Skip to main content
Top

2022 | OriginalPaper | Chapter

10. Substrate Surfaces

Author : Toshio Ando

Published in: High-Speed Atomic Force Microscopy in Biology

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The substrate surfaces onto which samples are placed play an essential role in successful dynamic imaging by HS-AFM. In contrast to single-molecule fluorescence microscopy, for HS-AFM, the surface roughness should be small enough to identify molecules of interest, which typically have single-nanometer dimensions. Moreover, because AFM can visualize the sample only from one direction perpendicular to the substrate surface, sample molecules sometimes have to be attached to the surface in a specific orientation so that their characteristic structural features and portions of interest of the molecules can be visualized. These requirements are common in both static and dynamic AFM imaging. However, in dynamic AFM imaging, sample molecules should not strongly interact with a surface, which could interfere with their function. Nevertheless, when the interaction is too weak, the molecules move too fast on the surface to be clearly imaged even with HS-AFM.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Ando, T., & Uchihashi, T. (2013). High-speed AFM and imaging of biomoleculr processes. In T. Ondarçuhu & J.-P. Aime (Eds.), Nanoscale liquid interfaces: Wetting, patterning and force microscopy at the molecular scale (pp. 713–742). Pan Stanford Publishing. Ando, T., & Uchihashi, T. (2013). High-speed AFM and imaging of biomoleculr processes. In T. Ondarçuhu & J.-P. Aime (Eds.), Nanoscale liquid interfaces: Wetting, patterning and force microscopy at the molecular scale (pp. 713–742). Pan Stanford Publishing.
go back to reference Darst, S. A., Ahlers, M., Meller, P. H., Kubalek, E. W., Blankenburg, R., Ribi, H. O., Ringsdorf, H., & Kornberg, R. D. (1991). Two-dimensional crystals of streptavidin on biotinylated lipid layers and their interactions with biotinylated macromolecules. Biophysical Journal, 59, 387–396.CrossRefADS Darst, S. A., Ahlers, M., Meller, P. H., Kubalek, E. W., Blankenburg, R., Ribi, H. O., Ringsdorf, H., & Kornberg, R. D. (1991). Two-dimensional crystals of streptavidin on biotinylated lipid layers and their interactions with biotinylated macromolecules. Biophysical Journal, 59, 387–396.CrossRefADS
go back to reference Ellis, M. J., & Hebert, H. (2001). Structure analysis of soluble proteins using electron crystallography. Micron, 32, 541–550.CrossRef Ellis, M. J., & Hebert, H. (2001). Structure analysis of soluble proteins using electron crystallography. Micron, 32, 541–550.CrossRef
go back to reference Hinterdorfer, P., & Dufréne, Y. F. (2006). Detection and localization of single molecular recognition events using atomic force microscopy. Nature Methods, 3, 347–355.CrossRef Hinterdorfer, P., & Dufréne, Y. F. (2006). Detection and localization of single molecular recognition events using atomic force microscopy. Nature Methods, 3, 347–355.CrossRef
go back to reference Jonkheijm, P., Weinrich, D., Schröder, H., Niemeyer, C. M., & Waldmann, H. (2008). Chemical strategies for generating protein biochips. Angewandte Chemie International Edition, 47, 9618‒9647. Jonkheijm, P., Weinrich, D., Schröder, H., Niemeyer, C. M., & Waldmann, H. (2008). Chemical strategies for generating protein biochips. Angewandte Chemie International Edition, 47, 9618‒9647.
go back to reference Kim, J., Kim, G., & Cremer, P. S. (2001). Investigations of water structure at the solid/liquid interface in the presence of supported lipid bilayers by vibrational sum frequency spectroscopy. Langmuir, 17, 7255–7260.CrossRef Kim, J., Kim, G., & Cremer, P. S. (2001). Investigations of water structure at the solid/liquid interface in the presence of supported lipid bilayers by vibrational sum frequency spectroscopy. Langmuir, 17, 7255–7260.CrossRef
go back to reference Kodera, N., Yamamoto, D., Ishikawa, R., & Ando, T. (2010). Video imaging of walking myosin V by high-speed atomic force microscopy. Nature, 468, 72–76.CrossRefADS Kodera, N., Yamamoto, D., Ishikawa, R., & Ando, T. (2010). Video imaging of walking myosin V by high-speed atomic force microscopy. Nature, 468, 72–76.CrossRefADS
