrow\mathbb{R}\) be continuous on \([a, b]\) and differentiable on \((a,b)\), and \(g^{\prime}(x)\neq0\) on \((a, b)\). If \(f^{\prime}(x)/g^{\prime}(x)\) is increasing (decreasing) on \((a,b)\), then so are the functions
$$ \frac{f(x)-f(a)}{g(x)-g(a)}, \qquad\frac{f(x)-f(b)}{g(x)-g(b)}. $$
If \(f^{\prime}(x)/g^{\prime}(x)\) is strictly monotone, then the monotonicity in the conclusion is also strict.
Lemma 2.2
The inequality
$$ \frac{1}{4p}+ \biggl(\frac{2\sqrt{2}}{\pi} \biggr)^{4/p}< 1 $$
holds for all \(p\in[1, \infty)\).
Proof
Let
$$ f(p)=\frac{1}{4p}+ \biggl(\frac{2\sqrt{2}}{\pi} \biggr)^{4/p}. $$
(2.1)
Then simple computations lead to
$$\begin{aligned}& \lim_{p\rightarrow\infty}f(p)=1, \end{aligned}$$
(2.2)
$$\begin{aligned}& \begin{aligned}[b] f^{\prime}(p)&=\frac{4}{p^{2}}\log \biggl(\frac{\sqrt{2}\pi}{4} \biggr) \biggl[ \biggl(\frac{2\sqrt{2}}{\pi} \biggr)^{4/p}-\frac{1}{16\log (\frac{\sqrt{2}\pi}{4} )} \biggr] \\ &\geq\frac{4}{p^{2}}\log \biggl(\frac{\sqrt{2}\pi}{4} \biggr) \biggl[ \biggl( \frac{2\sqrt{2}}{\pi} \biggr)^{4}-\frac{1}{16\log (\frac {\sqrt{2}\pi}{4} )} \biggr] \\ &=\frac{1024\log (\frac{\sqrt{2}\pi}{4} )-\pi^{4}}{4\pi^{4}p^{2}}>0 \end{aligned} \end{aligned}$$
(2.3)
for \(p\in[1, \infty)\).
Therefore, Lemma 2.2 follows easily from (2.1)-(2.3). □
Lemma 2.3
The following statements are true:
(1)
The function \(r\mapsto[\mathcal{E}(r)-(1-r^{2})\mathcal {K}(r)]/r^{2}\) is strictly increasing from \((0, 1)\) onto \((\pi/4, 1)\).
 
(2)
The function \(r\mapsto[\mathcal{K}(r)-\mathcal {E}(r)]/r^{2}\) is strictly increasing from \((0, 1)\) onto \((\pi/4, \infty)\).
 
(3)
The function \(r\mapsto[\mathcal{E}(r)+(1-r^{2})\mathcal {K}(r)]/(1-r^{2})\) is strictly increasing from \((0, 1)\) onto \((\pi, \infty)\).
 
(4)
The function \(r\mapsto[2\mathcal{E}(r)-(1-r^{2})\mathcal {K}(r)]/(1+r^{2})\) is strictly decreasing from \((0, 1)\) onto \((1, \pi/2)\).
 
(5)
The function \(r\mapsto r^{2}[2\mathcal {E}(r)-(1-r^{2})\mathcal{K}(r)]/ [(1+r^{2})^{2}(\mathcal {K}(r)-\mathcal{E}(r)) ]\) is strictly decreasing from \((0, 1)\) onto \((0, 2)\).
 
Proof
Parts (1) and (2) can be found in the literature [3, Theorem 3.21(1) and Exercise 3.43(11)].
For part (3), let \(f_{1}(r)=[\mathcal{E}(r)+(1-r^{2})\mathcal {K}(r)]/(1-r^{2})\). Then simple computations lead to
$$\begin{aligned}& f_{1}\bigl(0^{+}\bigr)=\pi, \qquad f_{1} \bigl(1^{-}\bigr)=\infty, \end{aligned}$$
(2.4)
$$\begin{aligned}& f^{\prime}_{1}(r)=\frac{r}{(1-r^{2})^{2}} \biggl[\frac{2}{r^{2}} \bigl(\mathcal {E}(r)-\bigl(1-r^{2}\bigr)\mathcal{K}(r)\bigr)+ \bigl(1-r^{2}\bigr)\mathcal{K}(r) \biggr]. \end{aligned}$$
(2.5)
It follows from part (1) and (2.5) that
$$ f^{\prime}_{1}(r)>0 $$
(2.6)
for all \(r\in(0, 1)\). Therefore, part (3) follows from (2.4) and (2.6).
For part (4), let \(f_{2}(r)=[2\mathcal{E}(r)-(1-r^{2})\mathcal {K}(r)]/(1+r^{2})\), then one has
$$\begin{aligned}& f_{2}\bigl(0^{+}\bigr)=\frac{\pi}{2}, \qquad f_{1}\bigl(1^{-}\bigr)=1, \end{aligned}$$
(2.7)
$$\begin{aligned}& f^{\prime}_{2}(r)=\frac{r}{(1+r^{2})^{2}} \biggl[ \bigl(1-r^{2}\bigr)\frac{\mathcal {E}(r)-(1-r^{2})\mathcal{K}(r)}{r^{2}}-2\mathcal{E}(r) \biggr]. \end{aligned}$$
(2.8)
From part (1) and (2.8) we clearly see that
$$ f^{\prime}_{2}(r)< -\frac{r}{(1+r^{2})}< 0 $$
(2.9)
for all \(r\in(0, 1)\). Therefore, part (4) follows from (2.7) and (2.9).
For part (5), let \(f_{3}(r)=r^{2}[2\mathcal{E}(r)-(1-r^{2})\mathcal {K}(r)]/ [(1+r^{2})^{2}(\mathcal{K}(r)-\mathcal{E}(r)) ]\), then \(f_{3}(r)\) can be rewritten as
$$ f_{3}(r)=\frac{2\mathcal{E}(r)-(1-r^{2})\mathcal{K}(r)}{1+r^{2}} \times\frac{1}{\frac{\mathcal{K}(r)-\mathcal{E}(r)}{r^{2}}}\times \frac {1}{1+r^{2}}. $$
(2.10)
Therefore, part (5) follows easily from parts (2) and (4) together with (2.10). □
Lemma 2.4
The function
$$ g(r)=\frac{r^{2}\mathcal{K}(r)}{(1+r^{2})[\mathcal{K}(r)-\mathcal{E}(r)]} $$
is strictly decreasing from \((0, 1)\) onto \((1/2, 2)\).
Proof
Let \(g_{1}(r)=r^{2}\mathcal{K}(r)\) and \(g_{2}(r)=(1+r^{2})[\mathcal {K}(r)-\mathcal{E}(r)]\). Then we clearly see that
$$\begin{aligned}& g_{1}\bigl(0^{+}\bigr)=g_{2} \bigl(0^{+}\bigr)=0, \qquad g(r)=\frac{g_{1}(r)}{g_{2}(r)}, \end{aligned}$$
(2.11)
$$\begin{aligned}& g\bigl(1^{-}\bigr)=\frac{1}{2}, \end{aligned}$$
(2.12)
$$\begin{aligned}& \frac{g^{\prime}_{1}(r)}{g^{\prime}_{2}(r)}=\frac{1}{2-\frac{3\mathcal {E}(r)}{\frac{\mathcal{E}(r)+(1-r^{2})\mathcal{K}(r)}{1-r^{2}}}}. \end{aligned}$$
(2.13)
From Lemma 2.3(3), (2.11) and (2.13) we know that
$$ g\bigl(0^{+}\bigr)=\lim_{r\rightarrow0^{+}}\frac{g^{\prime}_{1}(r)}{g^{\prime}_{2}(r)}=2 $$
(2.14)
and the function \(g^{\prime}_{1}(r)/g^{\prime}_{2}(r)\) is strictly decreasing on \((0, 1)\).
Therefore, Lemma 2.4 follows easily from Lemma 2.1, (2.11), (2.12) and (2.14) together with the monotonicity of the function \(g^{\prime}_{1}(r)/g^{\prime}_{2}(r)\). □
Lemma 2.5
Let \(u\in[0, 1]\), \(r\in(0, 1)\), \(p\in[1, \infty)\) and
$$ h(u, p; r)=\frac{1}{2}p\log \biggl[1-\frac{4ur^{2}}{(1+r^{2})^{2}} \biggr] -\log \biggl[\frac{4 (2\mathcal{E}(r)-(1-r^{2})\mathcal{K}(r) )^{2}}{\pi^{2}(1+r^{2})} \biggr]. $$
(2.15)
Then one has
(1)
\(h(u, p; r)>0\) for all \(r\in(0, 1)\) if and only if \(u\leq1/4p\);
 
