Skip to main content
Top

2022 | OriginalPaper | Chapter

9. Overview of Bioimaging with HS-AFM

Author : Toshio Ando

Published in: High-Speed Atomic Force Microscopy in Biology

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter gives an overview of bioimaging studies with HS-AFM performed in recent years, efficiently illustrating how this new field has evolved and what biomolecular phenomena have been preferentially studied with HS-AFM. One can notice that many interesting biomolecular systems and phenomena remain to be examined with HS-AFM. Moreover, this chapter summarizes several issues to be considered in HS-AFM imaging; what limitations exist and what we should bear in mind for successful studies with HS-AFM.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Amyot, R., & Flechsig, H. (2020). BioAFMviewer: An interactive interface for simulated AFM scanning of biomolecular structures and dynamics. PLoS Computer Biology, 16, e1008444. Amyot, R., & Flechsig, H. (2020). BioAFMviewer: An interactive interface for simulated AFM scanning of biomolecular structures and dynamics. PLoS Computer Biology, 16, e1008444.
go back to reference Ando, T., Kodera, N., Takai, E., Maruyama, D., Saito, K., & Toda, A. (2001). A high-speed atomic force microscope for studying biological macromolecules. In Proceedings of the National Academy Sciences (Vol. 98, pp. 12468–12472). USA. Ando, T., Kodera, N., Takai, E., Maruyama, D., Saito, K., & Toda, A. (2001). A high-speed atomic force microscope for studying biological macromolecules. In Proceedings of the National Academy Sciences (Vol. 98, pp. 12468–12472). USA.
go back to reference Ando, T., Uchihashi, T., Kodera, N., Miyagi, A., Nakakita, R., Yamashita, H., & Matada, K. (2005). High-speed AFM for studying the dynamic behavior of protein molecules at work. e-Journal of Surface Science and Nanotechnology, 3, 384–392. Ando, T., Uchihashi, T., Kodera, N., Miyagi, A., Nakakita, R., Yamashita, H., & Matada, K. (2005). High-speed AFM for studying the dynamic behavior of protein molecules at work. e-Journal of Surface Science and Nanotechnology, 3, 384–392.
go back to reference Ando, T., & Uchihashi, T. (2013). High-speed AFM and imaging of biomoleculr processes. In T. Ondarçuhu & J.-P. Aime (Eds.), Nanoscale liquid interfaces: Wetting, patterning and force microscopy at the molecular scale (pp. 713–742). Pan Stanford Publishing. Ando, T., & Uchihashi, T. (2013). High-speed AFM and imaging of biomoleculr processes. In T. Ondarçuhu & J.-P. Aime (Eds.), Nanoscale liquid interfaces: Wetting, patterning and force microscopy at the molecular scale (pp. 713–742). Pan Stanford Publishing.
go back to reference Benning, F. M. C., Sakiyama, Y., Mazur, A., Bukhari, H. S. T., Lim, R. Y. H., & Maier, T. (2017). High-speed atomic force microscopy visualization of the dynamics of the multienzyme fatty acid synthase. ACS Nano, 11, 10852–10859.CrossRef Benning, F. M. C., Sakiyama, Y., Mazur, A., Bukhari, H. S. T., Lim, R. Y. H., & Maier, T. (2017). High-speed atomic force microscopy visualization of the dynamics of the multienzyme fatty acid synthase. ACS Nano, 11, 10852–10859.CrossRef
go back to reference Brouns, T., De Keersmaecker, H., Konrad, S. F., Kodera, N., Ando, T., Lipfert, J., De Feyter, S., & Vanderlinden, W. (2018). Free energy landscape and dynamics of supercoiled DNA by high-speed atomic force microscopy. ACS Nano, 12, 11907–11916.CrossRef Brouns, T., De Keersmaecker, H., Konrad, S. F., Kodera, N., Ando, T., Lipfert, J., De Feyter, S., & Vanderlinden, W. (2018). Free energy landscape and dynamics of supercoiled DNA by high-speed atomic force microscopy. ACS Nano, 12, 11907–11916.CrossRef
go back to reference Casuso, I., Sens, P., Rico, F., & Scheuring, S. (2010). Experimental evidence for membrane-mediated protein-protein interaction. Biophysical Journal, 99, L47–L49.ADSCrossRef Casuso, I., Sens, P., Rico, F., & Scheuring, S. (2010). Experimental evidence for membrane-mediated protein-protein interaction. Biophysical Journal, 99, L47–L49.ADSCrossRef
go back to reference Casuso, I., Khao, J., Chami, M., Paul-Gilloteaux, P., Husain, M., Duneau, J.-P., Stahlberg, H., Sturgis, J. N., & Scheuring, S. (2012). Characterization of the motion of membrane proteins using high-speed atomic force microscopy. Nature Nanotechnology, 7, 525–529.ADSCrossRef Casuso, I., Khao, J., Chami, M., Paul-Gilloteaux, P., Husain, M., Duneau, J.-P., Stahlberg, H., Sturgis, J. N., & Scheuring, S. (2012). Characterization of the motion of membrane proteins using high-speed atomic force microscopy. Nature Nanotechnology, 7, 525–529.ADSCrossRef
go back to reference Chiaruttini, N., Redondo-Morata, L., Colom, A., Humbert, F., Lenz, M., Scheuring, S., & Roux, A. (2015). Relaxation of loaded ESCRT-III spiral springs drives membrane deformation. Cell, 163, 866–879.CrossRef Chiaruttini, N., Redondo-Morata, L., Colom, A., Humbert, F., Lenz, M., Scheuring, S., & Roux, A. (2015). Relaxation of loaded ESCRT-III spiral springs drives membrane deformation. Cell, 163, 866–879.CrossRef
go back to reference Cho, C., Jang, J., Kang, Y., Watanabe, H., Uchihashi, T., Kim, S. J., Kato, K., Lee, J. Y., & Song, J.-J. (2019). Structural basis of nucleosome assembly by the Abo1 AAA+ ATPase histone chaperone. Nature Communications, 10, 5764.ADSCrossRef Cho, C., Jang, J., Kang, Y., Watanabe, H., Uchihashi, T., Kim, S. J., Kato, K., Lee, J. Y., & Song, J.-J. (2019). Structural basis of nucleosome assembly by the Abo1 AAA+ ATPase histone chaperone. Nature Communications, 10, 5764.ADSCrossRef
go back to reference Colom, A., Redondo-Morata, L., Chiaruttini, N., Roux, A., & Scheuring, S. (2017). Dynamic remodeling of the dynamin helix during membrane constriction. In Proceedings of the National Academy Sciences (Vol. 114, pp. 5449–5454). USA. Colom, A., Redondo-Morata, L., Chiaruttini, N., Roux, A., & Scheuring, S. (2017). Dynamic remodeling of the dynamin helix during membrane constriction. In Proceedings of the National Academy Sciences (Vol. 114, pp. 5449–5454). USA.
go back to reference Crampton, N., Yokokawa, M., Dryden, D. T. F., Edwardson, J. M., Rao, D. N., Takeyasu, K., Yoshimura, S. H., & Henderson, R. M. (2007). Fast-scan atomic force microscopy reveals that the type III restriction enzyme EcoP15I is capable of DNA translocation and looping. In Proceedings of the National Academy Sciences (Vol. 104, pp. 12755–12760). USA. Crampton, N., Yokokawa, M., Dryden, D. T. F., Edwardson, J. M., Rao, D. N., Takeyasu, K., Yoshimura, S. H., & Henderson, R. M. (2007). Fast-scan atomic force microscopy reveals that the type III restriction enzyme EcoP15I is capable of DNA translocation and looping. In Proceedings of the National Academy Sciences (Vol. 104, pp. 12755–12760). USA.
go back to reference Davies, T., Kodera, N., Kaminski Schierle, G. S., Rees, E., Erdelyi, M., Kaminski, C. F., Ando, T., & Mishima, M. (2015), CYK4 promotes antiparallel microtubule bundling by optimizing MKLP1 neck conformation. PLoS Biology, 13, e1002121. Davies, T., Kodera, N., Kaminski Schierle, G. S., Rees, E., Erdelyi, M., Kaminski, C. F., Ando, T., & Mishima, M. (2015), CYK4 promotes antiparallel microtubule bundling by optimizing MKLP1 neck conformation. PLoS Biology, 13, e1002121.
go back to reference Eeftens, J. M., Katan, A. J., Kschonsak, M., Hassler, M., de Wilde, L., Dief, E. M., Haering, C. H., & Dekker, C. (2016). Condensin smc2-smc4 dimers are flexible and dynamic. Cell Reports, 14, 1813–1818.CrossRef Eeftens, J. M., Katan, A. J., Kschonsak, M., Hassler, M., de Wilde, L., Dief, E. M., Haering, C. H., & Dekker, C. (2016). Condensin smc2-smc4 dimers are flexible and dynamic. Cell Reports, 14, 1813–1818.CrossRef
go back to reference Emilsson, G., Sakiyama, Y., Malekian, B., Xiong, K., Adali-Kaya, Z., Lim, R. Y. H., & Dahlin, A. B. (2018). Gating protein transport in solid state nanopores by single molecule recognition. ACS Central Science, 4, 1007–1014.CrossRef Emilsson, G., Sakiyama, Y., Malekian, B., Xiong, K., Adali-Kaya, Z., Lim, R. Y. H., & Dahlin, A. B. (2018). Gating protein transport in solid state nanopores by single molecule recognition. ACS Central Science, 4, 1007–1014.CrossRef
go back to reference Endo, M., Tatsumi, K., Terushima, K., Katsuda, Y., Harada, Y., & Sugiyama, H. (2012). Direct visualization of the movement of a single T7 RNA polymerase and transcription on a DNA nanostructure. Angewandte Chemie International Edition, 51, 8778–8782.CrossRef Endo, M., Tatsumi, K., Terushima, K., Katsuda, Y., Harada, Y., & Sugiyama, H. (2012). Direct visualization of the movement of a single T7 RNA polymerase and transcription on a DNA nanostructure. Angewandte Chemie International Edition, 51, 8778–8782.CrossRef
go back to reference Endo, M., Yang, Y., Suzuki, Y., Hidaka, K., & Sugiyama, H. (2012). Single-molecule visualization of the hybridization and dissociation of photoresponsive oligonucleotides and their reversible switching behavior in a DNA nanostructure. Angewandte Chemie International Edition, 51, 10518–10522.CrossRef Endo, M., Yang, Y., Suzuki, Y., Hidaka, K., & Sugiyama, H. (2012). Single-molecule visualization of the hybridization and dissociation of photoresponsive oligonucleotides and their reversible switching behavior in a DNA nanostructure. Angewandte Chemie International Edition, 51, 10518–10522.CrossRef
go back to reference Endo, M., Xing, X., Zhou, X., Emura, T., Hidaka, K., Tuesuwan, B., & Sugiyama, H. (2015). Single-molecule manipulation of the duplex formation and dissociation at the G-quadruplex/i-motif site in the DNA nanostructure. ACS Nano, 9, 9922–9929.CrossRef Endo, M., Xing, X., Zhou, X., Emura, T., Hidaka, K., Tuesuwan, B., & Sugiyama, H. (2015). Single-molecule manipulation of the duplex formation and dissociation at the G-quadruplex/i-motif site in the DNA nanostructure. ACS Nano, 9, 9922–9929.CrossRef
go back to reference Endo, M., Takeuchi, Y., Suzuki, Y., Emura, T., Hidaka, K., Wang, F., Willner, I., & Sugiyama, H. (2015). Single-molecule visualization of the activity of a Zn2+-dependent DNAzyme. Angewandte Chemie International Edition, 54, 10550–10554.CrossRef Endo, M., Takeuchi, Y., Suzuki, Y., Emura, T., Hidaka, K., Wang, F., Willner, I., & Sugiyama, H. (2015). Single-molecule visualization of the activity of a Zn2+-dependent DNAzyme. Angewandte Chemie International Edition, 54, 10550–10554.CrossRef
go back to reference Ewald, M., Henry, S., Lambert, E., Feuillie, C., Bobo, C., Cullin, C., Lecomte, S., & Molinari, M. (2019). High speed atomic force microscopy to investigate the interactions between toxic Aβ1-42 peptides and model membranes in real time: Impact of the membrane composition. Nanoscale, 11, 7229–7238.CrossRef Ewald, M., Henry, S., Lambert, E., Feuillie, C., Bobo, C., Cullin, C., Lecomte, S., & Molinari, M. (2019). High speed atomic force microscopy to investigate the interactions between toxic 1-42 peptides and model membranes in real time: Impact of the membrane composition. Nanoscale, 11, 7229–7238.CrossRef
go back to reference Fantner, G. E., Barbero, R. J., Gray, D. S., & Belcher, A. M. (2010). Kinetics of antimicrobial peptide activity measured on individual bacterial cells using high-speed atomic force microscopy. Nature Nanotechnology, 5, 280–285.ADSCrossRef Fantner, G. E., Barbero, R. J., Gray, D. S., & Belcher, A. M. (2010). Kinetics of antimicrobial peptide activity measured on individual bacterial cells using high-speed atomic force microscopy. Nature Nanotechnology, 5, 280–285.ADSCrossRef
go back to reference Faulkner, M., Zhao, L.-S., Barrett, S., & Liu, L.-N. (2019). Self-assembly stability and variability of bacterial microcompartment shell proteins in response to the environmental change. Nanoscale Research Letters, 14, 54. Faulkner, M., Zhao, L.-S., Barrett, S., & Liu, L.-N. (2019). Self-assembly stability and variability of bacterial microcompartment shell proteins in response to the environmental change. Nanoscale Research Letters, 14, 54.
