Skip to main content
Top
Published in: Metallurgical and Materials Transactions B 2/2017

23-01-2017

Oxidation and Condensation of Zinc Fume From Zn-CO2-CO-H2O Streams Relevant to Steelmaking Off-Gas Systems

Authors: Tyler M. Bronson, Naiyang Ma, Liang Zhu Zhu, Hong Yong Sohn

Published in: Metallurgical and Materials Transactions B | Issue 2/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The objective of this research was to study the condensation of zinc vapor to metallic zinc and zinc oxide solid under varying environments to investigate the feasibility of in-process separation of zinc from steelmaking off-gas dusts. Water vapor content, temperature, degree of cooling, gas composition, and initial zinc partial pressure were varied to simulate the possible conditions that can occur within steelmaking off-gas systems, limited to Zn-CO2-CO-H2O gas compositions. The temperature of deposition and the effect of rapidly quenching the gas were specifically studied. A homogeneous nucleation model for applicable experiments was applied to the analysis of the experimental data. It was determined that under the experimental conditions, oxidation of zinc vapor by H2O or CO2 does not occur above 1108 K (835 °C) even for highly oxidizing streams (CO2/CO = 40/7). Rate expressions that correlate CO2 and H2O oxidation rates to gas composition, partial pressure of water vapor, temperature, and zinc partial pressure were determined to be as follows:
$$ {\text{Rate}}\left( {\frac{\text{mol}}{{{\text{m}}^{2} {\text{s}}}}} \right) = 406 \exp \left( {\frac{{ - 50.2 \,{\text{kJ}}/{\text{mol}}}}{RT}} \right)\left( {p_{\text{Zn}} p_{{{\text{CO}}_{2} }} - p_{\text{CO}} /K_{{{\text{eq}},{\text{CO}}_{2} }} } \right)\,\frac{\text{mol}}{{{\text{m}}^{2} \times {\text{s}}}} $$
$$ {\text{Rate}}\left( {\frac{\text{mol}}{{{\text{m}}^{2} {\text{s}}}}} \right) = 32.9 \exp \left( {\frac{{ - 13.7\, {\text{kJ}}/{\text{mol}}}}{RT}} \right)\left( {p_{\text{Zn}} p_{{{\text{H}}_{2} {\text{O}}}} - p_{{{\text{H}}_{2} }} /K_{{{\text{eq}},{\text{H}}_{2} {\text{O}}}} } \right)\,\frac{\text{mol}}{{{\text{m}}^{2} \times {\text{s}}}} $$
It was proven that a rapid cooling rate (500 K/s) significantly increases the ratio of metallic zinc to zinc oxide as opposed to a slow cooling rate (250 K/s). SEM analysis found evidence of heterogeneous growth of ZnO as well as of homogeneous formation of metallic zinc. The homogeneous nucleation model fit well with experiments where only metallic zinc deposited. An expanded model with rates of oxidation by CO2 and H2O as shown was combined with the homogenous nucleation model and then compared with experimental data. The calculated results based on the model gave a reasonable fit to the measured data. For the conditions used in this study, the rate equations for the oxidation of zinc by carbon dioxide and water vapor as well as the homogeneous nucleation model of metallic zinc were applicable for various temperatures, zinc partial pressures, CO2:CO ratios, and H2O partial pressures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference N.H. Keyser, J.R. Porter, A.J. Valentino, M.P. Harmer, and J.I. Goldstein: Proc. Symp. Iron and Steel Pollut. Abatement Technol., 1981, U.S. Environmental Protection Agency, N.W. Washington, DC, 1983, pp. 246–60. N.H. Keyser, J.R. Porter, A.J. Valentino, M.P. Harmer, and J.I. Goldstein: Proc. Symp. Iron and Steel Pollut. Abatement Technol., 1981, U.S. Environmental Protection Agency, N.W. Washington, DC, 1983, pp. 246–60.
3.
go back to reference Y. Kashiwaya, A. Tsubone, K. Ishii, and H, Sasamoto: ISIJ Int., 2004, vol. 44, pp. 1774–49. Y. Kashiwaya, A. Tsubone, K. Ishii, and H, Sasamoto: ISIJ Int., 2004, vol. 44, pp. 1774–49.
4.
go back to reference J.G.M.S. Machado, F.A. Brehm, C.A.M. Moraes, C.A. Santos, A.C.F. Vilela, and J.B.M. Cunha: J. Hazard. Mater., 2006, vol. 136, no. 3, pp. 953-60.CrossRef J.G.M.S. Machado, F.A. Brehm, C.A.M. Moraes, C.A. Santos, A.C.F. Vilela, and J.B.M. Cunha: J. Hazard. Mater., 2006, vol. 136, no. 3, pp. 953-60.CrossRef
5.
go back to reference M. Liebmann: 4th Int. Symp. Recycl. Met. Eng. Mater. 2000, TMS, Warrendale, PA, 2000, pp. 237–50. M. Liebmann: 4th Int. Symp. Recycl. Met. Eng. Mater. 2000, TMS, Warrendale, PA, 2000, pp. 237–50.
6.
go back to reference J. Ruetten: Lead-Zinc 2010, TMS, Warrendale, PA, 2010, pp. 841–49. J. Ruetten: Lead-Zinc 2010, TMS, Warrendale, PA, 2010, pp. 841–49.
7.
go back to reference N.Y. Ma: EPD Congress 2011, TMS, Warrendale, PA, 2011, pp. 947–52. N.Y. Ma: EPD Congress 2011, TMS, Warrendale, PA, 2011, pp. 947–52.