(2)
\(h(u, p; r)<0\) for all \(r\in(0, 1)\) if and only if \(u\geq 1-(2\sqrt{2}/\pi)^{4/p}\).
 
Proof
It follows from (2.15) that
$$\begin{aligned}& h\bigl(u, p; 0^{+}\bigr)=0, \end{aligned}$$
(2.16)
$$\begin{aligned}& h\bigl(u, p; 1^{-}\bigr)=\frac{p}{2}\log(1-u)+\log \biggl( \frac{\pi^{2}}{8} \biggr), \end{aligned}$$
(2.17)
$$\begin{aligned}& \begin{aligned}[b] \frac{\partial h(u, p; r)}{\partial r}&=\frac{2(1-r^{2})[\mathcal {K}(r)-\mathcal{E}(r)]}{ r(1+r^{2})[2\mathcal{E}(r)-(1-r^{2})\mathcal{K}(r)]} - \frac{4pur(1-r^{2})}{(1+r^{2}) [(1+r^{2})^{2}-4ur^{2} ]} \\ &=\frac{2(1-r^{2}) [2(\mathcal{K}(r)-\mathcal {E}(r))+p(2\mathcal{E}(r)-(1-r^{2})\mathcal{K}(r)) ]}{(1+r^{2}) [(1+r^{2})^{2}-4ur^{2} ][2\mathcal {E}(r)-(1-r^{2})\mathcal{K}(r)]}\bigl[h_{1}(p; r)-2u\bigr], \end{aligned} \end{aligned}$$
(2.18)
where
$$ \begin{aligned}[b] h_{1}(p; r)&=\frac{(1+r^{2})^{2}[\mathcal{K}(r)-\mathcal{E}(r)]}{r^{2} [2(\mathcal{K}(r)-\mathcal{E}(r))+p(2\mathcal {E}(r)-(1-r^{2})\mathcal{K}(r)) ]} \\ &=\frac{1}{g(r)+(p-1)f_{3}(r)}, \end{aligned} $$
(2.19)
where \(f_{3}(r)\) and \(g(r)\) are defined by (2.10) and Lemma 2.4, respectively.
From Lemma 2.3(5) and Lemma 2.4 together with (2.19) we clearly see that the function \(r\rightarrow h_{1}(p; r)\) is strictly increasing on \((0, 1)\) and
$$\begin{aligned}& h_{1}\bigl(p; 0^{+}\bigr)=\frac{1}{2p}, \end{aligned}$$
(2.20)
$$\begin{aligned}& h_{1}\bigl(p; 1^{-}\bigr)=2. \end{aligned}$$
(2.21)
From Lemma 2.2 we know that \(1-(2\sqrt{2}/\pi)^{4/p}>1/(4p)\). Therefore, we only need to divide the proof into three cases as follows.
Case 1 \(u\leq1/(4p)\). Then Lemma 2.3(4), (2.18), (2.20) and the monotonicity of the function \(r\rightarrow h_{1}(p; r)\) on the interval \((0, 1)\) lead to the conclusion that the function \(r\rightarrow h(u, p; r)\) is strictly increasing on \((0, 1)\). Therefore, \(h(u, p; r)>0\) for all \(r\in(0, 1)\) follows from (2.16) and the monotonicity of the function \(r\rightarrow h(u, p; r)\).
Case 2 \(u\geq1-(2\sqrt{2}/\pi)^{4/p}\). Then from Lemma 2.2, Lemma 2.3(5), (2.17), (2.18), (2.20), (2.21) and the monotonicity of the function \(r\rightarrow h_{1}(p; r)\) on the interval \((0, 1)\) we clearly see that there exists \(r_{0}\in(0, 1)\) such that the function \(r\rightarrow h(u, p; r)\) is strictly decreasing on \((0, r_{0})\) and strictly increasing on \((r_{0}, 1)\), and
$$ h\bigl(u, p; 1^{-}\bigr)\leq0. $$
(2.22)
Therefore, \(h(u, p; r)<0\) for all \(r\in(0, 1)\) follows from (2.16) and (2.22) together with the piecewise monotonicity of the function \(r\rightarrow h(u, p; r)\) on the interval \((0, 1)\).
Case 3 \(1/(4p)< u<1-(2\sqrt{2}/\pi)^{4/p}\). Then (2.17) leads to
$$ h\bigl(u, p; 1^{-}\bigr)>0. $$
(2.23)
It follows from Lemma 2.3(5), (2.18), (2.20), (2.21) and the monotonicity of the function \(r\rightarrow h_{1}(p; r)\) on the interval \((0, 1)\) that there exists \(r^{\ast}\in(0, 1)\) such that the function \(r\rightarrow h(u, p; r)\) is strictly decreasing on \((0, r^{\ast})\) and strictly increasing on \((r^{\ast}, 1)\). Therefore, there exists \(\lambda \in(0, 1)\) such that \(h(u, p; r)<0\) for \(r\in(0, \lambda)\) and \(h(u, p; r)>0\) for \(r\in(\lambda, 1)\). □