go back to reference Feng, L., Watanabe, H., Molino, P., Wallace, G. G., Phung, S. L., Uchihashi, T., & Higgins, M. J. (2019). Dynamics of inter-molecular interactions between single Aβ42 oligomeric and aggregate species by high-speed atomic force microscopy. Journal of Molecular Biology, 431, 2687–2699.CrossRef Feng, L., Watanabe, H., Molino, P., Wallace, G. G., Phung, S. L., Uchihashi, T., & Higgins, M. J. (2019). Dynamics of inter-molecular interactions between single Aβ42 oligomeric and aggregate species by high-speed atomic force microscopy. Journal of Molecular Biology, 431, 2687–2699.CrossRef
go back to reference Fisher, P. D. E., Shen, Q., Akpinar, B., Davis, L. K., Chung, K. K. H., Baddeley, D., Šarić, A., Melia, T. J., Hoogenboom, B. W., Lin, C., & Lusk, C. P. (2018). Programmable DNA origami platform for organizing intrinsically disordered nucleoporins within nanopore confinement. ACS Nano, 12, 1508–1518.CrossRef Fisher, P. D. E., Shen, Q., Akpinar, B., Davis, L. K., Chung, K. K. H., Baddeley, D., Šarić, A., Melia, T. J., Hoogenboom, B. W., Lin, C., & Lusk, C. P. (2018). Programmable DNA origami platform for organizing intrinsically disordered nucleoporins within nanopore confinement. ACS Nano, 12, 1508–1518.CrossRef
go back to reference Fujioka, Y., Md. Alam, J., Noshiro, D., Mouri, K., Ando, T., Okada, Y., May, A. I., Knorr, R. L., Suzuki, K., Ohsumi, Y., & Noda, N. N. (2020). Phase separation organizes the site of autophagosome formation. Nature, 678, 301–305. Fujioka, Y., Md. Alam, J., Noshiro, D., Mouri, K., Ando, T., Okada, Y., May, A. I., Knorr, R. L., Suzuki, K., Ohsumi, Y., & Noda, N. N. (2020). Phase separation organizes the site of autophagosome formation. Nature, 678, 301–305.
go back to reference Fujita, K., Ohmachi, M., Ikezaki, K., Yanagida, T., & Iwaki, M. (2019). Direct visualization of human myosin II force generation using DNA origami-based thick filaments. Communications Biology, 2, 437.CrossRef Fujita, K., Ohmachi, M., Ikezaki, K., Yanagida, T., & Iwaki, M. (2019). Direct visualization of human myosin II force generation using DNA origami-based thick filaments. Communications Biology, 2, 437.CrossRef
go back to reference Fukuda, N., Noi, K., Weng, L., Kobashigawa, Y., Miyazaki, H., Wakeyama, Y., Takaki, M., Nakahara, Y., Tatsuno, Y., Uchida-Kamekura, M., Suwa, Y., Sato, T., Ichikawa-Tomikawa, N., Nomizu, M., Fujiwara, Y., Ohsaka, F., Saito, T., Maenaka, K., Kumeta, H., … Morioka, H. (2017). Production of single-chain FV antibodies specific for ga-pyridine, an advanced glycation end-product (AGE), with reduced inter-domain motion. Molecules, 22, 1695.CrossRef Fukuda, N., Noi, K., Weng, L., Kobashigawa, Y., Miyazaki, H., Wakeyama, Y., Takaki, M., Nakahara, Y., Tatsuno, Y., Uchida-Kamekura, M., Suwa, Y., Sato, T., Ichikawa-Tomikawa, N., Nomizu, M., Fujiwara, Y., Ohsaka, F., Saito, T., Maenaka, K., Kumeta, H., … Morioka, H. (2017). Production of single-chain FV antibodies specific for ga-pyridine, an advanced glycation end-product (AGE), with reduced inter-domain motion. Molecules, 22, 1695.CrossRef
go back to reference Ganser, C., & Uchihashi, T. (2019). Microtubule self-healing and defect creation investigated by in-line force measurements during high-speed atomic force microscopy imaging. Nanoscale, 11, 125–135.CrossRef Ganser, C., & Uchihashi, T. (2019). Microtubule self-healing and defect creation investigated by in-line force measurements during high-speed atomic force microscopy imaging. Nanoscale, 11, 125–135.CrossRef
go back to reference Gilmore, J. L., Suzuki, Y., Tamulaitis, G., Siksnys, V., Takeyasu, K., & Lyubchenko, Y. L. (2009). Single-molecule dynamics of the DNA-EcoRII protein complexes revealed with high-speed atomic force microscopy. Biochemistry, 48, 10492–10498.CrossRef Gilmore, J. L., Suzuki, Y., Tamulaitis, G., Siksnys, V., Takeyasu, K., & Lyubchenko, Y. L. (2009). Single-molecule dynamics of the DNA-EcoRII protein complexes revealed with high-speed atomic force microscopy. Biochemistry, 48, 10492–10498.CrossRef
go back to reference Godonoga, M., Lin, T.-Y., Oshima, A., Sumitomo, K., Tang, M. S. L., Cheung, Y.-W., Kinghorn, A. B., Dirkzwager, R. M., Zhou, C., Kuzuya, A., Tanner, J. A., & Heddle, J. G. (2016). A DNA aptamer recognising a malaria protein biomarker can function as part of a DNA origami assembly. Science and Reports, 6, 21266.ADSCrossRef Godonoga, M., Lin, T.-Y., Oshima, A., Sumitomo, K., Tang, M. S. L., Cheung, Y.-W., Kinghorn, A. B., Dirkzwager, R. M., Zhou, C., Kuzuya, A., Tanner, J. A., & Heddle, J. G. (2016). A DNA aptamer recognising a malaria protein biomarker can function as part of a DNA origami assembly. Science and Reports, 6, 21266.ADSCrossRef
go back to reference Harada, H., Onoda, A., Uchihashi, T., Watanabe, H., Sunagawa, N., Samejima, M., Igarashi, K., & Hayashi, T. (2017). Interdomain flip-flop motion visualized in flavocytochrome cellobiose dehydrogenase using high-speed atomic force microscopy during catalysis. Chemical Science, 8, 6561–6565.CrossRef Harada, H., Onoda, A., Uchihashi, T., Watanabe, H., Sunagawa, N., Samejima, M., Igarashi, K., & Hayashi, T. (2017). Interdomain flip-flop motion visualized in flavocytochrome cellobiose dehydrogenase using high-speed atomic force microscopy during catalysis. Chemical Science, 8, 6561–6565.CrossRef
go back to reference Haruyama, T., Uchihashi, T., Yamada, Y., Kodera, N., Ando, T., & Konno, H. (2018). Negatively charged lipids are essential for functional and structural switch of human 2-Cys peroxiredoxin II. Journal of Molecular Biology, 430, 602–610.CrossRef Haruyama, T., Uchihashi, T., Yamada, Y., Kodera, N., Ando, T., & Konno, H. (2018). Negatively charged lipids are essential for functional and structural switch of human 2-Cys peroxiredoxin II. Journal of Molecular Biology, 430, 602–610.CrossRef
go back to reference Heath, G. R., Roth, J., Connell, S. D., & Evans, S. D. (2014). Diffusion in low-dimensional lipid membranes. Nano Letters, 14, 5984–5988.ADSCrossRef Heath, G. R., Roth, J., Connell, S. D., & Evans, S. D. (2014). Diffusion in low-dimensional lipid membranes. Nano Letters, 14, 5984–5988.ADSCrossRef
go back to reference Heath, G. R., & Scheuring, S. (2018). High-speed AFM height spectroscopy reveals µs-dynamics of unlabeled biomolecules. Nature Communications, 9, 4983.ADSCrossRef Heath, G. R., & Scheuring, S. (2018). High-speed AFM height spectroscopy reveals µs-dynamics of unlabeled biomolecules. Nature Communications, 9, 4983.ADSCrossRef
go back to reference Heath, G. R., Kots, E., Robertson, J. L., Lansky, S., Khelashvili, G., Weinstein, H., & Scheuring, S. (2021). Nature, 594, 385–390.ADSCrossRef Heath, G. R., Kots, E., Robertson, J. L., Lansky, S., Khelashvili, G., Weinstein, H., & Scheuring, S. (2021). Nature, 594, 385–390.ADSCrossRef
go back to reference Hobbs, J. K., Vasilev, C., & Humphris, A. D. L. (2005). Real time observation of crystallization in polyethylene oxide with video rate atomic force microscopy. Polymer, 46, 10226–10236.CrossRef Hobbs, J. K., Vasilev, C., & Humphris, A. D. L. (2005). Real time observation of crystallization in polyethylene oxide with video rate atomic force microscopy. Polymer, 46, 10226–10236.CrossRef
go back to reference Igarashi, K., Uchihashi, T., Koivula, A., Wada, M., Kimura, S., Okamoto, T., Penttilä, M., Ando, T., & Samejima, M. (2011). Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science, 333, 1279–1282.ADSCrossRef Igarashi, K., Uchihashi, T., Koivula, A., Wada, M., Kimura, S., Okamoto, T., Penttilä, M., Ando, T., & Samejima, M. (2011). Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science, 333, 1279–1282.ADSCrossRef
go back to reference Igarashi, K., Uchihashi, T., Uchiyama, T., Sugimoto, H., Wada, M., Suzuki, K., Sakuda, S., Ando, T., Watanabe, T., & Samejima, M. (2014). Two-way traffic of glycoside hydrolase family 18 processive chitinases on crystalline chitin. Nature Communications, 5(1). https://doi.org/10.1038/ncomms4975 Igarashi, K., Uchihashi, T., Uchiyama, T., Sugimoto, H., Wada, M., Suzuki, K., Sakuda, S., Ando, T., Watanabe, T., & Samejima, M. (2014). Two-way traffic of glycoside hydrolase family 18 processive chitinases on crystalline chitin. Nature Communications, 5(1). https://​doi.​org/​10.​1038/​ncomms4975
go back to reference Inoue, S., Uchihashi, T., Yamamoto, D., & Ando, T. (2011). Direct observation of surfactant aggregate behavior on a mica surface using high-speed atomic force microscopy. Chemical Communications, 47, 4974–4976.CrossRef Inoue, S., Uchihashi, T., Yamamoto, D., & Ando, T. (2011). Direct observation of surfactant aggregate behavior on a mica surface using high-speed atomic force microscopy. Chemical Communications, 47, 4974–4976.CrossRef
go back to reference Ishino, S., Yamagami, T., Kitamura, M., Kodera, N., Mori, T., Sugiyama, S., Ando, T., Goda, N., Tenno, T., Hiroaki, H., & Ishino, Y. (2014). Multiple interactions of the intrinsically disordered region between the helicase and nuclease domains of the archaeal Hef protein. Journal of Biological Chemistry, 289, 21627–21639.CrossRef Ishino, S., Yamagami, T., Kitamura, M., Kodera, N., Mori, T., Sugiyama, S., Ando, T., Goda, N., Tenno, T., Hiroaki, H., & Ishino, Y. (2014). Multiple interactions of the intrinsically disordered region between the helicase and nuclease domains of the archaeal Hef protein. Journal of Biological Chemistry, 289, 21627–21639.CrossRef
go back to reference Jiang, Z., Zhang, S., Yang, C., Kjems, J., Huang, Y., Besenbacher, F., & Dong, M. (2015). Serum-induced degradation of 3D DNA box origami observed with high-speed atomic force microscopy. Nano Research, 8, 2170–2178.CrossRef Jiang, Z., Zhang, S., Yang, C., Kjems, J., Huang, Y., Besenbacher, F., & Dong, M. (2015). Serum-induced degradation of 3D DNA box origami observed with high-speed atomic force microscopy. Nano Research, 8, 2170–2178.CrossRef
go back to reference Kakinen, A., Xing, Y., Hegoda, A. N., Javed, I., Feng, L., Faridi, A., Douek, A. M., Sun, Y., Kaslin, J., Davis, T. P., Higgins, M. J., Ding, F., & Ke, P. C. (2019). Single-molecular heteroamyloidosis of human islet amyloid polypeptide. Nano Letters, 19, 6535–6546.ADSCrossRef Kakinen, A., Xing, Y., Hegoda, A. N., Javed, I., Feng, L., Faridi, A., Douek, A. M., Sun, Y., Kaslin, J., Davis, T. P., Higgins, M. J., Ding, F., & Ke, P. C. (2019). Single-molecular heteroamyloidosis of human islet amyloid polypeptide. Nano Letters, 19, 6535–6546.ADSCrossRef
go back to reference Katan, A.J., Vlijm, R., Lusser, A., & Dekker, C. (2015). Dynamics of nucleosomal structures measured by high-speed atomic force microscopy. Small, 976–984. Katan, A.J., Vlijm, R., Lusser, A., & Dekker, C. (2015). Dynamics of nucleosomal structures measured by high-speed atomic force microscopy. Small, 976–984.