go back to reference Liu, M., Amro, N. A., & Liu, G.-Y. (2008). Nanografting for surface: Physical chemistry. Annual Review of Physical Chemistry, 59, 367–386.CrossRefADS Liu, M., Amro, N. A., & Liu, G.-Y. (2008). Nanografting for surface: Physical chemistry. Annual Review of Physical Chemistry, 59, 367–386.CrossRefADS
go back to reference Miyagi, A., Chipot, C., Rangl, M., & Scheuring, S. (2016). High-speed atomic force microscopy shows that annexin V stabilizes membranes on the second timescale. Nature Nanotechnology, 11, 783–790.CrossRefADS Miyagi, A., Chipot, C., Rangl, M., & Scheuring, S. (2016). High-speed atomic force microscopy shows that annexin V stabilizes membranes on the second timescale. Nature Nanotechnology, 11, 783–790.CrossRefADS
go back to reference Noi, K., Yamamoto, D., Nishikori, S., Arita-Morioka, K., Ando, T., & Ogura, T. (2013). High-speed atomic force microscopic observation of ATP-dependent rotation of the AAA+ chaperone p97. Structure, 21, 1992–2002.CrossRef Noi, K., Yamamoto, D., Nishikori, S., Arita-Morioka, K., Ando, T., & Ogura, T. (2013). High-speed atomic force microscopic observation of ATP-dependent rotation of the AAA+ chaperone p97. Structure, 21, 1992–2002.CrossRef
go back to reference Noshiro, D., & Ando, T. (2018). Substrate protein dependence of GroEL-GroES interaction cycle revealed by high-speed AFM imaging. Philosophical Transactions of the Royal Society B, 373, 20170180.CrossRef Noshiro, D., & Ando, T. (2018). Substrate protein dependence of GroEL-GroES interaction cycle revealed by high-speed AFM imaging. Philosophical Transactions of the Royal Society B, 373, 20170180.CrossRef
go back to reference Ratanabanangkoon, P., & Gast, A. P. (2003). Effect of ionic strength on two-dimensional streptavidin crystallization, Langmuir, 19, 1794–1801. Ratanabanangkoon, P., & Gast, A. P. (2003). Effect of ionic strength on two-dimensional streptavidin crystallization, Langmuir, 19, 1794–1801.
go back to reference Reviakine, I., & Brisson, A. (2001). Streptavidin 2D crystals on supported phospholipid bilayers: Toward constructing anchored phospholipid bilayers. Langmuir, 17, 8293–8299.CrossRef Reviakine, I., & Brisson, A. (2001). Streptavidin 2D crystals on supported phospholipid bilayers: Toward constructing anchored phospholipid bilayers. Langmuir, 17, 8293–8299.CrossRef
go back to reference Sackmann, E. (1996). Supported membranes: Scientific and practical applications. Science, 271, 43–48.CrossRefADS Sackmann, E. (1996). Supported membranes: Scientific and practical applications. Science, 271, 43–48.CrossRefADS
go back to reference Takakura, Y., Tsunashima, M., Suzuki, J., Usami, S., Kakuta, Y., Okino, N., Ito, M., & Yamamoto, T. (2009). Tamavidins—novel avidin-like biotin-binding proteins from the Tamogitake mushroom. FEBS Journal, 276, 1383–1397.CrossRef Takakura, Y., Tsunashima, M., Suzuki, J., Usami, S., Kakuta, Y., Okino, N., Ito, M., & Yamamoto, T. (2009). Tamavidins—novel avidin-like biotin-binding proteins from the Tamogitake mushroom. FEBS Journal, 276, 1383–1397.CrossRef
go back to reference Uchihashi, T., Iino, R., Ando, T., & Noji, H. (2011). High-speed atomic force microscopy reveals rotary catalysis of rotor-less F1-ATPase. Science, 333, 755–758.CrossRefADS Uchihashi, T., Iino, R., Ando, T., & Noji, H. (2011). High-speed atomic force microscopy reveals rotary catalysis of rotor-less F1-ATPase. Science, 333, 755–758.CrossRefADS
go back to reference Uchihashi, T., Kodera, N., & Ando, T. (2012). Guide to video recording of structure dynamics and dynamic processes of proteins by high-speed atomic force microscopy. Nature Protocols, 7, 1193–1206.CrossRef Uchihashi, T., Kodera, N., & Ando, T. (2012). Guide to video recording of structure dynamics and dynamic processes of proteins by high-speed atomic force microscopy. Nature Protocols, 7, 1193–1206.CrossRef
go back to reference Uchihashi, T., Watanabe, Y., Nakazaki, Y., Yamasaki, T., Watanabe, H., Maruno, T., Ishii, K., Uchiyama, S., Song, C., Murata, K., Iino, R., & Ando, T. (2018). Dynamic structural states of ClpB involved in its disaggregation function. Nature Communications, 9, 2147.CrossRefADS Uchihashi, T., Watanabe, Y., Nakazaki, Y., Yamasaki, T., Watanabe, H., Maruno, T., Ishii, K., Uchiyama, S., Song, C., Murata, K., Iino, R., & Ando, T. (2018). Dynamic structural states of ClpB involved in its disaggregation function. Nature Communications, 9, 2147.CrossRefADS