3 Main result

Theorem 3.1
Let \(\lambda, \mu\in[0, 1/2]\). Then the double inequality
$$ \begin{gathered} G^{p}\bigl[\lambda a+(1-\lambda)b, \lambda b+(1-\lambda)a\bigr]A^{1-p}(a,b) \\ \quad< E(a,b)< G^{p}\bigl[\mu a+(1-\mu)b, \mu b+(1-\mu)a \bigr]A^{1-p}(a,b) \end{gathered} $$
holds for any \(p\in[1, \infty)\) and all \(a, b>0\) with \(a\neq b\) if and only if \(\lambda\leq1/2-\sqrt{1-(2\sqrt{2}/\pi)^{4/p}}/2\) and \(\mu\geq1/2-\sqrt{p}/(4p)\).
Proof
Let \(t\in[0, 1/2]\), since \(G^{p}[ta+(1-t)b, tb+(1-t)a]A^{1-p}(a,b)\) and \(E(a,b)\) are symmetric and homogeneous of degree one, without loss of generality, we assume that \(a>b>0\). Let \(r\in(0, 1)\) and \(b/a=(1-r)^{2}/(1+r)^{2}\). Then (1.1) leads to
$$ \begin{gathered} E(a,b)=\frac{4(1+r)^{2}}{\pi^{2}(1+r^{2})}A(a,b){\mathcal{E}}^{2} \biggl( \frac{2\sqrt{r}}{1+r} \biggr) =\frac{4}{\pi^{2}}A(a,b)\frac{ [2\mathcal{E}(r)-(1-r^{2})\mathcal {K}(r) ]^{2}}{1+r^{2}}, \\ \log \bigl[G^{p}\bigl(ta+(1-t)b, tb+(1-t)a \bigr)A^{1-p}(a,b) \bigr]-\log E(a,b) \\ \quad=\log \biggl[\frac{G^{p}(ta+(1-t)b, tb+(1-t)a)A^{1-p}(a,b)}{A(a,b)} \biggr]-\log \biggl[\frac {E(a,b)}{A(a,b)} \biggr] \\ \quad=\frac{1}{2}p\log \biggl[1-\frac {4(1-2t)^{2}r^{2}}{(1+r^{2})^{2}} \biggr] -\log \biggl[ \frac{4 (2\mathcal{E}(r)-(1-r^{2})\mathcal{K}(r) )^{2}}{\pi^{2}(1+r^{2})} \biggr]. \end{gathered} $$
(3.1)
Therefore, Theorem 3.1 follows easily from Lemma 2.5 and (3.1). □
Let \(p=1, 2\), then Theorem 3.1 leads to Corollary 3.2 immediately.
Corollary 3.2
Let \(\lambda_{1}, \mu_{1}, \lambda_{2}, \mu_{2}\in[0, 1/2]\). Then the double inequalities
$$ \begin{gathered} H\bigl[\lambda_{1}a+(1- \lambda_{1})b, \lambda_{1}b+(1-\lambda _{1})a \bigr]< E(a,b)< H\bigl[\mu_{1}a+(1-\mu_{1})b, \mu_{1}b+(1-\mu_{1})a\bigr], \\ G\bigl[\lambda_{2}a+(1-\lambda_{2})b, \lambda_{2}b+(1- \lambda _{2})a\bigr]< E(a,b)< G\bigl[\mu_{2}a+(1- \mu_{2})b, \mu_{2}b+(1-\mu_{2})a\bigr] \end{gathered} $$
hold for all \(a, b>0\) with \(a\neq b\) if and only if \(\lambda_{1}\leq 1/2-\sqrt{1-8/\pi^{2}}/2=0.2823\ldots\) , \(\mu_{1}\geq1/2-\sqrt{2}/8=0.3232\ldots\) , \(\lambda_{2}\leq1/2-\sqrt {1-64/\pi^{4}}/2=0.2071\ldots\) and \(\mu_{2}\geq1/4\).
Let \(p\in[1, \infty)\), \(r\in(0, 1)\), \(a=r\), \(b=1-r^{2}={r^{\prime }}^{2}\), \(\lambda=1/2-\sqrt{1-(2\sqrt{2}/\pi)^{4/p}}/2\) and \(\mu=1/2-\sqrt{p}/(4p)\). Then (1.1) and Theorem 3.1 lead to Corollary 3.3 immediately.
Corollary 3.3
The double inequality
$$ \begin{gathered} \frac{\sqrt{2}\pi}{4} \bigl(1+{r^{\prime}}^{2} \bigr)^{(1-p)/2} \biggl[4{r^{\prime}}^{2} + \biggl( \frac{8}{\pi^{2}} \biggr)^{2/p}r^{4} \biggr]^{p/4} \\ \quad< \mathcal{E}(r) < \frac{\sqrt{2}\pi}{4} \bigl(1+{r^{\prime }}^{2} \bigr)^{(1-p)/2} \biggl[\bigl(1+{r^{\prime}}^{2} \bigr)^{2}-\frac {r^{4}}{4p} \biggr]^{p/4} \end{gathered} $$
holds for all \(r\in(0, 1)\) and \(p\in[1, \infty)\).

4 Results and discussion

In this paper, we provide the sharp bounds for the special quasi-arithmetic mean \(E(a,b)\) in terms of the arithmetic mean \(A(a,b)\) and geometric mean \(G(a,b)\) with two parameters. As consequences, we present the best possible one-parameter harmonic and geometric means bounds for \(E(a,b)\) and find new bounds for the complete elliptic integral of the second kind.