go back to reference Kielar, C., Ramakrishnan, S., Fricke, S., Grundmeier, G., & Keller, A. (2018). Dynamics of DNA origami lattice formation at solid-liquid interfaces. ACS Applied Materials and Interfaces, 10, 44844–44853.CrossRef Kielar, C., Ramakrishnan, S., Fricke, S., Grundmeier, G., & Keller, A. (2018). Dynamics of DNA origami lattice formation at solid-liquid interfaces. ACS Applied Materials and Interfaces, 10, 44844–44853.CrossRef
go back to reference Kikuchi, Y., Obana, N., Toyofuku, M., Kodera, N., Soma, T., Ando, T., Fukumori, Y., Nomura, N., & Taoka, A. (2020). Diversity of physical properties of bacterial extracellular membrane vesicles revealed through atomic force microscopy phase imaging. Nanoscale, 12, 7950–7959.CrossRef Kikuchi, Y., Obana, N., Toyofuku, M., Kodera, N., Soma, T., Ando, T., Fukumori, Y., Nomura, N., & Taoka, A. (2020). Diversity of physical properties of bacterial extracellular membrane vesicles revealed through atomic force microscopy phase imaging. Nanoscale, 12, 7950–7959.CrossRef
go back to reference Kobayashi, Y., Misumi, O., Odahara, M., Ishibashi, K., Hirono, M., Hidaka, K., Endo, M., Sugiyama, H., Iwasaki, H., Kuroiwa, T., Shikanai, T., & Nishimura, Y. (2017). Holliday junction resolvases mediate chloroplast nucleoid segregation. Science, 356, 631–634.ADSCrossRef Kobayashi, Y., Misumi, O., Odahara, M., Ishibashi, K., Hirono, M., Hidaka, K., Endo, M., Sugiyama, H., Iwasaki, H., Kuroiwa, T., Shikanai, T., & Nishimura, Y. (2017). Holliday junction resolvases mediate chloroplast nucleoid segregation. Science, 356, 631–634.ADSCrossRef
go back to reference Kodera, N., Yamamoto, D., Ishikawa, R., & Ando, T. (2010). Video imaging of walking myosin V by high-speed atomic force microscopy. Nature, 468, 72–76.ADSCrossRef Kodera, N., Yamamoto, D., Ishikawa, R., & Ando, T. (2010). Video imaging of walking myosin V by high-speed atomic force microscopy. Nature, 468, 72–76.ADSCrossRef
go back to reference Kodera, N., Uchida, K., Ando, T., & Aizawa, S.-I. (2015). Two-ball structure of the flagellar hook-length control protein flik as revealed by high-speed atomic force microscopy. Journal of Molecular Biology, 427, 406414. Kodera, N., Uchida, K., Ando, T., & Aizawa, S.-I. (2015). Two-ball structure of the flagellar hook-length control protein flik as revealed by high-speed atomic force microscopy. Journal of Molecular Biology, 427, 406414.
go back to reference Kodera, N., Noshiro, D., Dora, S. K., Mori, T., Habchi, J., Blocquel, D., Gruet, A., Dosnon, M., Salladini, E., Bignon, C., Fujioka, Y., Oda, T., Noda, N. N., Sato, M., Lotti, M., Mizuguchi, M., Longhi, S., & Ando, T. (2021). Structural and dynamics analysis of intrinsically disordered proteins by high-speed atomic force microscopy. Nature Nanotechnology, 16, 181–189.ADSCrossRef Kodera, N., Noshiro, D., Dora, S. K., Mori, T., Habchi, J., Blocquel, D., Gruet, A., Dosnon, M., Salladini, E., Bignon, C., Fujioka, Y., Oda, T., Noda, N. N., Sato, M., Lotti, M., Mizuguchi, M., Longhi, S., & Ando, T. (2021). Structural and dynamics analysis of intrinsically disordered proteins by high-speed atomic force microscopy. Nature Nanotechnology, 16, 181–189.ADSCrossRef
go back to reference Konno, H., Watanabe-Nakayama, T., Uchihashi, T., Okuda, M., Zhu, L., Kodera, N., Kikuchi, Y., Ando, T., & Taguchi, H. (2020). Dynamics of oligomer and amyloid fibril formation by yeast prion Sup35 observed by high-speed atomic force microscopy. In Proceedings of the National Academy (Vol. 117, pp. 7831–7836). USA. Konno, H., Watanabe-Nakayama, T., Uchihashi, T., Okuda, M., Zhu, L., Kodera, N., Kikuchi, Y., Ando, T., & Taguchi, H. (2020). Dynamics of oligomer and amyloid fibril formation by yeast prion Sup35 observed by high-speed atomic force microscopy. In Proceedings of the National Academy (Vol. 117, pp. 7831–7836). USA.
go back to reference Kozai, T., Sekiguchi, T., Satoh, T., Yagi, H., Kato, K., & Uchihashi, T. (2017). Two-step process for disassembly mechanism of proteasome α7 homo-tetradecamer by α6 revealed by high-speed atomic force microscopy. Science and Reports, 7, 15373.ADSCrossRef Kozai, T., Sekiguchi, T., Satoh, T., Yagi, H., Kato, K., & Uchihashi, T. (2017). Two-step process for disassembly mechanism of proteasome α7 homo-tetradecamer by α6 revealed by high-speed atomic force microscopy. Science and Reports, 7, 15373.ADSCrossRef
go back to reference Lee, A. J., Szymonik, M., Hobbs, J. K., & Wälti, C. (2015). Tuning the translational freedom of DNA for high speed AFM. Nano Research, 8, 1811–1821.CrossRef Lee, A. J., Szymonik, M., Hobbs, J. K., & Wälti, C. (2015). Tuning the translational freedom of DNA for high speed AFM. Nano Research, 8, 1811–1821.CrossRef
go back to reference Lee, A. J., Endo, M., Hobbs, J. K., & Wälti, C. (2018). Direct single-molecule observation of mode and geometry of RecA-mediated homology search. ACS Nano, 12, 272–278.CrossRef Lee, A. J., Endo, M., Hobbs, J. K., & Wälti, C. (2018). Direct single-molecule observation of mode and geometry of RecA-mediated homology search. ACS Nano, 12, 272–278.CrossRef
go back to reference Leung, C., Dudkina, N. V., Lukoyanova, N., Hodel, A. W., Farabella, I., Pandurangan, A. P., Jahan, N., Damaso, M. P., Osmanović, D., Reboul, C. F., Dunstone, M. A., Andrew, P. W., Lonnen, R., Topf, M., Saibil, H. R., & Hoogenboom, B. W. (2014). Stepwise visualization of membrane pore formation by suilysin, a bacterial cholesterol-dependent cytolysin. eLife, 3, e04247. Leung, C., Dudkina, N. V., Lukoyanova, N., Hodel, A. W., Farabella, I., Pandurangan, A. P., Jahan, N., Damaso, M. P., Osmanović, D., Reboul, C. F., Dunstone, M. A., Andrew, P. W., Lonnen, R., Topf, M., Saibil, H. R., & Hoogenboom, B. W. (2014). Stepwise visualization of membrane pore formation by suilysin, a bacterial cholesterol-dependent cytolysin. eLife, 3, e04247.
go back to reference Leung, C., Hodel, A. W., Brennan, A. J., Lukoyanova, N., Tran, S., House, C. M., Kondos, S. C., Whisstock, J. C., Dunstone, M. A., Trapani, J. A., Voskoboinik, I., Saibil, H. R., & Hoogenboom, B. R. (2016). Real-time visualization of perforin nanopore assembly. Nature Nanotechnology, 12, 467–473.ADSCrossRef Leung, C., Hodel, A. W., Brennan, A. J., Lukoyanova, N., Tran, S., House, C. M., Kondos, S. C., Whisstock, J. C., Dunstone, M. A., Trapani, J. A., Voskoboinik, I., Saibil, H. R., & Hoogenboom, B. R. (2016). Real-time visualization of perforin nanopore assembly. Nature Nanotechnology, 12, 467–473.ADSCrossRef
go back to reference Liao, H.-S., Yang, C.-W., Ko, H.-C., Hwu, E. T., & Hwang, I.-S. (2018). Imaging initial formation processes of nanobubbles at the graphite–water interface through high-speed atomic force microscopy. Applied Surface Science, 434, 913–917.ADSCrossRef Liao, H.-S., Yang, C.-W., Ko, H.-C., Hwu, E. T., & Hwang, I.-S. (2018). Imaging initial formation processes of nanobubbles at the graphite–water interface through high-speed atomic force microscopy. Applied Surface Science, 434, 913–917.ADSCrossRef
go back to reference Lim, K. S., Mohamed, M. S., Wang, H., Hartono, Hazawa, M., Kobayashi, A., Voon, D. C.-C., Kodera, N., Ando, T., & Wong, R. W. (2020). Direct visualization of avian influenza H5N1 Hemagglutinin precursor and its conformational change by high-speed atomic force microscopy. BBA—General Subjects, 1864, 129313. Lim, K. S., Mohamed, M. S., Wang, H., Hartono, Hazawa, M., Kobayashi, A., Voon, D. C.-C., Kodera, N., Ando, T., & Wong, R. W. (2020). Direct visualization of avian influenza H5N1 Hemagglutinin precursor and its conformational change by high-speed atomic force microscopy. BBA—General Subjects, 1864, 129313.
go back to reference Lin, Y.-C., Guo, Y. R., Miyagi, A., Levring, J., MacKinnon, R., & Scheuring, S. (2019). Force-induced conformational changes in PIEZO1. Nature, 573, 230–234.ADSCrossRef Lin, Y.-C., Guo, Y. R., Miyagi, A., Levring, J., MacKinnon, R., & Scheuring, S. (2019). Force-induced conformational changes in PIEZO1. Nature, 573, 230–234.ADSCrossRef
go back to reference Lin, Y.-C., Chipot, C., & Scheuring, S. (2020). Annexin-V stabilizes membrane defects by inducing lipid phase transition. Nature Communications, 11, 230.ADSCrossRef Lin, Y.-C., Chipot, C., & Scheuring, S. (2020). Annexin-V stabilizes membrane defects by inducing lipid phase transition. Nature Communications, 11, 230.ADSCrossRef
go back to reference Maegawa, K.-I., Watanabe, S., Noi, K., Okumura, M., Amagai, Y., Inoue, M., Ushioda, R., Nagata, K., Ogura, T., & Inaba, K. (2017). The highly dynamic nature of ERdj5 is key to efficient elimination of aberrant Protein oligomers through ER-associated degradation. Structure, 25, 846–857.CrossRef Maegawa, K.-I., Watanabe, S., Noi, K., Okumura, M., Amagai, Y., Inoue, M., Ushioda, R., Nagata, K., Ogura, T., & Inaba, K. (2017). The highly dynamic nature of ERdj5 is key to efficient elimination of aberrant Protein oligomers through ER-associated degradation. Structure, 25, 846–857.CrossRef
go back to reference Maity, S., Caillat, C., Miguet, N., Sulbaran, G., Effantin, G., Schoehn, G., Roos, W. H., & Weissenhorn, W. (2019). VPS4 triggers constriction and cleavage of ESCRT-III helical filaments. Science Advances, 5, eaau7198. Maity, S., Caillat, C., Miguet, N., Sulbaran, G., Effantin, G., Schoehn, G., Roos, W. H., & Weissenhorn, W. (2019). VPS4 triggers constriction and cleavage of ESCRT-III helical filaments. Science Advances, 5, eaau7198.
go back to reference Marchesi, A., Gao, X., Adaixo, R., Rheinberger, J., Stahlberg, H., Nimigean, C., & Scheuring, S. (2018). An iris diaphragm mechanism to gate a cyclic nucleotide-gated ion channel. Nature Communications, 9, 3978.ADSCrossRef Marchesi, A., Gao, X., Adaixo, R., Rheinberger, J., Stahlberg, H., Nimigean, C., & Scheuring, S. (2018). An iris diaphragm mechanism to gate a cyclic nucleotide-gated ion channel. Nature Communications, 9, 3978.ADSCrossRef
go back to reference Maruyama, S., Suzuki, K., Imamura, M., Sasaki, H., Matsunami, H., Mizutani, K., Saito, Y., Imai, F. L., Ishizuka-Katsura, Y., Kimura-Someya, T., Shirouzu, M., Uchihashi, T., Ando, T., Yamato, I., & Murata, T. (2019). Metastable asymmetrical structure of a shaftless V1 motor. Science Advances, 5, eaau8149. Maruyama, S., Suzuki, K., Imamura, M., Sasaki, H., Matsunami, H., Mizutani, K., Saito, Y., Imai, F. L., Ishizuka-Katsura, Y., Kimura-Someya, T., Shirouzu, M., Uchihashi, T., Ando, T., Yamato, I., & Murata, T. (2019). Metastable asymmetrical structure of a shaftless V1 motor. Science Advances, 5, eaau8149.
go back to reference Matsuda, K., Sugawa, M., Yamagishi, M., Kodera, N., & Yajima, J. (2020). Visualizing dynamic actin cross-linking processes driven by the actin-binding protein anillin. FEBS Letters, 594, 1237–1247.CrossRef Matsuda, K., Sugawa, M., Yamagishi, M., Kodera, N., & Yajima, J. (2020). Visualizing dynamic actin cross-linking processes driven by the actin-binding protein anillin. FEBS Letters, 594, 1237–1247.CrossRef
go back to reference Matsumoto, R., Uemura, T., Xu, Z., Yamaguchi, I., Ikoma, T., & Tanaka, J. (2015). Rapid oriented fibril formation of fish scale collagen facilitates early osteoblastic differentiation of human mesenchymal stem cells. Journal of Biomedical Materials Research—Part A, 103, 2531–2539.CrossRef Matsumoto, R., Uemura, T., Xu, Z., Yamaguchi, I., Ikoma, T., & Tanaka, J. (2015). Rapid oriented fibril formation of fish scale collagen facilitates early osteoblastic differentiation of human mesenchymal stem cells. Journal of Biomedical Materials Research—Part A, 103, 2531–2539.CrossRef
go back to reference Matusovsky, O. S., Mansson, A., Persson, M., Cheng, Y.-S., & Rassier, D. E. (2019). High-speed AFM reveals subsecond dynamics of cardiac thin filaments upon Ca2+ activation and heavy meromyosin binding. In Proceedings of the National Academy Sciences (Vol. 116, pp. 16384–16393). USA. Matusovsky, O. S., Mansson, A., Persson, M., Cheng, Y.-S., & Rassier, D. E. (2019). High-speed AFM reveals subsecond dynamics of cardiac thin filaments upon Ca2+ activation and heavy meromyosin binding. In Proceedings of the National Academy Sciences (Vol. 116, pp. 16384–16393). USA.