go back to reference Vadgama, P. (2005). Surface biocompatibility. Annual Reports Progress Chemistry, Part C Physical Chemistry, 101, 14–52. Vadgama, P. (2005). Surface biocompatibility. Annual Reports Progress Chemistry, Part C Physical Chemistry, 101, 14–52.
go back to reference Wang, S. W., Robertson, C. R., & Gast, A. P. (1999). Molecular arrangement in two-dimensional streptavidin crystals. Langmuir, 15, 1541–1548.CrossRef Wang, S. W., Robertson, C. R., & Gast, A. P. (1999). Molecular arrangement in two-dimensional streptavidin crystals. Langmuir, 15, 1541–1548.CrossRef
go back to reference Wang, H., Bash, R., Yodh, J. G., Hager, G. L., Lohr, D., & Lindsay, S. M. (2002). Glutaraldehyde modified mica: A new surface for atomic force microscopy of chromatin. Biophysical Journal, 3619‒3625. Wang, H., Bash, R., Yodh, J. G., Hager, G. L., Lohr, D., & Lindsay, S. M. (2002). Glutaraldehyde modified mica: A new surface for atomic force microscopy of chromatin. Biophysical Journal, 3619‒3625.
go back to reference Yamamoto, D., Uchihashi, T., Kodera, N., & Ando, T. (2008). Anisotropic diffusion of point defects in two-dimensional crystal of streptavidin observed by high-speed atomic force microscopy. Nanotechnology, 19, 384009. Yamamoto, D., Uchihashi, T., Kodera, N., & Ando, T. (2008). Anisotropic diffusion of point defects in two-dimensional crystal of streptavidin observed by high-speed atomic force microscopy. Nanotechnology, 19, 384009.
go back to reference Yamamoto, D., Nagura, N., Omote, S., Taniguchi, M., & Ando, T. (2009). Streptavidin 2D crystal substrates for visualizing biomolecular processes by atomic force microscopy. Biophysical Journal, 97, 2358–2367.CrossRefADS Yamamoto, D., Nagura, N., Omote, S., Taniguchi, M., & Ando, T. (2009). Streptavidin 2D crystal substrates for visualizing biomolecular processes by atomic force microscopy. Biophysical Journal, 97, 2358–2367.CrossRefADS
go back to reference Yamamoto, D., Uchihashi, T., Kodera, N., Yamashita, H., Nishikori, S., Ogura, T., Shibata, M., & Ando, T. (2010). High-speed atomic force microscopy techniques for observing dynamic biomolecular processes. Methods in Enzymology, 475 (Part B), 541‒564. Yamamoto, D., Uchihashi, T., Kodera, N., Yamashita, H., Nishikori, S., Ogura, T., Shibata, M., & Ando, T. (2010). High-speed atomic force microscopy techniques for observing dynamic biomolecular processes. Methods in Enzymology, 475 (Part B), 541‒564.
go back to reference Yamamoto, D., & Ando, T. (2016). Chaperonin GroEL-GroES functions as both alternating and non-alternating engines. Journal of Molecular Biology, 428, 3090–3101.CrossRef Yamamoto, D., & Ando, T. (2016). Chaperonin GroEL-GroES functions as both alternating and non-alternating engines. Journal of Molecular Biology, 428, 3090–3101.CrossRef
go back to reference Yamashita, H., Inoue, K., Shibata, M., Uchihashi, T., Sasaki, J., Kandori, H., & Ando, T. (2013). Role of trimer-trimer interaction of bacteriorhodopsin studied by optical spectroscopy and high-speed atomic force microscopy. Journal of Structural Biology, 184, 2–11.CrossRef Yamashita, H., Inoue, K., Shibata, M., Uchihashi, T., Sasaki, J., Kandori, H., & Ando, T. (2013). Role of trimer-trimer interaction of bacteriorhodopsin studied by optical spectroscopy and high-speed atomic force microscopy. Journal of Structural Biology, 184, 2–11.CrossRef
go back to reference Yokokawa, M., Wada, C., Ando, T., Sakai, N., Yagi, A., Yoshimura, S. H., & Takeyasu, K. (2006). Fast-scanning atomic force microscopy reveals the ATP/ADP-dependent conformational changes of GroEL. EMBO Journal, 25, 4567–4576.CrossRef Yokokawa, M., Wada, C., Ando, T., Sakai, N., Yagi, A., Yoshimura, S. H., & Takeyasu, K. (2006). Fast-scanning atomic force microscopy reveals the ATP/ADP-dependent conformational changes of GroEL. EMBO Journal, 25, 4567–4576.CrossRef
go back to reference Zhang, S. F., Rolfe, P., Wright, G., Lian, W., Milling, A. J., Tanaka, S., & Ishihara, K. (1998). Physical and biological properties of compound membranes incorporating a copolymer with a phosphorylcholine head group. Biomaterials, 19, 691–700.CrossRef Zhang, S. F., Rolfe, P., Wright, G., Lian, W., Milling, A. J., Tanaka, S., & Ishihara, K. (1998). Physical and biological properties of compound membranes incorporating a copolymer with a phosphorylcholine head group. Biomaterials, 19, 691–700.CrossRef
Metadata
Title
Substrate Surfaces
Author
Toshio Ando
Copyright Year
2022
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-64785-1_10