5 Conclusion

In the article, we derive a new bivariate mean \(E(a,b)\) from the quasi-arithmetic mean and provide its sharp upper and lower bounds in terms of the concave combination of arithmetic and geometric means.

Acknowledgements

The research was supported by the Natural Science Foundation of China (Grants Nos. 61673169, 61374086, 11371125, 11401191) and the Tianyuan Special Funds of the National Natural Science Foundation of China (Grant No. 11626101).

Competing interests

The authors declare that they have no competing interests.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Bowman, F: Introduction to Elliptic Function with Applications. Dover, New York (1961) MATH Bowman, F: Introduction to Elliptic Function with Applications. Dover, New York (1961) MATH
2.
Zurück zum Zitat Byrd, PF, Friedman, MD: Handbook of Elliptic Integrals for Engineers and Scientists. Springer, New York (1971) CrossRefMATH Byrd, PF, Friedman, MD: Handbook of Elliptic Integrals for Engineers and Scientists. Springer, New York (1971) CrossRefMATH
3.
Zurück zum Zitat Anderson, GD, Vamanamurthy, MK, Vuorinen, M: Conformal Invariants, Inequalities, and Quasiconformal Maps. Wiley, New York (1997) MATH Anderson, GD, Vamanamurthy, MK, Vuorinen, M: Conformal Invariants, Inequalities, and Quasiconformal Maps. Wiley, New York (1997) MATH
4.
Zurück zum Zitat Anderson, GD, Qiu, S-L, Vuorinen, M: Precise estimates for differences of the Gaussian hypergeometric function. J. Math. Anal. Appl. 215(1), 212-234 (1997) CrossRefMATHMathSciNet Anderson, GD, Qiu, S-L, Vuorinen, M: Precise estimates for differences of the Gaussian hypergeometric function. J. Math. Anal. Appl. 215(1), 212-234 (1997) CrossRefMATHMathSciNet
5.
Zurück zum Zitat Ponnusamy, S, Vuorinen, M: Univalence and convexity properties for Gaussian hypergeometric functions. Rocky Mt. J. Math. 31(1), 327-353 (2001) CrossRefMATHMathSciNet Ponnusamy, S, Vuorinen, M: Univalence and convexity properties for Gaussian hypergeometric functions. Rocky Mt. J. Math. 31(1), 327-353 (2001) CrossRefMATHMathSciNet
6.
Zurück zum Zitat Song, Y-Q, Zhou, P-G, Chu, Y-M: Inequalities for the Gaussian hypergeometric function. Sci. China Math. 57(11), 2369-2380 (2014) CrossRefMATHMathSciNet Song, Y-Q, Zhou, P-G, Chu, Y-M: Inequalities for the Gaussian hypergeometric function. Sci. China Math. 57(11), 2369-2380 (2014) CrossRefMATHMathSciNet
7.
Zurück zum Zitat Wang, M-K, Chu, Y-M, Jiang, Y-P: Ramanujan’s cubic transformation inequalities for zero-balanced hypergeometric functions. Rocky Mt. J. Math. 46(2), 679-691 (2016) CrossRefMATHMathSciNet Wang, M-K, Chu, Y-M, Jiang, Y-P: Ramanujan’s cubic transformation inequalities for zero-balanced hypergeometric functions. Rocky Mt. J. Math. 46(2), 679-691 (2016) CrossRefMATHMathSciNet
8.
Zurück zum Zitat Wang, M-K, Chu, Y-M, Song, Y-Q: Asymptotical formulas for Gaussian and generalized hypergeometric functions. Appl. Math. Comput. 276, 44-60 (2016) MathSciNet Wang, M-K, Chu, Y-M, Song, Y-Q: Asymptotical formulas for Gaussian and generalized hypergeometric functions. Appl. Math. Comput. 276, 44-60 (2016) MathSciNet
9.
Zurück zum Zitat Wang, M-K, Chu, Y-M: Refinements of transformation inequalities for zero-balanced hypergeometric functions. Acta Math. Sci. 37B(3), 607-622 (2017) CrossRefMathSciNet Wang, M-K, Chu, Y-M: Refinements of transformation inequalities for zero-balanced hypergeometric functions. Acta Math. Sci. 37B(3), 607-622 (2017) CrossRefMathSciNet
10.
11.
Zurück zum Zitat Maican, CC: Integral Evaluations Using the Gamma and Beta Functions and Elliptic Integrals in Engineering. International Press, Cambridge (2005) MATH Maican, CC: Integral Evaluations Using the Gamma and Beta Functions and Elliptic Integrals in Engineering. International Press, Cambridge (2005) MATH
12.
Zurück zum Zitat Mortici, C: New approximation formulas for evaluating the ratio of gamma functions. Math. Comput. Model. 52(1-2), 425-433 (2010) CrossRefMATHMathSciNet Mortici, C: New approximation formulas for evaluating the ratio of gamma functions. Math. Comput. Model. 52(1-2), 425-433 (2010) CrossRefMATHMathSciNet
13.
14.
Zurück zum Zitat Zhao, T-H, Chu, Y-M, Jiang, Y-P: Monotonic and logarithmically convex properties of a function involving gamma functions. J. Inequal. Appl. 2009, Article ID 728618 (2009) MathSciNet Zhao, T-H, Chu, Y-M, Jiang, Y-P: Monotonic and logarithmically convex properties of a function involving gamma functions. J. Inequal. Appl. 2009, Article ID 728618 (2009) MathSciNet
15.
Zurück zum Zitat Zhao, T-H, Chu, Y-M: A class of logarithmically completely monotonic functions associated with a gamma function. J. Inequal. Appl. 2010, Article ID 392431 (2010) CrossRefMATHMathSciNet Zhao, T-H, Chu, Y-M: A class of logarithmically completely monotonic functions associated with a gamma function. J. Inequal. Appl. 2010, Article ID 392431 (2010) CrossRefMATHMathSciNet
16.