go back to reference Mierzwa, B. E., Chiaruttini, N., Redondo-Morata, L., Moser Von Filseck, J., König, J., Larios, J., Poser, I., Müller-Reichert, T., Scheuring, S., Roux, A., & Gerlich, D. W. (2017). Dynamic subunit turnover in ESCRT-III assemblies is regulated by Vps4 to mediate membrane remodelling during cytokinesis. Nature Cell Biology, 19, 787–798.CrossRef Mierzwa, B. E., Chiaruttini, N., Redondo-Morata, L., Moser Von Filseck, J., König, J., Larios, J., Poser, I., Müller-Reichert, T., Scheuring, S., Roux, A., & Gerlich, D. W. (2017). Dynamic subunit turnover in ESCRT-III assemblies is regulated by Vps4 to mediate membrane remodelling during cytokinesis. Nature Cell Biology, 19, 787–798.CrossRef
go back to reference Mikheikin, A., Olsen, A., Leslie, K., Russell-Pavier, F., Yacoot, A., Picco, L., Payton, O., Toor, A., Chesney, A., Gimzewski, J. K., Mishra, B., & Reed, J. (2017). DNA nanomapping using CRISPR-Cas9 as a programmable nanoparticle. Nature Communications, 8, 1665.ADSCrossRef Mikheikin, A., Olsen, A., Leslie, K., Russell-Pavier, F., Yacoot, A., Picco, L., Payton, O., Toor, A., Chesney, A., Gimzewski, J. K., Mishra, B., & Reed, J. (2017). DNA nanomapping using CRISPR-Cas9 as a programmable nanoparticle. Nature Communications, 8, 1665.ADSCrossRef
go back to reference Milhiet, P. E., Yamamoto, D., Berthoumieu, O., Dosset, P., Le Grimellec, C., Verdier, J. M., Marchal, S., & Ando, T. (2010). Deciphering the structure, growth and assembly of amyloid-like fibrils using high-speed atomic force microscopy. PLOS One, 5, e13240. Milhiet, P. E., Yamamoto, D., Berthoumieu, O., Dosset, P., Le Grimellec, C., Verdier, J. M., Marchal, S., & Ando, T. (2010). Deciphering the structure, growth and assembly of amyloid-like fibrils using high-speed atomic force microscopy. PLOS One, 5, e13240.
go back to reference Miyagi, A., Tsunaka, Y., Uchihashi, T., Mayanagi, K., Hirose, S., Morikawa, K., & Ando, T. (2008). Visualization of intrinsically disordered regions of proteins by high-speed atomic force microscopy. ChemPhysChem, 9, 1859–1866.CrossRef Miyagi, A., Tsunaka, Y., Uchihashi, T., Mayanagi, K., Hirose, S., Morikawa, K., & Ando, T. (2008). Visualization of intrinsically disordered regions of proteins by high-speed atomic force microscopy. ChemPhysChem, 9, 1859–1866.CrossRef
go back to reference Miyagi, A., Chipot, C., Rangl, M., & Scheuring, S. (2016). High-speed atomic force microscopy shows that annexin V stabilizes membranes on the second timescale. Nature Nanotechnology, 11, 783–790.ADSCrossRef Miyagi, A., Chipot, C., Rangl, M., & Scheuring, S. (2016). High-speed atomic force microscopy shows that annexin V stabilizes membranes on the second timescale. Nature Nanotechnology, 11, 783–790.ADSCrossRef
go back to reference Miyagi, A., Ramm, B., Schwille, P., & Scheuring, S. (2018). High-speed atomic force microscopy reveals the inner workings of the MinDE protein oscillator. Nano Letters, 18, 288–296.ADSCrossRef Miyagi, A., Ramm, B., Schwille, P., & Scheuring, S. (2018). High-speed atomic force microscopy reveals the inner workings of the MinDE protein oscillator. Nano Letters, 18, 288–296.ADSCrossRef
go back to reference Mohamed, M. S., Kobayashi, A., Taoka, A., Watanabe-Nakayama, T., Kikuchi, Y., Hazawa, M., Minamoto, T., Fukumori, Y., Kodera, N., Uchihashi, T., Ando, T., & Wong, R. W. (2017). High-speed atomic force microscopy reveals loss of nuclear pore resilience as a dying code in colorectal cancer cells. ACS Nano, 11, 5567–5578.CrossRef Mohamed, M. S., Kobayashi, A., Taoka, A., Watanabe-Nakayama, T., Kikuchi, Y., Hazawa, M., Minamoto, T., Fukumori, Y., Kodera, N., Uchihashi, T., Ando, T., & Wong, R. W. (2017). High-speed atomic force microscopy reveals loss of nuclear pore resilience as a dying code in colorectal cancer cells. ACS Nano, 11, 5567–5578.CrossRef
go back to reference Moore, S., Burrows, R., Picco, L., Martin, T. L., Greenwell, S. J., Scott, T. B., & Payton, O. D. (2018). A study of dynamic nanoscale corrosion initiation events using HS-AFM. Faraday Discussions, 210, 409–428.ADSCrossRef Moore, S., Burrows, R., Picco, L., Martin, T. L., Greenwell, S. J., Scott, T. B., & Payton, O. D. (2018). A study of dynamic nanoscale corrosion initiation events using HS-AFM. Faraday Discussions, 210, 409–428.ADSCrossRef
go back to reference Mori, T., Hirose, A., Hagiwara, T., Ohtsuka, M., Kakuta, Y., Kimata, K., & Okahata, Y. (2012). Single-molecular enzymatic elongation of hyaluronan polymers visualized by high-speed atomic force microscopy. Journal of the American Chemical Society, 134, 20254–20257.CrossRef Mori, T., Hirose, A., Hagiwara, T., Ohtsuka, M., Kakuta, Y., Kimata, K., & Okahata, Y. (2012). Single-molecular enzymatic elongation of hyaluronan polymers visualized by high-speed atomic force microscopy. Journal of the American Chemical Society, 134, 20254–20257.CrossRef
go back to reference Mori, T., Sugiyama, S., Byrne, M., Johnson, C. H., Uchihashi, T., & Ando, T. (2018). Revealing circadian mechanisms of integration and resilience by visualizing clock proteins working in real time. Nature Communications, 9, 3245.ADSCrossRef Mori, T., Sugiyama, S., Byrne, M., Johnson, C. H., Uchihashi, T., & Ando, T. (2018). Revealing circadian mechanisms of integration and resilience by visualizing clock proteins working in real time. Nature Communications, 9, 3245.ADSCrossRef
go back to reference Munguira, I., Casuso, I., Takahashi, H., Rico, F., Miyagi, A., Chami, M., & Scheuring, S. (2016). Glasslike membrane protein diffusion in a crowded membrane. ACS Nano, 10, 2584–2590.CrossRef Munguira, I., Casuso, I., Takahashi, H., Rico, F., Miyagi, A., Chami, M., & Scheuring, S. (2016). Glasslike membrane protein diffusion in a crowded membrane. ACS Nano, 10, 2584–2590.CrossRef
go back to reference Nakajima, D., Kikuchi, T., Yoshioka, T., Matsushima, H., Ueda, M., Suzuki, R. O., & Natsui, S. (2019). A superhydrophilic aluminum surface with fast water evaporation based on anodic alumina bundle structures via anodizing in pyrophosphoric acid. Materials, 12, 3497.ADSCrossRef Nakajima, D., Kikuchi, T., Yoshioka, T., Matsushima, H., Ueda, M., Suzuki, R. O., & Natsui, S. (2019). A superhydrophilic aluminum surface with fast water evaporation based on anodic alumina bundle structures via anodizing in pyrophosphoric acid. Materials, 12, 3497.ADSCrossRef
go back to reference Nakamura, A., Watanabe, H., Ishida, T., Uchihashi, T., Wada, M., Ando, T., Igarashi, K., & Samejima, M. (2014). Trade-off between processivity and hydrolytic velocity of cellobiohydrolases at the surface of crystalline cellulose. Journal of the American Chemical Society, 136, 4584–4592.CrossRef Nakamura, A., Watanabe, H., Ishida, T., Uchihashi, T., Wada, M., Ando, T., Igarashi, K., & Samejima, M. (2014). Trade-off between processivity and hydrolytic velocity of cellobiohydrolases at the surface of crystalline cellulose. Journal of the American Chemical Society, 136, 4584–4592.CrossRef
go back to reference Nakamura, A., Tasaki, T., Okuni, Y., Song, C., Murata, K., Kozai, T., Hara, M., Sugimoto, H., Suzuki, K., Watanabe, T., Uchihashi, T., Noji, H., & Iino, R. (2018). Rate constants, processivity, and productive binding ratio of chitinase a revealed by single-molecule analysis. Physical Chemistry Chemical Physics: PCCP, 20, 3010–3018.ADSCrossRef Nakamura, A., Tasaki, T., Okuni, Y., Song, C., Murata, K., Kozai, T., Hara, M., Sugimoto, H., Suzuki, K., Watanabe, T., Uchihashi, T., Noji, H., & Iino, R. (2018). Rate constants, processivity, and productive binding ratio of chitinase a revealed by single-molecule analysis. Physical Chemistry Chemical Physics: PCCP, 20, 3010–3018.ADSCrossRef
go back to reference Ngo, K. X., Kodera, N., Katayama, E., Ando, T., & Uyeda, T. Q. P. (2015). Cofilin-induced unidirectional cooperative conformational changes in actin filaments revealed by high-speed AFM. e-Life, 4, e04806. Ngo, K. X., Kodera, N., Katayama, E., Ando, T., & Uyeda, T. Q. P. (2015). Cofilin-induced unidirectional cooperative conformational changes in actin filaments revealed by high-speed AFM. e-Life, 4, e04806.
go back to reference Ni, T., Jiao, F., Yu, X., Aden, S., Ginger, L., Williams, S. I., Bai, F., Pražák, V., Karia, D., Stansfeld, P., Zhang, P., Munson, G., Anderluh, G., Scheuring, S., & Gilbert, R. J. C. (2020). Structure and mechanism of bactericidal mammalian perforin-2, an ancient agent of innate immunity. Science Advances, 6, eaax8286. Ni, T., Jiao, F., Yu, X., Aden, S., Ginger, L., Williams, S. I., Bai, F., Pražák, V., Karia, D., Stansfeld, P., Zhang, P., Munson, G., Anderluh, G., Scheuring, S., & Gilbert, R. J. C. (2020). Structure and mechanism of bactericidal mammalian perforin-2, an ancient agent of innate immunity. Science Advances, 6, eaax8286.