8.
go back to reference N.Y. Ma, M. Atkinson, and K. Neale: Iron Steel Technol., 2012, vol. 4, pp. 77-86. N.Y. Ma, M. Atkinson, and K. Neale: Iron Steel Technol., 2012, vol. 4, pp. 77-86.
9.
go back to reference A.G. Guezennec, J.C. Huber, F. Patisson, P. Sessiecq, J.P. Birat, and D. Ablitzer: J. Powder Technol., 2005, vol. 157, pp. 2-11.CrossRef A.G. Guezennec, J.C. Huber, F. Patisson, P. Sessiecq, J.P. Birat, and D. Ablitzer: J. Powder Technol., 2005, vol. 157, pp. 2-11.CrossRef
10.
go back to reference T. Suetens, B. Klaasen, KV. Acker, and B. Blanpain: J. Cleaner Production, 2014, vol. 65, pp. 152-67.CrossRef T. Suetens, B. Klaasen, KV. Acker, and B. Blanpain: J. Cleaner Production, 2014, vol. 65, pp. 152-67.CrossRef
11.
go back to reference N.Y. Ma, H.R. Kokal, and J. Flannery: Iron Steel Technol., 2009, vol. 3, pp. 76-82. N.Y. Ma, H.R. Kokal, and J. Flannery: Iron Steel Technol., 2009, vol. 3, pp. 76-82.
12.
13.
go back to reference R.L. Leonard: M.S. Thesis, Colorado School of Mines, Golden, CO, 1985. R.L. Leonard: M.S. Thesis, Colorado School of Mines, Golden, CO, 1985.
14.
go back to reference K.L. Stansbury: M.S. Thesis, Colorado School of Mines, Golden, CO, 1987. K.L. Stansbury: M.S. Thesis, Colorado School of Mines, Golden, CO, 1987.
15.
go back to reference L.A. Lewis and A.M. Cameron: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 911-24.CrossRef L.A. Lewis and A.M. Cameron: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 911-24.CrossRef
16.
go back to reference J.M. Osborne, W.J. Rankin, D.J. McCarthy, and D.R. SwinBourne: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 37-45.CrossRef J.M. Osborne, W.J. Rankin, D.J. McCarthy, and D.R. SwinBourne: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 37-45.CrossRef
17.
18.
go back to reference M. Dell’Amico and J.B. See: Pyrometallurgy, The Institution of Mining and Metallurgy, London, U.K., 1987, pp. 305-45. M. Dell’Amico and J.B. See: Pyrometallurgy, The Institution of Mining and Metallurgy, London, U.K., 1987, pp. 305-45.
19.
go back to reference Y. Ji, H.Y. Sohn, H.D. Jang, B. Wan, and T. Ring: J. Am. Ceram. Soc., 2007, vol. 90, pp. 3838-45. Y. Ji, H.Y. Sohn, H.D. Jang, B. Wan, and T. Ring: J. Am. Ceram. Soc., 2007, vol. 90, pp. 3838-45.
20.
go back to reference F. Incropera, D. Dewitt, T. Bergman, and A. Lavine: Fundamentals of Heat and Mass Transfer, 6th ed., Wiley, Hoboken, NJ, 2007, pp. 377-8. F. Incropera, D. Dewitt, T. Bergman, and A. Lavine: Fundamentals of Heat and Mass Transfer, 6th ed., Wiley, Hoboken, NJ, 2007, pp. 377-8.
21.
go back to reference R. Jenkins and R.L. Snyder: Introduction to X-ray Powder Diffractometry, vol. 138, Wiley, Hoboken, NJ, 1996, pp. 89-91.CrossRef R. Jenkins and R.L. Snyder: Introduction to X-ray Powder Diffractometry, vol. 138, Wiley, Hoboken, NJ, 1996, pp. 89-91.CrossRef
22.
go back to reference A. Monshi, M.R. Foroughi, and M.R. Monshi: World J. Nano Sci. Eng., 2012, vol. 2, pp. 154-60.CrossRef A. Monshi, M.R. Foroughi, and M.R. Monshi: World J. Nano Sci. Eng., 2012, vol. 2, pp. 154-60.CrossRef
23.
go back to reference Y. Suyama, Y. Tomokiyo, T. Manabe, and E. Tanka: J. Am. Ceram. Soc., 1988, vol. 71, pp. 391-5.CrossRef Y. Suyama, Y. Tomokiyo, T. Manabe, and E. Tanka: J. Am. Ceram. Soc., 1988, vol. 71, pp. 391-5.CrossRef
24.
go back to reference J.V. Stott and D.J. Fray: Adv. Extr. Metall. And Refin, M.J. Jones, ed.; United Kingdom Institute of Mining and Metallurgy, London, 1972, pp. 1–11. J.V. Stott and D.J. Fray: Adv. Extr. Metall. And Refin, M.J. Jones, ed.; United Kingdom Institute of Mining and Metallurgy, London, 1972, pp. 1–11.
25.
26.
27.
go back to reference H.Y. Sohn, M. Olivas-Martinez, and S.E. Perez-Fontes: Mathematical Modelling, Nova Science Publishers Inc: Hauppauge, NY, 2013, pp. 179–208. H.Y. Sohn, M. Olivas-Martinez, and S.E. Perez-Fontes: Mathematical Modelling, Nova Science Publishers Inc: Hauppauge, NY, 2013, pp. 179–208.
Metadata
Title
Oxidation and Condensation of Zinc Fume From Zn-CO2-CO-H2O Streams Relevant to Steelmaking Off-Gas Systems
Authors
Tyler M. Bronson
Naiyang Ma
Liang Zhu Zhu
Hong Yong Sohn
Publication date
23-01-2017
Publisher
Springer US
Published in
Metallurgical and Materials Transactions B / Issue 2/2017
Print ISSN: 1073-5615
Electronic ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-016-0910-8

Other articles of this Issue 2/2017

Metallurgical and Materials Transactions B 2/2017 Go to the issue

Premium Partners