Zurück zum Zitat Zhao, T-H, Chu, Y-M, Wang, H: Logarithmically complete monotonicity properties relating to the gamma function. Abstr. Appl. Anal. 2010, Article ID 896483 (2010) MATHMathSciNet Zhao, T-H, Chu, Y-M, Wang, H: Logarithmically complete monotonicity properties relating to the gamma function. Abstr. Appl. Anal. 2010, Article ID 896483 (2010) MATHMathSciNet
17.
Zurück zum Zitat Yang, Z-H, Zhang, W, Chu, Y-M: Monotonicity and inequalities involving the incomplete gamma function. J. Inequal. Appl. 2016, Article ID 221 (2016) CrossRefMATHMathSciNet Yang, Z-H, Zhang, W, Chu, Y-M: Monotonicity and inequalities involving the incomplete gamma function. J. Inequal. Appl. 2016, Article ID 221 (2016) CrossRefMATHMathSciNet
18.
Zurück zum Zitat Yang, Z-H, Zhang, W, Chu, Y-M: Monotonicity of the incomplete gamma function with applications. J. Inequal. Appl. 2016, Article ID 251 (2016) CrossRefMATHMathSciNet Yang, Z-H, Zhang, W, Chu, Y-M: Monotonicity of the incomplete gamma function with applications. J. Inequal. Appl. 2016, Article ID 251 (2016) CrossRefMATHMathSciNet
19.
Zurück zum Zitat Anderson, GD, Vamanamurthy, MK, Vuorinen, M: Functional inequalities for complete elliptic integrals and their ratios. SIAM J. Math. Anal. 21(2), 536-549 (1990) CrossRefMATHMathSciNet Anderson, GD, Vamanamurthy, MK, Vuorinen, M: Functional inequalities for complete elliptic integrals and their ratios. SIAM J. Math. Anal. 21(2), 536-549 (1990) CrossRefMATHMathSciNet
20.
Zurück zum Zitat Panteliou, SD, Dimarogonas, AD, Katz, IN: Direct and inverse interpolation for Jacobian elliptic functions, zeta function of Jacobi and complete elliptic integrals of the second kind. Comput. Math. Appl. 32(8), 51-57 (1996) CrossRefMATHMathSciNet Panteliou, SD, Dimarogonas, AD, Katz, IN: Direct and inverse interpolation for Jacobian elliptic functions, zeta function of Jacobi and complete elliptic integrals of the second kind. Comput. Math. Appl. 32(8), 51-57 (1996) CrossRefMATHMathSciNet
21.
Zurück zum Zitat Qiu, S-L, Vamanamurthy, MK, Vuorinen, M: Some inequalities for the growth of elliptic integrals. SIAM J. Math. Anal. 29(5), 1224-1237 (1998) CrossRefMATHMathSciNet Qiu, S-L, Vamanamurthy, MK, Vuorinen, M: Some inequalities for the growth of elliptic integrals. SIAM J. Math. Anal. 29(5), 1224-1237 (1998) CrossRefMATHMathSciNet
22.
Zurück zum Zitat Barnard, RW, Pearce, K, Richards, KC: An inequality involving the generalized hypergeometric function and the arc legth of an ellipse. SIAM J. Math. Anal. 31(3), 693-699 (2000) CrossRefMATHMathSciNet Barnard, RW, Pearce, K, Richards, KC: An inequality involving the generalized hypergeometric function and the arc legth of an ellipse. SIAM J. Math. Anal. 31(3), 693-699 (2000) CrossRefMATHMathSciNet
23.
Zurück zum Zitat Barnard, RW, Pearce, K, Richards, KC: A monotonicity properties involving \({}_{3}F_{2}\), and comparisons of the classical approximations of elliptical arc length. SIAM J. Math. Anal. 32(2), 403-419 (2000) CrossRefMATHMathSciNet Barnard, RW, Pearce, K, Richards, KC: A monotonicity properties involving \({}_{3}F_{2}\), and comparisons of the classical approximations of elliptical arc length. SIAM J. Math. Anal. 32(2), 403-419 (2000) CrossRefMATHMathSciNet
24.
25.
Zurück zum Zitat Wang, G-D, Zhang, X-H, Chu, Y-M: Inequalities for the generalized elliptic integrals and modular functions. J. Math. Anal. Appl. 331(2), 1275-1283 (2007) CrossRefMATHMathSciNet Wang, G-D, Zhang, X-H, Chu, Y-M: Inequalities for the generalized elliptic integrals and modular functions. J. Math. Anal. Appl. 331(2), 1275-1283 (2007) CrossRefMATHMathSciNet
26.
Zurück zum Zitat Zhang, X-H, Wang, G-D, Chu, Y-M: Remarks on generalized elliptic integrals. Proc. R. Soc. Edinb. Sect. A 139(2), 417-426 (2009) CrossRefMATHMathSciNet Zhang, X-H, Wang, G-D, Chu, Y-M: Remarks on generalized elliptic integrals. Proc. R. Soc. Edinb. Sect. A 139(2), 417-426 (2009) CrossRefMATHMathSciNet
27.
Zurück zum Zitat Zhang, X-H, Wang, G-D, Chu, Y-M: Convexity with respect to Hölder mean involving zero-balanced hypergeometric functions. J. Math. Anal. Appl. 353(1), 256-259 (2009) CrossRefMATHMathSciNet Zhang, X-H, Wang, G-D, Chu, Y-M: Convexity with respect to Hölder mean involving zero-balanced hypergeometric functions. J. Math. Anal. Appl. 353(1), 256-259 (2009) CrossRefMATHMathSciNet
28.
29.
30.
Zurück zum Zitat Wang, M-K, Chu, Y-M, Qiu, Y-F, Qiu, S-L: An optimal power mean inequality for the complete elliptic integrals. Appl. Math. Lett. 24(6), 887-890 (2011) CrossRefMATHMathSciNet Wang, M-K, Chu, Y-M, Qiu, Y-F, Qiu, S-L: An optimal power mean inequality for the complete elliptic integrals. Appl. Math. Lett. 24(6), 887-890 (2011) CrossRefMATHMathSciNet
31.
Zurück zum Zitat Chu, Y-M, Wang, M-K, Qiu, Y-F: On Alzer and Qiu’s conjecture for complete elliptic integral and inverse hyperbolic tangent function. Abstr. Appl. Anal. 2011, Article ID 697547 (2011) MATHMathSciNet Chu, Y-M, Wang, M-K, Qiu, Y-F: On Alzer and Qiu’s conjecture for complete elliptic integral and inverse hyperbolic tangent function. Abstr. Appl. Anal. 2011, Article ID 697547 (2011) MATHMathSciNet