go back to reference Nievergelt, A. P., Banterle, N., Andany, S. H., Gönczy, P., & Fantner, G. E. (2018). High-speed photothermal off-resonance atomic force microscopy reveals assembly routes of centriolar scaffold protein SAS-6. Nature Nanotechnology, 13, 696–701.ADSCrossRef Nievergelt, A. P., Banterle, N., Andany, S. H., Gönczy, P., & Fantner, G. E. (2018). High-speed photothermal off-resonance atomic force microscopy reveals assembly routes of centriolar scaffold protein SAS-6. Nature Nanotechnology, 13, 696–701.ADSCrossRef
go back to reference Noi, K., Yamamoto, D., Nishikori, S., Arita-Morioka, K., Ando, T., & Ogura, T. (2013). High-speed atomic force microscopic observation of ATP-dependent rotation of the AAA+ chaperone p97. Structure, 21, 1992–2002.CrossRef Noi, K., Yamamoto, D., Nishikori, S., Arita-Morioka, K., Ando, T., & Ogura, T. (2013). High-speed atomic force microscopic observation of ATP-dependent rotation of the AAA+ chaperone p97. Structure, 21, 1992–2002.CrossRef
go back to reference Noshiro, D., & Ando, T. (2018). Substrate protein dependence of GroEL-GroES interaction cycle revealed by high-speed AFM imaging. Philosophical Transactions of the Royal Society B, 373, 20170180.CrossRef Noshiro, D., & Ando, T. (2018). Substrate protein dependence of GroEL-GroES interaction cycle revealed by high-speed AFM imaging. Philosophical Transactions of the Royal Society B, 373, 20170180.CrossRef
go back to reference Oestreicher, Z., Taoka, A., & Fukumori, Y. (2015). A comparison of the surface nanostructure from two different types of gram-negative cells: Escherichia coli and Rhodobacter sphaeroides. Micron, 72, 8–14.CrossRef Oestreicher, Z., Taoka, A., & Fukumori, Y. (2015). A comparison of the surface nanostructure from two different types of gram-negative cells: Escherichia coli and Rhodobacter sphaeroides. Micron, 72, 8–14.CrossRef
go back to reference Okumura, M., Noi, K., Kanemura, S., Kinoshita, M., Saio, T., Inoue, Y., Hikima, T., Akiyama, S., Ogura, T., & Inaba, K. (2019). Dynamic assembly of protein disulfide isomerase in catalysis of oxidative folding. Nature Chemical Biology, 15, 499–509.CrossRef Okumura, M., Noi, K., Kanemura, S., Kinoshita, M., Saio, T., Inoue, Y., Hikima, T., Akiyama, S., Ogura, T., & Inaba, K. (2019). Dynamic assembly of protein disulfide isomerase in catalysis of oxidative folding. Nature Chemical Biology, 15, 499–509.CrossRef
go back to reference Onoa, B., Fukuda, S., Iwai, M., Bustamante, C., & Niyogi, K. K. (2020). Atomic force microscopy visualizes mobility of photosynthetic proteins in grana thylakoid membranes. Biophysical Journal, 118, 1876–1886.ADSCrossRef Onoa, B., Fukuda, S., Iwai, M., Bustamante, C., & Niyogi, K. K. (2020). Atomic force microscopy visualizes mobility of photosynthetic proteins in grana thylakoid membranes. Biophysical Journal, 118, 1876–1886.ADSCrossRef
go back to reference Owa, M., Uchihashi, T., Yanagisawa, H.-A., Yamano, T., Iguchi, H., Fukuzawa, H., Wakabayashi, K.-I., Ando, T., & Kikkawa, M. (2019). Inner lumen proteins stabilize doublet microtubules in cilia and flagella. Nature Communications, 10, 1143.ADSCrossRef Owa, M., Uchihashi, T., Yanagisawa, H.-A., Yamano, T., Iguchi, H., Fukuzawa, H., Wakabayashi, K.-I., Ando, T., & Kikkawa, M. (2019). Inner lumen proteins stabilize doublet microtubules in cilia and flagella. Nature Communications, 10, 1143.ADSCrossRef
go back to reference Pan, Y., Shlyakhtenko, L. S., & Lyubchenko, Y. L. (2019). Insight into the dynamics of APOBEC3G protein in complexes with DNA assessed by high speed AFM. Nanoscale Advances, 1, 4016–4024.ADSCrossRef Pan, Y., Shlyakhtenko, L. S., & Lyubchenko, Y. L. (2019). Insight into the dynamics of APOBEC3G protein in complexes with DNA assessed by high speed AFM. Nanoscale Advances, 1, 4016–4024.ADSCrossRef
go back to reference Parsons, E. S., Stanley, G. J., Pyne, A. L. B., Hodel, A. W., Nievergelt, A. P., Menny, A., Yon, A. R., Rowley, A., Richter, R. P., Fantner, G. E., Bubeck, D., & Hoogenboom, B. W. (2019). Single-molecule kinetics of pore assembly by the membrane attack complex. Nature Communications, 10, 2066.ADSCrossRef Parsons, E. S., Stanley, G. J., Pyne, A. L. B., Hodel, A. W., Nievergelt, A. P., Menny, A., Yon, A. R., Rowley, A., Richter, R. P., Fantner, G. E., Bubeck, D., & Hoogenboom, B. W. (2019). Single-molecule kinetics of pore assembly by the membrane attack complex. Nature Communications, 10, 2066.ADSCrossRef
go back to reference Payton, O. D., Picco, L., & Scott, T. B. (2016). High-speed atomic force microscopy for materials science. International Materials Reviews, 61, 473–494.CrossRef Payton, O. D., Picco, L., & Scott, T. B. (2016). High-speed atomic force microscopy for materials science. International Materials Reviews, 61, 473–494.CrossRef
go back to reference Preiner, J., Kodera, N., Tang, J., Ebner, A., Brameshuber, M., Blaas, D., Gelbmann, N., Gruber, H., Ando, T., & Hinterdorfer, P. (2014). IgGs are made for walking on bacterial and viral surfaces. Nature Communications, 5, 4394.ADSCrossRef Preiner, J., Kodera, N., Tang, J., Ebner, A., Brameshuber, M., Blaas, D., Gelbmann, N., Gruber, H., Ando, T., & Hinterdorfer, P. (2014). IgGs are made for walking on bacterial and viral surfaces. Nature Communications, 5, 4394.ADSCrossRef
go back to reference Preiner, J., Horner, A., Karner, A., Ollinger, N., Siligan, C., Pohl, P., & Hinterdorfer, P. (2015). High-speed AFM images of thermal motion provide stiffness map of interfacial membrane protein moieties. Nano Letters, 15, 759–763.ADSCrossRef Preiner, J., Horner, A., Karner, A., Ollinger, N., Siligan, C., Pohl, P., & Hinterdorfer, P. (2015). High-speed AFM images of thermal motion provide stiffness map of interfacial membrane protein moieties. Nano Letters, 15, 759–763.ADSCrossRef
go back to reference Pyne, A., Marks, W., Picco, L. M., Dunton, P. G., Ulcinas, A., Barbour, M. E., Jones, S. B., Gimzewski, J., & Miles, M. J. (2009). High-speed atomic force microscopy of dental enamel dissolution in citric acid. Archives of Histology and Cytology, 72, 209–215.CrossRef Pyne, A., Marks, W., Picco, L. M., Dunton, P. G., Ulcinas, A., Barbour, M. E., Jones, S. B., Gimzewski, J., & Miles, M. J. (2009). High-speed atomic force microscopy of dental enamel dissolution in citric acid. Archives of Histology and Cytology, 72, 209–215.CrossRef
go back to reference Raghavan, G., Hidaka, K., Sugiyama, H., & Endo, M. (2019). Direct observation and analysis of the dynamics of the photoresponsive transcription factor GAL4. Angewandte Chemie International Edition, 58, 7626–7630.CrossRef Raghavan, G., Hidaka, K., Sugiyama, H., & Endo, M. (2019). Direct observation and analysis of the dynamics of the photoresponsive transcription factor GAL4. Angewandte Chemie International Edition, 58, 7626–7630.CrossRef
go back to reference Rajendran, A., Endo, M., Hidaka, K., & Sugiyama, H. (2014a). Direct and single-molecule visualization of the solution-state structures of G-hairpin and G-triplex intermediates. Angewandte Chemie International Edition, 53, 4107–4112.CrossRef Rajendran, A., Endo, M., Hidaka, K., & Sugiyama, H. (2014a). Direct and single-molecule visualization of the solution-state structures of G-hairpin and G-triplex intermediates. Angewandte Chemie International Edition, 53, 4107–4112.CrossRef
go back to reference Rajendran, A., Endo, M., Hidaka, K., Tran, P. L. T., Teulade-Fichou, M.-P., Mergny, J.-L., & Sugiyama, H. (2014b). G-quadruplex-binding ligand-induced DNA synapsis inside a DNA origami frame. RSC Advances, 4, 6346–6355.ADSCrossRef Rajendran, A., Endo, M., Hidaka, K., Tran, P. L. T., Teulade-Fichou, M.-P., Mergny, J.-L., & Sugiyama, H. (2014b). G-quadruplex-binding ligand-induced DNA synapsis inside a DNA origami frame. RSC Advances, 4, 6346–6355.ADSCrossRef
go back to reference Ramakrishnan, S., Shen, B., Kostiainen, M., Grundmeier, G., Keller, A., & Linko, V. (2019). Real-time observation of superstructure-dependent DNA origami digestion by DNase I using high-speed atomic force microscopy. ChemBioChem, 20, 2818–2823.CrossRef Ramakrishnan, S., Shen, B., Kostiainen, M., Grundmeier, G., Keller, A., & Linko, V. (2019). Real-time observation of superstructure-dependent DNA origami digestion by DNase I using high-speed atomic force microscopy. ChemBioChem, 20, 2818–2823.CrossRef
go back to reference Rangl, M., Miyagi, A., Kowal, J., Stahlberg, H., Nimigean, C. M., & Scheuring, S. (2016). Real-time visualization of conformational changes within single MloK1 cyclic nucleotide-modulated channels. Nature Communications, 7, 12789.ADSCrossRef Rangl, M., Miyagi, A., Kowal, J., Stahlberg, H., Nimigean, C. M., & Scheuring, S. (2016). Real-time visualization of conformational changes within single MloK1 cyclic nucleotide-modulated channels. Nature Communications, 7, 12789.ADSCrossRef
go back to reference Rangl, M., Rima, L., Klement, J., Miyagi, A., Keller, S., & Scheuring, S. (2017). Real-time visualization of phospholipid degradation by outer membrane phospholipase a using high-speed atomic force microscopy. Journal of Molecular Biology, 429, 977–986.CrossRef Rangl, M., Rima, L., Klement, J., Miyagi, A., Keller, S., & Scheuring, S. (2017). Real-time visualization of phospholipid degradation by outer membrane phospholipase a using high-speed atomic force microscopy. Journal of Molecular Biology, 429, 977–986.CrossRef
go back to reference Rangl, M., Schmandt, N., Perozo, E., & Scheuring, S. (2019). Real time dynamics of gating-related conformational changes in CorA. eLife, 8, e47322. Rangl, M., Schmandt, N., Perozo, E., & Scheuring, S. (2019). Real time dynamics of gating-related conformational changes in CorA. eLife, 8, e47322.
go back to reference Ravula, T., Ishikuro, D., Kodera, N., Ando, T., Anantharamaiah, G. M., & Ramamoorthy, A. (2018). Real-time monitoring of lipid exchange via fusion of peptide based lipid-nanodiscs. Chemistry of Materials, 30, 3204–3207.CrossRef Ravula, T., Ishikuro, D., Kodera, N., Ando, T., Anantharamaiah, G. M., & Ramamoorthy, A. (2018). Real-time monitoring of lipid exchange via fusion of peptide based lipid-nanodiscs. Chemistry of Materials, 30, 3204–3207.CrossRef
go back to reference Räz, M. H., Hidaka, K., Sturla, S. J., Sugiyama, H., & Endo, M. (2016). Torsional constraints of DNA substrates impact Cas9 cleavage. Journal of the American Chemical Society, 138, 13842–13845.CrossRef Räz, M. H., Hidaka, K., Sturla, S. J., Sugiyama, H., & Endo, M. (2016). Torsional constraints of DNA substrates impact Cas9 cleavage. Journal of the American Chemical Society, 138, 13842–13845.CrossRef
go back to reference Rico, F., Gonzalez, L., Casuso, I., Puig-Vidal, M., & Scheuring, S. (2013). High-speed force spectroscopy unfolds titin at the velocity of molecular dynamics simulations. Science, 342, 741–743.ADSCrossRef Rico, F., Gonzalez, L., Casuso, I., Puig-Vidal, M., & Scheuring, S. (2013). High-speed force spectroscopy unfolds titin at the velocity of molecular dynamics simulations. Science, 342, 741–743.ADSCrossRef
go back to reference Rico, F., Russek, A., González, L., Grubmüller, H., & Scheuring, S. (2019). Heterogeneous and rate-dependent streptavidin–biotin unbinding revealed by high-speed force spectroscopy and atomistic simulations. In Proceedings of the National Academy Sciences (Vol. 116, pp. 6594–6601). USA. Rico, F., Russek, A., González, L., Grubmüller, H., & Scheuring, S. (2019). Heterogeneous and rate-dependent streptavidin–biotin unbinding revealed by high-speed force spectroscopy and atomistic simulations. In Proceedings of the National Academy Sciences (Vol. 116, pp. 6594–6601). USA.
go back to reference Rigato, A., Miyagi, A., Scheuring, S., & Rico, F. (2017). High-frequency microrheology reveals cytoskeleton dynamics in living cells. Nature Physics, 13, 771–775.ADSCrossRef Rigato, A., Miyagi, A., Scheuring, S., & Rico, F. (2017). High-frequency microrheology reveals cytoskeleton dynamics in living cells. Nature Physics, 13, 771–775.ADSCrossRef
go back to reference Ruan, Y., Rezelj, S., Zavec, A. B., Anderluh, G., & Scheuring, S. (2016). Listeriolysin O membrane damaging activity involves arc formation and line action—implication for listeria monocytogenes escape from phagocytic vacuole. PLoS Pathog, 12, e1005597. Ruan, Y., Rezelj, S., Zavec, A. B., Anderluh, G., & Scheuring, S. (2016). Listeriolysin O membrane damaging activity involves arc formation and line action—implication for listeria monocytogenes escape from phagocytic vacuole. PLoS Pathog, 12, e1005597.