32.
Zurück zum Zitat Guo, B-N, Qi, F: Some bounds for complete elliptic integrals of the first and second kinds. Math. Inequal. Appl. 14(2), 323-334 (2011) MATHMathSciNet Guo, B-N, Qi, F: Some bounds for complete elliptic integrals of the first and second kinds. Math. Inequal. Appl. 14(2), 323-334 (2011) MATHMathSciNet
33.
Zurück zum Zitat Bhayo, BA, Vuorinen, M: On generalized complete integrals and modular functions. Proc. Edinb. Math. Soc. (2) 55(3), 591-611 (2012) CrossRefMATHMathSciNet Bhayo, BA, Vuorinen, M: On generalized complete integrals and modular functions. Proc. Edinb. Math. Soc. (2) 55(3), 591-611 (2012) CrossRefMATHMathSciNet
34.
Zurück zum Zitat Wang, M-K, Qiu, S-L, Chu, Y-M, Jiang, Y-P: Generalized Hersch-Pfluger distortion function and complete elliptic integrals. J. Math. Anal. Appl. 385(1), 221-229 (2012) CrossRefMATHMathSciNet Wang, M-K, Qiu, S-L, Chu, Y-M, Jiang, Y-P: Generalized Hersch-Pfluger distortion function and complete elliptic integrals. J. Math. Anal. Appl. 385(1), 221-229 (2012) CrossRefMATHMathSciNet
35.
Zurück zum Zitat Wang, M-K, Chu, Y-M, Qiu, S-L, Jiang, Y-P: Convexity of the complete elliptic integrals of the first kind with respect to Hölder means. J. Math. Anal. Appl. 388(2), 1141-1146 (2012) CrossRefMATHMathSciNet Wang, M-K, Chu, Y-M, Qiu, S-L, Jiang, Y-P: Convexity of the complete elliptic integrals of the first kind with respect to Hölder means. J. Math. Anal. Appl. 388(2), 1141-1146 (2012) CrossRefMATHMathSciNet
36.
Zurück zum Zitat Chu, Y-M, Wang, M-K, Jiang, Y-P, Qiu, S-L: Concavity of the complete elliptic integrals of the second kind with respect to Hölder means. J. Math. Anal. Appl. 395(2), 637-642 (2012) CrossRefMATHMathSciNet Chu, Y-M, Wang, M-K, Jiang, Y-P, Qiu, S-L: Concavity of the complete elliptic integrals of the second kind with respect to Hölder means. J. Math. Anal. Appl. 395(2), 637-642 (2012) CrossRefMATHMathSciNet
37.
Zurück zum Zitat Chu, Y-M, Qiu, Y-F, Wang, M-K: Hölder mean inequalities for complete elliptic integrals. Integral Transforms Spec. Funct. 23(7), 521-527 (2012) CrossRefMATHMathSciNet Chu, Y-M, Qiu, Y-F, Wang, M-K: Hölder mean inequalities for complete elliptic integrals. Integral Transforms Spec. Funct. 23(7), 521-527 (2012) CrossRefMATHMathSciNet
38.
Zurück zum Zitat Chu, Y-M, Wang, M-K, Qiu, S-L, Jiang, Y-P: Bounds for complete elliptic integrals of the second kind with applications. Comput. Math. Appl. 63(7), 1177-1184 (2012) CrossRefMATHMathSciNet Chu, Y-M, Wang, M-K, Qiu, S-L, Jiang, Y-P: Bounds for complete elliptic integrals of the second kind with applications. Comput. Math. Appl. 63(7), 1177-1184 (2012) CrossRefMATHMathSciNet
40.
Zurück zum Zitat Wang, M-K, Chu, Y-M: Asymptotical bounds for complete elliptic integrals of the second kind. J. Math. Anal. Appl. 402(1), 119-126 (2013) CrossRefMATHMathSciNet Wang, M-K, Chu, Y-M: Asymptotical bounds for complete elliptic integrals of the second kind. J. Math. Anal. Appl. 402(1), 119-126 (2013) CrossRefMATHMathSciNet
41.
Zurück zum Zitat Chu, Y-M, Wang, M-K, Qiu, Y-F, Ma, X-Y: Sharp two parameters bounds for the logarithmic mean and the arithmetic-geometric mean of Gauss. J. Math. Inequal. 7(3), 349-355 (2013) CrossRefMATHMathSciNet Chu, Y-M, Wang, M-K, Qiu, Y-F, Ma, X-Y: Sharp two parameters bounds for the logarithmic mean and the arithmetic-geometric mean of Gauss. J. Math. Inequal. 7(3), 349-355 (2013) CrossRefMATHMathSciNet
42.
Zurück zum Zitat Wang, M-K, Chu, Y-M, Qiu, S-L: Some monotonicity properties of generalized elliptic integrals with applications. Math. Inequal. Appl. 16(3), 671-677 (2013) MATHMathSciNet Wang, M-K, Chu, Y-M, Qiu, S-L: Some monotonicity properties of generalized elliptic integrals with applications. Math. Inequal. Appl. 16(3), 671-677 (2013) MATHMathSciNet
43.
Zurück zum Zitat Chu, Y-M, Qiu, S-L, Wang, M-K: Sharp inequalities involving the power mean and complete elliptic integral of the first kind. Rocky Mt. J. Math. 43(5), 1489-1496 (2013) CrossRefMATHMathSciNet Chu, Y-M, Qiu, S-L, Wang, M-K: Sharp inequalities involving the power mean and complete elliptic integral of the first kind. Rocky Mt. J. Math. 43(5), 1489-1496 (2013) CrossRefMATHMathSciNet
44.
Zurück zum Zitat Wang, M-K, Chu, Y-M, Jiang, Y-P, Qiu, S-L: Bounds of the perimeter of an ellipse using arithmetic, geometric and harmonic means. Math. Inequal. Appl. 17(1), 101-111 (2014) MATHMathSciNet Wang, M-K, Chu, Y-M, Jiang, Y-P, Qiu, S-L: Bounds of the perimeter of an ellipse using arithmetic, geometric and harmonic means. Math. Inequal. Appl. 17(1), 101-111 (2014) MATHMathSciNet
45.
Zurück zum Zitat Wang, G-D, Zhang, X-H, Chu, Y-M: A power mean inequality involving the complete elliptic integrals. Rocky Mt. J. Math. 44(5), 1661-1667 (2014) CrossRefMATHMathSciNet Wang, G-D, Zhang, X-H, Chu, Y-M: A power mean inequality involving the complete elliptic integrals. Rocky Mt. J. Math. 44(5), 1661-1667 (2014) CrossRefMATHMathSciNet
46.