go back to reference Ruan, Y., Miyagi, A., Wang, X., Chami, M., Boudker, O., & Scheuring, S. (2017). Direct visualization of glutamate transporter elevator mechanism by high-speed AFM. Proceedings of the National Academy of Sciences of the United States of America, 114, 1584–1588.CrossRef Ruan, Y., Miyagi, A., Wang, X., Chami, M., Boudker, O., & Scheuring, S. (2017). Direct visualization of glutamate transporter elevator mechanism by high-speed AFM. Proceedings of the National Academy of Sciences of the United States of America, 114, 1584–1588.CrossRef
go back to reference Ruan, Y., Kao, K., Lefebvre, S., Marchesi, A., Corringer, P.-J., Hite, R. K., & Scheuring, S. (2018). Structural titration of receptor ion channel GLIC gating by HS-AFM. Proceedings of the National Academy of Sciences of the United States of America, 115, 10333–10338.CrossRef Ruan, Y., Kao, K., Lefebvre, S., Marchesi, A., Corringer, P.-J., Hite, R. K., & Scheuring, S. (2018). Structural titration of receptor ion channel GLIC gating by HS-AFM. Proceedings of the National Academy of Sciences of the United States of America, 115, 10333–10338.CrossRef
go back to reference Sahoo, B. R., Genjo, T., Nakayama, T. W., Stoddard, A. K., Ando, T., Yasuhara, K., Fierke, C. A., & Ramamoorthy, A. (2019). A cationic polymethacrylate-copolymer acts as an agonist for β-amyloid and an antagonist for amylin fibrillation. Chemical Science, 10, 3976–3986.CrossRef Sahoo, B. R., Genjo, T., Nakayama, T. W., Stoddard, A. K., Ando, T., Yasuhara, K., Fierke, C. A., & Ramamoorthy, A. (2019). A cationic polymethacrylate-copolymer acts as an agonist for β-amyloid and an antagonist for amylin fibrillation. Chemical Science, 10, 3976–3986.CrossRef
go back to reference Sakai, K., Passioura, T., Sato, H., Ito, K., Furuhashi, H., Umitsu, M., Takagi, J., Kato, Y., Mukai, H., Warashina, S., Zouda, M., Watanabe, Y., Yano, S., Shibata, M., Suga, H., & Matsumoto, K. (2019). Macrocyclic peptide-based inhibition and imaging of hepatocyte growth factor. Nature Chemical Biology, 15, 598–606.CrossRef Sakai, K., Passioura, T., Sato, H., Ito, K., Furuhashi, H., Umitsu, M., Takagi, J., Kato, Y., Mukai, H., Warashina, S., Zouda, M., Watanabe, Y., Yano, S., Shibata, M., Suga, H., & Matsumoto, K. (2019). Macrocyclic peptide-based inhibition and imaging of hepatocyte growth factor. Nature Chemical Biology, 15, 598–606.CrossRef
go back to reference Sakiyama, Y., Mazur, A., Kapinos, L. E., & Lim, R. Y. H. (2016). Spatiotemporal dynamics of the nuclear pore complex transport barrier resolved by high-speed atomic force microscopy. Nature Nanotechnology, 11, 719–723.ADSCrossRef Sakiyama, Y., Mazur, A., Kapinos, L. E., & Lim, R. Y. H. (2016). Spatiotemporal dynamics of the nuclear pore complex transport barrier resolved by high-speed atomic force microscopy. Nature Nanotechnology, 11, 719–723.ADSCrossRef
go back to reference Sanchez, H., Suzuki, Y., Yokokawa, M., Takeyasu, K., & Wyman, C. (2011). Protein-DNA interactions in high speed AFM: Single molecule diffusion analysis of human RAD54. Integrative Biology, 3, 1127–1134.CrossRef Sanchez, H., Suzuki, Y., Yokokawa, M., Takeyasu, K., & Wyman, C. (2011). Protein-DNA interactions in high speed AFM: Single molecule diffusion analysis of human RAD54. Integrative Biology, 3, 1127–1134.CrossRef
go back to reference Sanchez, H., Reuter, M., Yokokawa, M., Takeyasu, K., & Wyman, C. (2014). Taking it one step at a time in homologous recombination repair. DNA Repair, 20, 110–118.CrossRef Sanchez, H., Reuter, M., Yokokawa, M., Takeyasu, K., & Wyman, C. (2014). Taking it one step at a time in homologous recombination repair. DNA Repair, 20, 110–118.CrossRef
go back to reference Santillan, J. J., & Itani, T. (2012). Dissolution characteristics of EUV resist by high speed AFM. Journal of Photopolymer Science and Technology, 25, 95–100.CrossRef Santillan, J. J., & Itani, T. (2012). Dissolution characteristics of EUV resist by high speed AFM. Journal of Photopolymer Science and Technology, 25, 95–100.CrossRef
go back to reference Sato, Y., Endo, M., Morita, M., Takinoue, M., Sugiyama, H., Murata, S., Nomura, S.-I.M., & Suzuki, Y. (2018). Environment-dependent self-assembly of DNA origami lattices on phase-separated lipid membranes. Advanced Materials Interfaces, 5, 1800437.CrossRef Sato, Y., Endo, M., Morita, M., Takinoue, M., Sugiyama, H., Murata, S., Nomura, S.-I.M., & Suzuki, Y. (2018). Environment-dependent self-assembly of DNA origami lattices on phase-separated lipid membranes. Advanced Materials Interfaces, 5, 1800437.CrossRef
go back to reference Satoh, T., Song, C., Zhu, T., Toshimori, T., Murata, K., Hayashi, Y., Kamikubo, H., Uchihashi, T., & Kato, K. (2017). Visualisation of a flexible modular structure of the ER folding-sensor enzyme UGGT. Science and Reports, 7, 12142.ADSCrossRef Satoh, T., Song, C., Zhu, T., Toshimori, T., Murata, K., Hayashi, Y., Kamikubo, H., Uchihashi, T., & Kato, K. (2017). Visualisation of a flexible modular structure of the ER folding-sensor enzyme UGGT. Science and Reports, 7, 12142.ADSCrossRef
go back to reference Schächtele, M., Hänel, E., & Schäffer, T. E. (2018). Resonance compensating chirp mode for mapping the rheology of live cells by high-speed atomic force microscopy. Applied Physics Letters, 113, 093701. Schächtele, M., Hänel, E., & Schäffer, T. E. (2018). Resonance compensating chirp mode for mapping the rheology of live cells by high-speed atomic force microscopy. Applied Physics Letters, 113, 093701.
go back to reference Sekiguchi, T., Satoh, T., Kurimoto, E., Son, C., Kozai, T., Watanabe, H., Ishii, K., Yagi, H., Yanaka, S., Uchiyama, S., Uchihashi, T., Murata, K., & Kato, K. (2019). Mutational and combinatorial control of self-assembling and disassembling of human proteasome α-subunits. International Journal of Molecular Sciences, 20, 2608.CrossRef Sekiguchi, T., Satoh, T., Kurimoto, E., Son, C., Kozai, T., Watanabe, H., Ishii, K., Yagi, H., Yanaka, S., Uchiyama, S., Uchihashi, T., Murata, K., & Kato, K. (2019). Mutational and combinatorial control of self-assembling and disassembling of human proteasome α-subunits. International Journal of Molecular Sciences, 20, 2608.CrossRef
go back to reference Shinohara, K., & Makida, Y. (2018). Direct observation of dynamic interaction between a functional group in a single SBR chain and an inorganic matter surface. Science and Reports, 8, 13982.ADSCrossRef Shinohara, K., & Makida, Y. (2018). Direct observation of dynamic interaction between a functional group in a single SBR chain and an inorganic matter surface. Science and Reports, 8, 13982.ADSCrossRef
go back to reference Shibata, M., Yamashita, H., Uchihashi, T., Kandori, H., & Ando, T. (2010). High-speed atomic force microscopy shows dynamic molecular processes in photo-activated bacteriorhodopsin. Nature Nanotechnology, 5, 208–212.ADSCrossRef Shibata, M., Yamashita, H., Uchihashi, T., Kandori, H., & Ando, T. (2010). High-speed atomic force microscopy shows dynamic molecular processes in photo-activated bacteriorhodopsin. Nature Nanotechnology, 5, 208–212.ADSCrossRef
go back to reference Shibata, M., Uchihashi, T., Ando, T., & Yasuda, R. (2015). Long-tip high-speed atomic force microscopy for nanometer-scale imaging in live cells. Scientific Reports, 5, 8724.ADSCrossRef Shibata, M., Uchihashi, T., Ando, T., & Yasuda, R. (2015). Long-tip high-speed atomic force microscopy for nanometer-scale imaging in live cells. Scientific Reports, 5, 8724.ADSCrossRef
go back to reference Shibata, M., Nishimasu, H., Kodera, N., Hirano, S., Ando, T., Uchihashi, T., & Nureki, O. (2017). Real-space and real-time dynamics of CRISPR-Cas9 visualized by high-speed atomic force microscopy. Nature Communications, 8, 1430.ADSCrossRef Shibata, M., Nishimasu, H., Kodera, N., Hirano, S., Ando, T., Uchihashi, T., & Nureki, O. (2017). Real-space and real-time dynamics of CRISPR-Cas9 visualized by high-speed atomic force microscopy. Nature Communications, 8, 1430.ADSCrossRef
go back to reference Shlyakhtenko, L. S., Lushnikov, A. Y., Miyagi, A., Li, M., Harris, R. S., & Lyubchenko, Y. L. (2012). Nanoscale structure and dynamics of ABOBEC3G complexes with single-stranded DNA. Biochemistry, 51, 6432–6440.CrossRef Shlyakhtenko, L. S., Lushnikov, A. Y., Miyagi, A., Li, M., Harris, R. S., & Lyubchenko, Y. L. (2012). Nanoscale structure and dynamics of ABOBEC3G complexes with single-stranded DNA. Biochemistry, 51, 6432–6440.CrossRef
go back to reference Shlyakhtenko, L. S., Lushnikov, A. Y., Miyagi, A., Li, M., Harris, R. S., & Lyubchenko, Y. L. (2013). Atomic force microscopy studies of APOBEC3G oligomerization and dynamics. Journal of Structural Biology, 184, 217–225.CrossRef Shlyakhtenko, L. S., Lushnikov, A. Y., Miyagi, A., Li, M., Harris, R. S., & Lyubchenko, Y. L. (2013). Atomic force microscopy studies of APOBEC3G oligomerization and dynamics. Journal of Structural Biology, 184, 217–225.CrossRef
go back to reference Sone, E., Noshiro, D., Ikebuchi, Y., Nakagawa, M., Khan, M., Tamura, Y., Ikeda, M., Oki, M., Murali, R., Fujimori, T., Yoda, T., Honma, M., Suzuki, H., Ando, T., & Aoki, K. (2019). The induction of RANKL molecule clustering could stimulate early osteoblast differentiation. Biochemical and Biophysics Research Communications, 509, 435–440.CrossRef Sone, E., Noshiro, D., Ikebuchi, Y., Nakagawa, M., Khan, M., Tamura, Y., Ikeda, M., Oki, M., Murali, R., Fujimori, T., Yoda, T., Honma, M., Suzuki, H., Ando, T., & Aoki, K. (2019). The induction of RANKL molecule clustering could stimulate early osteoblast differentiation. Biochemical and Biophysics Research Communications, 509, 435–440.CrossRef
go back to reference Stamov, D. R., Stock, E., Franz, C. M., Jähnke, T., & Haschke, H. (2015). Imaging collagen type I fibrillogenesis with high spatiotemporal resolution. Ultramicroscopy, 149, 86–94.CrossRef Stamov, D. R., Stock, E., Franz, C. M., Jähnke, T., & Haschke, H. (2015). Imaging collagen type I fibrillogenesis with high spatiotemporal resolution. Ultramicroscopy, 149, 86–94.CrossRef
go back to reference Stanley, G. J., Akpinar, B., Shen, Q., Fisher, P. D. E., Lusk, C. P., Lin, C., & Hoogenboom, B. W. (2019). Quantification of biomoleculardynamics inside real and synthetic nuclear pore complexes using time-resolved atomic force microscopy. ACS Nano, 13, 7949–7956.CrossRef Stanley, G. J., Akpinar, B., Shen, Q., Fisher, P. D. E., Lusk, C. P., Lin, C., & Hoogenboom, B. W. (2019). Quantification of biomoleculardynamics inside real and synthetic nuclear pore complexes using time-resolved atomic force microscopy. ACS Nano, 13, 7949–7956.CrossRef
go back to reference Strasser, J., De Jong, R. N., Beurskens, F. J., Wang, G., Heck, A. J. R., Schuurman, J., Parren, P. W. H. I., Hinterdorfer, P., & Preiner, J. (2019). Unraveling the macromolecular pathways of IgG oligomerization and complement activation on antigenic surfaces. Nano Letters, 19, 4787–4796.ADSCrossRef Strasser, J., De Jong, R. N., Beurskens, F. J., Wang, G., Heck, A. J. R., Schuurman, J., Parren, P. W. H. I., Hinterdorfer, P., & Preiner, J. (2019). Unraveling the macromolecular pathways of IgG oligomerization and complement activation on antigenic surfaces. Nano Letters, 19, 4787–4796.ADSCrossRef
go back to reference Stumme-Diers, M. P., Banerjee, S., Hashemi, M., Sun, Z., & Lyubchenko, Y. L. (2018). Nanoscale dynamics of centromere nucleosomes and the critical roles of CENP-A. Nucleic Acids Research, 46, 94–103.CrossRef Stumme-Diers, M. P., Banerjee, S., Hashemi, M., Sun, Z., & Lyubchenko, Y. L. (2018). Nanoscale dynamics of centromere nucleosomes and the critical roles of CENP-A. Nucleic Acids Research, 46, 94–103.CrossRef
go back to reference Sumino, A., Sumikama, T., Uchihashi, T., & Oiki, S. (2019). High-speed AFM reveals accelerated binding of agitoxin-2 to a K+ channel by induced fit. Science Advances, 5, eaax0495. Sumino, A., Sumikama, T., Uchihashi, T., & Oiki, S. (2019). High-speed AFM reveals accelerated binding of agitoxin-2 to a K+ channel by induced fit. Science Advances, 5, eaax0495.