Zurück zum Zitat Chu, Y-M, Zhao, T-H: Convexity and concavity of the complete elliptic integrals with respect to Lehmer mean. J. Inequal. Appl. 2015, Article ID 396 (2015) CrossRefMATHMathSciNet Chu, Y-M, Zhao, T-H: Convexity and concavity of the complete elliptic integrals with respect to Lehmer mean. J. Inequal. Appl. 2015, Article ID 396 (2015) CrossRefMATHMathSciNet
47.
Zurück zum Zitat Wang, H, Qian, W-M, Chu, Y-M: Optimal bounds for Gaussian arithmetic-geometric mean with applications to complete elliptic integral. J. Funct. Spaces 2016, Article ID 3698463 (2016) MATHMathSciNet Wang, H, Qian, W-M, Chu, Y-M: Optimal bounds for Gaussian arithmetic-geometric mean with applications to complete elliptic integral. J. Funct. Spaces 2016, Article ID 3698463 (2016) MATHMathSciNet
48.
Zurück zum Zitat Yang, Z-H, Chu, Y-M, Zhang, W: Accurate approximations for the complete elliptic integrals of the second kind. J. Math. Anal. Appl. 438(2), 875-888 (2016) CrossRefMATHMathSciNet Yang, Z-H, Chu, Y-M, Zhang, W: Accurate approximations for the complete elliptic integrals of the second kind. J. Math. Anal. Appl. 438(2), 875-888 (2016) CrossRefMATHMathSciNet
49.
Zurück zum Zitat Yang, Z-H, Chu, Y-M, Zhang, W: Monotonicity of the ratio for the complete elliptic integral and Stolarsky mean. J. Inequal. Appl. 2016, Article ID 176 (2016) CrossRefMATHMathSciNet Yang, Z-H, Chu, Y-M, Zhang, W: Monotonicity of the ratio for the complete elliptic integral and Stolarsky mean. J. Inequal. Appl. 2016, Article ID 176 (2016) CrossRefMATHMathSciNet
50.
Zurück zum Zitat Yang, Z-H, Chu, Y-M, Zhang, X-H: Sharp Stolarsky mean bounds for the complete elliptic integral of the second kind. J. Nonlinear Sci. Appl. 10(3), 929-936 (2017) CrossRefMathSciNet Yang, Z-H, Chu, Y-M, Zhang, X-H: Sharp Stolarsky mean bounds for the complete elliptic integral of the second kind. J. Nonlinear Sci. Appl. 10(3), 929-936 (2017) CrossRefMathSciNet
51.
Zurück zum Zitat Yang, Z-H, Chu, Y-M: A monotonicity property involving the generalized elliptic integral of the first kind. Math. Inequal. Appl. 20(3), 729-735 (2017) MATHMathSciNet Yang, Z-H, Chu, Y-M: A monotonicity property involving the generalized elliptic integral of the first kind. Math. Inequal. Appl. 20(3), 729-735 (2017) MATHMathSciNet
52.
Zurück zum Zitat Alzer, H, Richards, KC: Inequalities for the ratio of complete elliptic integrals. Proc. Am. Math. Soc. 145(4), 1661-1670 (2017) MATHMathSciNet Alzer, H, Richards, KC: Inequalities for the ratio of complete elliptic integrals. Proc. Am. Math. Soc. 145(4), 1661-1670 (2017) MATHMathSciNet
53.
54.
Zurück zum Zitat Carlson, BC, Vuorinen, M: Inequality of the AGM and the logarithmic mean. SIAM Rev. 33(4), 653-654 (1991) CrossRef Carlson, BC, Vuorinen, M: Inequality of the AGM and the logarithmic mean. SIAM Rev. 33(4), 653-654 (1991) CrossRef
56.
57.
Zurück zum Zitat Alzer, H: Sharp inequalities for the complete elliptic integral of the first kind. Math. Proc. Camb. Philos. Soc. 124(2), 309-314 (1998) CrossRefMATHMathSciNet Alzer, H: Sharp inequalities for the complete elliptic integral of the first kind. Math. Proc. Camb. Philos. Soc. 124(2), 309-314 (1998) CrossRefMATHMathSciNet
58.
Zurück zum Zitat Anderson, GD, Vamanamurthy, MK, Vuorinen, M: Functional inequalities for hypergeometric functions and complete elliptic integrals. SIAM J. Math. Anal. 23(2), 512-524 (1992) CrossRefMATHMathSciNet Anderson, GD, Vamanamurthy, MK, Vuorinen, M: Functional inequalities for hypergeometric functions and complete elliptic integrals. SIAM J. Math. Anal. 23(2), 512-524 (1992) CrossRefMATHMathSciNet
59.
Zurück zum Zitat Alzer, H, Qiu, S-L: Monotonicity theorem and inequalities for the complete elliptic integrals. J. Comput. Appl. Math. 172(2), 289-312 (2004) CrossRefMATHMathSciNet Alzer, H, Qiu, S-L: Monotonicity theorem and inequalities for the complete elliptic integrals. J. Comput. Appl. Math. 172(2), 289-312 (2004) CrossRefMATHMathSciNet
60.
Zurück zum Zitat Yang, Z-H, Song, Y-Q, Chu, Y-M: Sharp bounds for the arithmetic-geometric mean. J. Inequal. Appl. 2014, Article ID 192 (2014) CrossRefMATHMathSciNet Yang, Z-H, Song, Y-Q, Chu, Y-M: Sharp bounds for the arithmetic-geometric mean. J. Inequal. Appl. 2014, Article ID 192 (2014) CrossRefMATHMathSciNet
61.
Zurück zum Zitat Chu, Y-M, Wang, M-K, Qiu, S-L, Qiu, Y-F: Sharp generalized Seiffert mean bounds for Toader mean. Abstr. Appl. Anal. 2011, Article ID 605259 (2011) MATHMathSciNet Chu, Y-M, Wang, M-K, Qiu, S-L, Qiu, Y-F: Sharp generalized Seiffert mean bounds for Toader mean. Abstr. Appl. Anal. 2011, Article ID 605259 (2011) MATHMathSciNet
62.
Zurück zum Zitat Chu, Y-M, Wang, M-K: Inequalities between arithmetic-geometric, Gini, and Toader mean. Abstr. Appl. Anal. 2012, Article ID 830585 (2012) MATHMathSciNet Chu, Y-M, Wang, M-K: Inequalities between arithmetic-geometric, Gini, and Toader mean. Abstr. Appl. Anal. 2012, Article ID 830585 (2012) MATHMathSciNet
63.