go back to reference Sun, Z., Hashemi, M., Warren, G., Bianco, P. R., & Lyubchenko, Y. L. (2018). Dynamics of the interaction of RecG protein with stalled replication forks. Biochemistry, 57, 1967–1976.CrossRef Sun, Z., Hashemi, M., Warren, G., Bianco, P. R., & Lyubchenko, Y. L. (2018). Dynamics of the interaction of RecG protein with stalled replication forks. Biochemistry, 57, 1967–1976.CrossRef
go back to reference Sutter, M., Faulkner, M., Aussignargues, C., Paasch, B. C., Barrett, S., Kerfeld, C. A., & Liu, L.-N. (2016). Visualization of bacterial microcompartment facet assembly using high-speed atomic force microscopy. Nano Letters, 16, 1590–1595.ADSCrossRef Sutter, M., Faulkner, M., Aussignargues, C., Paasch, B. C., Barrett, S., Kerfeld, C. A., & Liu, L.-N. (2016). Visualization of bacterial microcompartment facet assembly using high-speed atomic force microscopy. Nano Letters, 16, 1590–1595.ADSCrossRef
go back to reference Suzuki, Y., Shin, M., Yoshida, A., Yoshimura, S. H., & Takeyasu, K. (2012). Fast microscopical dissection of action scenes played by Escherichia coli RNA polymerase. FEBS Letters, 586, 3187–3192.CrossRef Suzuki, Y., Shin, M., Yoshida, A., Yoshimura, S. H., & Takeyasu, K. (2012). Fast microscopical dissection of action scenes played by Escherichia coli RNA polymerase. FEBS Letters, 586, 3187–3192.CrossRef
go back to reference Suzuki, Y., Goetze, T. A., Stroebel, D., Balasuriya, D., Yoshimura, S. H., Henderson, R. M., Paoletti, P., Takeyasu, K., & Edwardson, J. M. (2013). Visualization of structural changes accompanying activation of N-methyl-D-aspartate (NMDA) receptors using fast-scan atomic force microscopy imaging. Journal of Biological Chemistry, 288, 778–784.CrossRef Suzuki, Y., Goetze, T. A., Stroebel, D., Balasuriya, D., Yoshimura, S. H., Henderson, R. M., Paoletti, P., Takeyasu, K., & Edwardson, J. M. (2013). Visualization of structural changes accompanying activation of N-methyl-D-aspartate (NMDA) receptors using fast-scan atomic force microscopy imaging. Journal of Biological Chemistry, 288, 778–784.CrossRef
go back to reference Suzuki, Y., Sakai, N., Yoshida, A., Uekusa, Y., Yagi, A., Imaoka, Y., Ito, S., Karaki, K., & Takeyasu, K. (2013). High-speed atomic force microscopy combined with inverted optical microscopy for studying cellular events. Science and Reports, 3, 2131.ADSCrossRef Suzuki, Y., Sakai, N., Yoshida, A., Uekusa, Y., Yagi, A., Imaoka, Y., Ito, S., Karaki, K., & Takeyasu, K. (2013). High-speed atomic force microscopy combined with inverted optical microscopy for studying cellular events. Science and Reports, 3, 2131.ADSCrossRef
go back to reference Suzuki, Y., Endo, M., Katsuda, Y., Ou, K., Hidaka, K., & Sugiyama, H. (2014). DNA origami based visualization system for studying site-specific recombination events. Journal of the American Chemical Society, 136, 211–218.CrossRef Suzuki, Y., Endo, M., Katsuda, Y., Ou, K., Hidaka, K., & Sugiyama, H. (2014). DNA origami based visualization system for studying site-specific recombination events. Journal of the American Chemical Society, 136, 211–218.CrossRef
go back to reference Suzuki, T., Kawaguchi, A., Ainai, A., Tamura, S.-I., Ito, R., Multihartina, P., Setiawaty, V., Pangesti, K. N. A., Odagiri, T., Tashiro, M., & Hasegawa, H. (2015). Relationship of the quaternary structure of human secretory IgA to neutralization of influenza virus. Proceedings of the National Academy of Sciences of the United States of America, 112, 7809–7814.ADSCrossRef Suzuki, T., Kawaguchi, A., Ainai, A., Tamura, S.-I., Ito, R., Multihartina, P., Setiawaty, V., Pangesti, K. N. A., Odagiri, T., Tashiro, M., & Hasegawa, H. (2015). Relationship of the quaternary structure of human secretory IgA to neutralization of influenza virus. Proceedings of the National Academy of Sciences of the United States of America, 112, 7809–7814.ADSCrossRef
go back to reference Suzuki, Y., Endo, M., & Sugiyama, H. (2015). Lipid-bilayer-assisted two-dimensional self-assembly of DNA origami nanostructures. Nature Communications, 6, 9052.CrossRef Suzuki, Y., Endo, M., & Sugiyama, H. (2015). Lipid-bilayer-assisted two-dimensional self-assembly of DNA origami nanostructures. Nature Communications, 6, 9052.CrossRef
go back to reference Suzuki, Y., Sugiyama, H., & Endo, M. (2018). Complexing DNA origami frameworks through sequential self-assembly based on directed docking. Angewandte Chemie International Edition, 57, 7061–7065.CrossRef Suzuki, Y., Sugiyama, H., & Endo, M. (2018). Complexing DNA origami frameworks through sequential self-assembly based on directed docking. Angewandte Chemie International Edition, 57, 7061–7065.CrossRef
go back to reference Takahashi, H., Miyagi, A., Redondo-Morata, L., & Scheuring, S. (2016). Temperature-controlled high-speed AFM: Real-time observation of ripple phase transitions. Small (weinheim an Der Bergstrasse, Germany), 12, 6106–6113.CrossRef Takahashi, H., Miyagi, A., Redondo-Morata, L., & Scheuring, S. (2016). Temperature-controlled high-speed AFM: Real-time observation of ripple phase transitions. Small (weinheim an Der Bergstrasse, Germany), 12, 6106–6113.CrossRef
go back to reference Takahashi, H., Rico, F., Chipot, C., & Scheuring, S. (2018). α-helix unwinding as force buffer in spectrins. ACS Nano, 12, 2719–2727.CrossRef Takahashi, H., Rico, F., Chipot, C., & Scheuring, S. (2018). α-helix unwinding as force buffer in spectrins. ACS Nano, 12, 2719–2727.CrossRef
go back to reference Takeda, T., Kozai, T., Yang, H., Ishikuro, D., Seyama, K., Kumagai, Y., Abe, T., Yamada, H., Uchihashi, T., Ando, T., & Takei, K. (2018). Dynamic clustering of dynamin-amphiphysin helices regulates membrane constriction and fission coupled with GTP hydrolysis. eLife, 7, e30246. Takeda, T., Kozai, T., Yang, H., Ishikuro, D., Seyama, K., Kumagai, Y., Abe, T., Yamada, H., Uchihashi, T., Ando, T., & Takei, K. (2018). Dynamic clustering of dynamin-amphiphysin helices regulates membrane constriction and fission coupled with GTP hydrolysis. eLife, 7, e30246.
go back to reference Takenaka, T., Endo, M., Suzuki, Y., Yang, Y., Emura, T., Hidaka, K., Kato, T., Miyata, T., Namba, K., & Sugiyama, H. (2014). Photoresponsive DNA nanocapsule having an open/close system for capture and release of nanomaterials. Chemistry—A European Journal, 20, 14951–14954.CrossRef Takenaka, T., Endo, M., Suzuki, Y., Yang, Y., Emura, T., Hidaka, K., Kato, T., Miyata, T., Namba, K., & Sugiyama, H. (2014). Photoresponsive DNA nanocapsule having an open/close system for capture and release of nanomaterials. Chemistry—A European Journal, 20, 14951–14954.CrossRef
go back to reference Tashiro, R., Taguchi, H., Hidaka, K., Endo, M., & Sugiyama, H. (2019). Effects of physical damage in the intermediate phase on the progression of amyloid β fibrillization. Chemistry—an Asian Journal, 14, 4140–4145.CrossRef Tashiro, R., Taguchi, H., Hidaka, K., Endo, M., & Sugiyama, H. (2019). Effects of physical damage in the intermediate phase on the progression of amyloid β fibrillization. Chemistry—an Asian Journal, 14, 4140–4145.CrossRef
go back to reference Tatebe, H., Lim, C. T., Konno, H., Shiozaki, K., Shinohara, A., Uchihashi, T., & Furukohri, A. (2020). Rad50 zinc hook functions as a constitutive dimerization module interchangeable with SMC hinge. Nature Communications, 11, 370.ADSCrossRef Tatebe, H., Lim, C. T., Konno, H., Shiozaki, K., Shinohara, A., Uchihashi, T., & Furukohri, A. (2020). Rad50 zinc hook functions as a constitutive dimerization module interchangeable with SMC hinge. Nature Communications, 11, 370.ADSCrossRef
go back to reference Terahara, N., Kodera, N., Uchihashi, T., Ando, T., Namba, K., & Minamino T. (2017). Na+-induced structural transition of MotPS for stator assembly of the Bacillus flagellar motor. Science Advances, 3, eaao4119. Terahara, N., Kodera, N., Uchihashi, T., Ando, T., Namba, K., & Minamino T. (2017). Na+-induced structural transition of MotPS for stator assembly of the Bacillus flagellar motor. Science Advances, 3, eaao4119.
go back to reference Terahara, N., Inoue, Y., Kodera, N., Morimoto, Y. V., Uchihashi, T., Imada, K., Ando, T., Namba, K., & Minamino, T. (2018). Insight into structural remodeling of the FlhA ring responsible for bacterial flagellar type III protein export. Science Advances, 4, eaao7054. Terahara, N., Inoue, Y., Kodera, N., Morimoto, Y. V., Uchihashi, T., Imada, K., Ando, T., Namba, K., & Minamino, T. (2018). Insight into structural remodeling of the FlhA ring responsible for bacterial flagellar type III protein export. Science Advances, 4, eaao7054.
go back to reference Uchihashi, T., Iino, R., Ando, T., & Noji, H. (2011). High-speed atomic force microscopy reveals rotary catalysis of rotorless F1-ATPase. Science, 333, 755–758.ADSCrossRef Uchihashi, T., Iino, R., Ando, T., & Noji, H. (2011). High-speed atomic force microscopy reveals rotary catalysis of rotorless F1-ATPase. Science, 333, 755–758.ADSCrossRef
go back to reference Uchihashi, T., Watanabe, Y., Nakazaki, Y., Yamasaki, T., Watanabe, H., Maruno, T., Ishii, K., Uchiyama, S., Song, C., Murata, K., Iino, R., & Ando, T. (2018). Dynamic structural states of ClpB involved in its disaggregation function. Nature Communications, 9, 2147.ADSCrossRef Uchihashi, T., Watanabe, Y., Nakazaki, Y., Yamasaki, T., Watanabe, H., Maruno, T., Ishii, K., Uchiyama, S., Song, C., Murata, K., Iino, R., & Ando, T. (2018). Dynamic structural states of ClpB involved in its disaggregation function. Nature Communications, 9, 2147.ADSCrossRef
go back to reference Uhlig, M. R., Amo, C. A., & Garcia, R. (2018). Dynamics of breaking intermolecular bonds in high-speed force spectroscopy. Nanoscale, 10, 17112–17116.CrossRef Uhlig, M. R., Amo, C. A., & Garcia, R. (2018). Dynamics of breaking intermolecular bonds in high-speed force spectroscopy. Nanoscale, 10, 17112–17116.CrossRef
go back to reference Uno, M., Watanabe-Nakayama, T., Konno, H., Akagi, K.-I., Tsutsumi, N., Fukao, T., Shirakawa, M., Ohnishi, H., & Tochio, H. (2018). Intramolecular interaction suggests an auto-suppression mechanism for the innate immune adaptor protein MyD88. Chemical Communications, 54, 12318–12321.CrossRef Uno, M., Watanabe-Nakayama, T., Konno, H., Akagi, K.-I., Tsutsumi, N., Fukao, T., Shirakawa, M., Ohnishi, H., & Tochio, H. (2018). Intramolecular interaction suggests an auto-suppression mechanism for the innate immune adaptor protein MyD88. Chemical Communications, 54, 12318–12321.CrossRef
go back to reference Ushimaru, K., Mizuno, S., Honya, A., Abe, H., & Tsuge, T. (2017). Real-time observation of enzymatic polyhydroxyalkanoate polymerization using high-Speed scanning atomic force microscopy. ACS Omega, 2, 181–185.CrossRef Ushimaru, K., Mizuno, S., Honya, A., Abe, H., & Tsuge, T. (2017). Real-time observation of enzymatic polyhydroxyalkanoate polymerization using high-Speed scanning atomic force microscopy. ACS Omega, 2, 181–185.CrossRef
go back to reference Viani, M. B., Pietrasanta, L. I., Thompson, J. B., Chand, A., Gebeshuber, I. C., Kindt, J. H., Richter, M., Hansma, H. G., & Hansma, P. K. (2000). Probing protein-protein interactions in real time. Nature Structural Biology, 7, 644–647.CrossRef Viani, M. B., Pietrasanta, L. I., Thompson, J. B., Chand, A., Gebeshuber, I. C., Kindt, J. H., Richter, M., Hansma, H. G., & Hansma, P. K. (2000). Probing protein-protein interactions in real time. Nature Structural Biology, 7, 644–647.CrossRef
go back to reference Visootsat, A., Nakamura, A., Vignon, P., Watanabe, H., Uchihashi, T., & Iino, R. (2020). Single-molecule imaging analysis reveals the mechanism of a high-catalytic-activity mutant of chitinase a from Serratia marcescens. Journal of Biological Chemistry, 295, 1915–1925.CrossRef Visootsat, A., Nakamura, A., Vignon, P., Watanabe, H., Uchihashi, T., & Iino, R. (2020). Single-molecule imaging analysis reveals the mechanism of a high-catalytic-activity mutant of chitinase a from Serratia marcescens. Journal of Biological Chemistry, 295, 1915–1925.CrossRef
go back to reference Watanabe-Nakayamaa, T., Ono, K., Itami, M., Takahashi, R., Teplow, D. B., & Yamada, M. (2016). High-speed atomic force microscopy reveals structural dynamics of amyloid β1–42 aggregates. Proceedings of the National Academy of Sciences of the United States of America, 113, 5835–5840.ADSCrossRef Watanabe-Nakayamaa, T., Ono, K., Itami, M., Takahashi, R., Teplow, D. B., & Yamada, M. (2016). High-speed atomic force microscopy reveals structural dynamics of amyloid β1–42 aggregates. Proceedings of the National Academy of Sciences of the United States of America, 113, 5835–5840.ADSCrossRef
go back to reference Watanabe-Nakayama, T., Itami, M., Kodera, N., Ando, T., & Konno, H. (2016). High-speed atomic force microscopy reveals strongly polarized movement of clostridial collagenase along collagen fibrils. Science and Reports, 6, 28975.ADSCrossRef Watanabe-Nakayama, T., Itami, M., Kodera, N., Ando, T., & Konno, H. (2016). High-speed atomic force microscopy reveals strongly polarized movement of clostridial collagenase along collagen fibrils. Science and Reports, 6, 28975.ADSCrossRef
go back to reference Willner, E. M., Kamada, Y., Suzuki, Y., Emura, T., Hidaka, K., Dietz, H., Sugiyama, H., & Endo, M. (2017). Single-molecule observation of the photo-regulated conformational dynamics of DNA origami nanoscissors. Angewandte Chemie International Edition, 56, 15324–15328.CrossRef Willner, E. M., Kamada, Y., Suzuki, Y., Emura, T., Hidaka, K., Dietz, H., Sugiyama, H., & Endo, M. (2017). Single-molecule observation of the photo-regulated conformational dynamics of DNA origami nanoscissors. Angewandte Chemie International Edition, 56, 15324–15328.CrossRef
go back to reference Xin, Y., Ji, X., Grundmeier, G., & Keller, A. (2020). Dynamics of lattice defects in mixed DNA origami monolayers. Nucleic Acids Research, 48, 4041–4051. Xin, Y., Ji, X., Grundmeier, G., & Keller, A. (2020). Dynamics of lattice defects in mixed DNA origami monolayers. Nucleic Acids Research, 48, 4041–4051.
go back to reference Yamagata, Y., Emura, T., Hidaka, K., Sugiyama, H., & Endo, M. (2016). Triple helix formation in a topologically controlled DNA nanosystem. Chemistry—A European Journal, 22, 5494–5498.CrossRef Yamagata, Y., Emura, T., Hidaka, K., Sugiyama, H., & Endo, M. (2016). Triple helix formation in a topologically controlled DNA nanosystem. Chemistry—A European Journal, 22, 5494–5498.CrossRef
go back to reference Yamamoto, D., Uchihashi, T., Kodera, N., & Ando, T. (2008). Anisotropic diffusion of point defects in two-dimensional crystal of streptavidin observed by high-speed atomic force microscopy. Nanotechnology, 19, 384009. Yamamoto, D., Uchihashi, T., Kodera, N., & Ando, T. (2008). Anisotropic diffusion of point defects in two-dimensional crystal of streptavidin observed by high-speed atomic force microscopy. Nanotechnology, 19, 384009.
go back to reference Yamamoto, D., & Ando, T. (2016). Chaperonin GroEL-GroES functions as both alternating and non-alternating engines. Journal of Molecular Biology, 428, 3090–3101.CrossRef Yamamoto, D., & Ando, T. (2016). Chaperonin GroEL-GroES functions as both alternating and non-alternating engines. Journal of Molecular Biology, 428, 3090–3101.CrossRef
go back to reference Yamamoto, H., Fujioka, Y., Suzuki, S. W., Noshiro, D., Suzuki, H., Kondo-Kakuta, C., Kimura, Y., Hirano, H., Ando, T., Noda, N. N., & Ohsumi, Y. (2016). The intrinsically disordered protein Atg13 mediates supramolecular assembly of autophagy initiation complexes. Developmental Cell, 38, 86–99.CrossRef Yamamoto, H., Fujioka, Y., Suzuki, S. W., Noshiro, D., Suzuki, H., Kondo-Kakuta, C., Kimura, Y., Hirano, H., Ando, T., Noda, N. N., & Ohsumi, Y. (2016). The intrinsically disordered protein Atg13 mediates supramolecular assembly of autophagy initiation complexes. Developmental Cell, 38, 86–99.CrossRef
go back to reference Yamashita, H., Taoka, A., Uchihashi, T., Asano, A., Ando, T., & Fukumori, Y. (2012). Single molecule imaging on living bacterial cell surface by high-speed AFM. Journal of Molecular Biology, 422, 300–309.CrossRef Yamashita, H., Taoka, A., Uchihashi, T., Asano, A., Ando, T., & Fukumori, Y. (2012). Single molecule imaging on living bacterial cell surface by high-speed AFM. Journal of Molecular Biology, 422, 300–309.CrossRef
go back to reference Yanaka, S., Yogo, R., Watanabe, H., Taniguchi, Y., Satoh, T., Komura, N., Ando, H., Yagi, H., Yuki, N., Uchihashi, T., & Kato, K. (2020). On-membrane dynamic interplay between anti-GM1 IgG antibodies and complement component C1q. International Journal of Molecular Sciences, 21, 147.CrossRef Yanaka, S., Yogo, R., Watanabe, H., Taniguchi, Y., Satoh, T., Komura, N., Ando, H., Yagi, H., Yuki, N., Uchihashi, T., & Kato, K. (2020). On-membrane dynamic interplay between anti-GM1 IgG antibodies and complement component C1q. International Journal of Molecular Sciences, 21, 147.CrossRef
go back to reference Yang, Y., Endo, M., Suzuki, Y., Hidaka, K., & Sugiyama, H. (2014). Direct observation of the dual-switching behaviors corresponding to the state transition in a DNA nanoframe. Chemical Communications, 50, 4211–4213.CrossRef Yang, Y., Endo, M., Suzuki, Y., Hidaka, K., & Sugiyama, H. (2014). Direct observation of the dual-switching behaviors corresponding to the state transition in a DNA nanoframe. Chemical Communications, 50, 4211–4213.CrossRef
go back to reference Yang, Y., Goetzfried, M. A., Hidaka, K., You, M., Tan, W., Sugiyama, H., & Endo, M. (2015). Direct visualization of walking motions of photo-controlled nanomachine on the DNA nanostructure. Nano Letters, 15, 6672–6676.ADSCrossRef Yang, Y., Goetzfried, M. A., Hidaka, K., You, M., Tan, W., Sugiyama, H., & Endo, M. (2015). Direct visualization of walking motions of photo-controlled nanomachine on the DNA nanostructure. Nano Letters, 15, 6672–6676.ADSCrossRef
go back to reference Yang, Y., Tashiro, R., Suzuki, Y., Emura, T., Hidaka, K., Sugiyama, H., & Endo, M. (2017). A photo-regulated DNA-based rotary system and direct observation of its rotational movement. Chemistry—A European Journal, 23, 3979–3985.CrossRef Yang, Y., Tashiro, R., Suzuki, Y., Emura, T., Hidaka, K., Sugiyama, H., & Endo, M. (2017). A photo-regulated DNA-based rotary system and direct observation of its rotational movement. Chemistry—A European Journal, 23, 3979–3985.CrossRef
go back to reference Yilmaz, N., Yamada, T., Greimel, P., Uchihashi, T., Ando, T., & Kobayashi, T. (2013). Real-time visualization of assembling of a sphingomyelin-specific toxin on planar lipid membranes. Biophysical Journal, 105, 1397–1405.ADSCrossRef Yilmaz, N., Yamada, T., Greimel, P., Uchihashi, T., Ando, T., & Kobayashi, T. (2013). Real-time visualization of assembling of a sphingomyelin-specific toxin on planar lipid membranes. Biophysical Journal, 105, 1397–1405.ADSCrossRef
go back to reference Yilmaz, N., & Kobayashi, T. (2016). Assemblies of pore-forming toxins visualized by atomic force microscopy. Biochimica Et Biophysica Acta, 1858, 500–511.CrossRef Yilmaz, N., & Kobayashi, T. (2016). Assemblies of pore-forming toxins visualized by atomic force microscopy. Biochimica Et Biophysica Acta, 1858, 500–511.CrossRef
go back to reference Yilmaz, N., Kodama, Y., & Numata, K. (2020). Revealing the architecture of the cell wall in living plant cells by bioimaging and enzymatic degradation. Biomacromolecules, 21, 95–103. Yilmaz, N., Kodama, Y., & Numata, K. (2020). Revealing the architecture of the cell wall in living plant cells by bioimaging and enzymatic degradation. Biomacromolecules, 21, 95–103.
go back to reference Yogo, R., Yamaguchi, Y., Watanabe, H., Yagi, H., Satoh, T., Nakanishi, M., Onitsuka, M., Omasa, T., Shimada, M., Maruno, T., Torisu, T., Watanabe, S., Higo, D., Uchihashi, T., Yanaka, S., Uchiyama, S., & Kato, K. (2019). The Fab portion of immunoglobulin G contributes to its binding to Fcγ receptor III. Science and Reports, 9, 11957.ADSCrossRef Yogo, R., Yamaguchi, Y., Watanabe, H., Yagi, H., Satoh, T., Nakanishi, M., Onitsuka, M., Omasa, T., Shimada, M., Maruno, T., Torisu, T., Watanabe, S., Higo, D., Uchihashi, T., Yanaka, S., Uchiyama, S., & Kato, K. (2019). The Fab portion of immunoglobulin G contributes to its binding to Fcγ receptor III. Science and Reports, 9, 11957.ADSCrossRef
go back to reference Yokokawa, M., Wada, C., Ando, T., Sakai, N., Yagi, A., Yoshimura, S. H., & Takeyasu, K. (2006). Fast-scanning atomic force microscopy reveals the ATP/ADP-dependent conformational changes of GroEL. EMBO Journal, 25, 4567–4576.CrossRef Yokokawa, M., Wada, C., Ando, T., Sakai, N., Yagi, A., Yoshimura, S. H., & Takeyasu, K. (2006). Fast-scanning atomic force microscopy reveals the ATP/ADP-dependent conformational changes of GroEL. EMBO Journal, 25, 4567–4576.CrossRef
go back to reference Yokokawa, M., & Takeyasu, K. (2011). Motion of the Ca2+-pump captured. FEBS Journal, 278, 3025–3031.CrossRef Yokokawa, M., & Takeyasu, K. (2011). Motion of the Ca2+-pump captured. FEBS Journal, 278, 3025–3031.CrossRef
go back to reference Yoshida, A., Sakai, N., Uekusa, Y., Deguchi, K., Gilmore, J. L., Kumeta, M., Ito, S., & Takeyasu, K. (2015). Probing in vivo dynamics of mitochondria and cortical actin networks using high-speed atomic force/fluorescence microscopy. Genes to Cells, 20, 85–94.CrossRef Yoshida, A., Sakai, N., Uekusa, Y., Deguchi, K., Gilmore, J. L., Kumeta, M., Ito, S., & Takeyasu, K. (2015). Probing in vivo dynamics of mitochondria and cortical actin networks using high-speed atomic force/fluorescence microscopy. Genes to Cells, 20, 85–94.CrossRef
go back to reference Yoshida, A., Sakai, N., Uekusa, Y., Imaoka, Y., Itagaki, Y., Suzuki, Y., & Yoshimura, S. H. (2018). Morphological changes of plasma membrane and protein assembly during clathrin-mediated endocytosis. PLoS Biology, 16, e2004786. Yoshida, A., Sakai, N., Uekusa, Y., Imaoka, Y., Itagaki, Y., Suzuki, Y., & Yoshimura, S. H. (2018). Morphological changes of plasma membrane and protein assembly during clathrin-mediated endocytosis. PLoS Biology, 16, e2004786.
go back to reference Zhang, Y., Yoshida, A., Sakai, N., Uekusa, Y., Kumeta, M., & Yoshimura, S. H. (2017). In vivo dynamics of the cortical actin network revealed by fast-scanning atomic force microscopy. Microscopy, 66, 272–282.CrossRef Zhang, Y., Yoshida, A., Sakai, N., Uekusa, Y., Kumeta, M., & Yoshimura, S. H. (2017). In vivo dynamics of the cortical actin network revealed by fast-scanning atomic force microscopy. Microscopy, 66, 272–282.CrossRef
go back to reference Zhang, Y., Tunuguntla, R. H., Choi, P.-O., & Noy, A. (2017). Real-time dynamics of carbon nanotube porins in supported lipid membranes visualized by high-speed atomic force microscopy. Philosophical Transactions of the Royal Society of London. Series B, 372, 20160226.CrossRef Zhang, Y., Tunuguntla, R. H., Choi, P.-O., & Noy, A. (2017). Real-time dynamics of carbon nanotube porins in supported lipid membranes visualized by high-speed atomic force microscopy. Philosophical Transactions of the Royal Society of London. Series B, 372, 20160226.CrossRef
go back to reference Zhang, P., Liu, X., Liu, P., Wang, F., Ariyama, H., Ando, T., Lin, J., Wang, L., Hu, J., Li, B., & Fan, C. (2020). Capturing transient antibody conformations with DNA origami epitopes. Nature Communications, 11, 3114.ADSCrossRef Zhang, P., Liu, X., Liu, P., Wang, F., Ariyama, H., Ando, T., Lin, J., Wang, L., Hu, J., Li, B., & Fan, C. (2020). Capturing transient antibody conformations with DNA origami epitopes. Nature Communications, 11, 3114.ADSCrossRef
Metadata
Title
Overview of Bioimaging with HS-AFM
Author
Toshio Ando
Copyright Year
2022
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-64785-1_9