Zurück zum Zitat Chu, Y-M, Wang, M-K, Qiu, S-L: Optimal combinations bounds of root-square and arithmetic means for Toader mean. Proc. Indian Acad. Sci. Math. Sci. 122(1), 41-51 (2012) CrossRefMATHMathSciNet Chu, Y-M, Wang, M-K, Qiu, S-L: Optimal combinations bounds of root-square and arithmetic means for Toader mean. Proc. Indian Acad. Sci. Math. Sci. 122(1), 41-51 (2012) CrossRefMATHMathSciNet
64.
Zurück zum Zitat Chu, Y-M, Wang, M-K, Ma, X-Y: Sharp bounds for Toader mean in terms of contraharmonic mean with applications. J. Math. Inequal. 7(2), 161-166 (2013) CrossRefMATHMathSciNet Chu, Y-M, Wang, M-K, Ma, X-Y: Sharp bounds for Toader mean in terms of contraharmonic mean with applications. J. Math. Inequal. 7(2), 161-166 (2013) CrossRefMATHMathSciNet
65.
Zurück zum Zitat Song, Y-Q, Jiang, W-D, Chu, Y-M, Yan, D-D: Optimal bounds for Toader mean in terms of arithmetic and contraharmonic means. J. Math. Inequal. 7(4), 751-757 (2013) CrossRefMATHMathSciNet Song, Y-Q, Jiang, W-D, Chu, Y-M, Yan, D-D: Optimal bounds for Toader mean in terms of arithmetic and contraharmonic means. J. Math. Inequal. 7(4), 751-757 (2013) CrossRefMATHMathSciNet
66.
Zurück zum Zitat Hua, Y, Qi, F: A double inequality for bounding Toader mean by the centroidal mean. Proc. Indian Acad. Sci. Math. Sci. 124(4), 527-531 (2014) CrossRefMATHMathSciNet Hua, Y, Qi, F: A double inequality for bounding Toader mean by the centroidal mean. Proc. Indian Acad. Sci. Math. Sci. 124(4), 527-531 (2014) CrossRefMATHMathSciNet
67.
Zurück zum Zitat Hua, Y, Qi, F: The best bounds for Toader mean in terms of the centroidal and arithmetic means. Filomat 28(4), 775-780 (2014) CrossRefMATHMathSciNet Hua, Y, Qi, F: The best bounds for Toader mean in terms of the centroidal and arithmetic means. Filomat 28(4), 775-780 (2014) CrossRefMATHMathSciNet
68.
Zurück zum Zitat Li, J-F, Qian, W-M, Chu, Y-M: Sharp bounds for Toader mean in terms of arithmetic, quadratic, and Neuman means. J. Inequal. Appl. 2015, Article ID 277 (2015) CrossRefMATHMathSciNet Li, J-F, Qian, W-M, Chu, Y-M: Sharp bounds for Toader mean in terms of arithmetic, quadratic, and Neuman means. J. Inequal. Appl. 2015, Article ID 277 (2015) CrossRefMATHMathSciNet
69.
Zurück zum Zitat Qian, W-M, Song, Y-Q, Zhang, X-H, Chu, Y-M: Sharp bounds for Toader mean in terms of arithmetic and second contraharmonic means. J. Funct. Spaces 2015, Article ID 452823 (2015) MATHMathSciNet Qian, W-M, Song, Y-Q, Zhang, X-H, Chu, Y-M: Sharp bounds for Toader mean in terms of arithmetic and second contraharmonic means. J. Funct. Spaces 2015, Article ID 452823 (2015) MATHMathSciNet
70.
Zurück zum Zitat Zhao, T-H, Chu, Y-M, Zhang, W: Optimal inequalities for bounding Toader mean by arithmetic and quadratic mean. J. Inequal. Appl. 2017, Article ID 26 (2017) CrossRefMATHMathSciNet Zhao, T-H, Chu, Y-M, Zhang, W: Optimal inequalities for bounding Toader mean by arithmetic and quadratic mean. J. Inequal. Appl. 2017, Article ID 26 (2017) CrossRefMATHMathSciNet
71.
Zurück zum Zitat Yang, Z-H, Chu, Y-M: A sharp lower bound for Toader-Qi mean with applications. J. Funct. Spaces 2016, Article ID 4165601 (2016) MATHMathSciNet Yang, Z-H, Chu, Y-M: A sharp lower bound for Toader-Qi mean with applications. J. Funct. Spaces 2016, Article ID 4165601 (2016) MATHMathSciNet
72.
Zurück zum Zitat Yang, Z-H, Chu, Y-M: On approximating the modified Bessel function of the first kind and Toader-Qi mean. J. Inequal. Appl. 2016, Article ID 40 (2016) CrossRefMATHMathSciNet Yang, Z-H, Chu, Y-M: On approximating the modified Bessel function of the first kind and Toader-Qi mean. J. Inequal. Appl. 2016, Article ID 40 (2016) CrossRefMATHMathSciNet
73.
Zurück zum Zitat Yang, Z-H, Chu, Y-M, Song, Y-Q: Sharp bounds for Toader-Qi mean in terms of logarithmic and identric mean. Math. Inequal. Appl. 19(2), 721-730 (2016) MATHMathSciNet Yang, Z-H, Chu, Y-M, Song, Y-Q: Sharp bounds for Toader-Qi mean in terms of logarithmic and identric mean. Math. Inequal. Appl. 19(2), 721-730 (2016) MATHMathSciNet
74.
Zurück zum Zitat Qian, W-M, Zhang, X-H, Chu, Y-M: Sharp bounds for the Toader-Qi mean in terms of harmonic and geometric means. J. Math. Inequal. 11(1), 121-127 (2017) CrossRefMATHMathSciNet Qian, W-M, Zhang, X-H, Chu, Y-M: Sharp bounds for the Toader-Qi mean in terms of harmonic and geometric means. J. Math. Inequal. 11(1), 121-127 (2017) CrossRefMATHMathSciNet
75.
Zurück zum Zitat Olver, FWJ, Lozier, DW, Boisvert, RF, Clark, CW (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010) MATH Olver, FWJ, Lozier, DW, Boisvert, RF, Clark, CW (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010) MATH
Metadaten
Titel
Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parameters
verfasst von
Wei-Mao Qian
Yu-Ming Chu
Publikationsdatum
01.12.2017
Verlag
Springer International Publishing
Erschienen in
Journal of Inequalities and Applications / Ausgabe 1/2017
Elektronische ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-017-1550-5

Weitere Artikel der Ausgabe 1/2017

Journal of Inequalities and Applications 1/2017 Zur Ausgabe

Premium Partner